
-- --

Using Self-Organizing Maps to Learn Geometric Hash
Functions for Model-Based Object Recognition

George Bebis1, Michael Georgiopoulos2, and Niels da Vitoria Lobo3

Department of Computer Science, University of Nevada, Reno, NV 895571

Department of Electrical & Computer Engineering, University of Central Florida, Orlando, FL 328162

Department of Computer Science, University of Central Florida, Orlando, FL 328163

E-mail: bebis@cs.unr.edu, mng@ece.engr.ucf.edu, niels@cs.ucf.edu

correspondence should be addressed to

Dr. George Bebis
Department of Computer Science

University of Nevada
Reno, NV 89557

Tel: (702) - 784 - 6463
Fax: (702) - 784 - 1877

Abstract

A major problem associated with geometric hashing and methods which have emerged from it is the non-uniform distri-

bution of invariants over the hash space. This has two serious effects on the performance of the method. First, it can re-

sult in an inefficient storage of data which can increase recognition time. Second, given that geometric hashing is highly

amenable to parallel implementation, a non-uniform distribution of data poses difficulties in tackling the load-balancing

problem. Finding a "good" geometric hash function which redistributes the invariants uniformly over the hash space is

not easy. Current approaches make assumptions about the statistical characteristics of the data and then use techniques

from probability theory to calculate a transformation that maps the non-uniform distribution of invariants to a uniform

one. In this paper, a new approach is proposed based on an elastic hash table. In contrast to existing approaches which

try to redistribute the invariants over the hash bins, we proceed oppositely by distributing the hash bins over the invari-

ants. The key idea is to associate the hash bins with the output nodes of a Self-Organizing Feature Map (SOFM) neural

network which is trained using the invariants as training examples. In this way, the location of a hash bin in the space of

invariants is determined by the weight vector of the node associated with the hash bin. During training, the SOFM

spreads the hash bins proportionally to the distribution of invariants (i.e., more hash bins are assigned to higher density

areas while less hash bins are assigned to lower density areas) and adjusts their size so that they eventually hold almost

the same number of invariants. The advantage of the proposed approach is that it is a process that adapts to the invari-

ants through learning. Hence, it makes absolutely no assumptions about the statistical characteristics of the invariants

and the geometric hash function is actually computed through learning. Furthermore, SOFM’s "topology preserving"

property ensures that the computed geometric hash function should be well behaved. The proposed approach, was

shown to perform well on both artificial and real data.

-- --

- 2 -

1. Introduction

During the last two decades, there has been a variety of approaches to tackle the problem of object

recognition. The most successful approach is probably in the context of model-based object recognition [1],

where the environment is rather constrained and recognition relies upon the existence of a set of predefined

object models. The indexing based approach to object recognition has been prevalent for quite a number of

years. According to this approach, a model database is built first by establishing proper associations between

features and models. Then, during the recognition stage, scene features are used to retrieve the right associa-

tions stored in the model database. Efficient indexing schemes are used for both organizing and searching the

model database effectively. Geometric hashing [2] is a well known technique which belongs into this cate-

gory. It is based on the idea of storing information about the models in a table, using a hashing scheme. The

indexing of the appropriate hash bin where this information must be stored is performed using transformation

invariant object features called invariants. During recognition, the same hashing scheme is used in order to

retrieve the most feasible models from the model database.

Geometric hashing and approaches which have emerged from it suffer from a major problem: the non-

uniform distribution of invariants over the hash space. Taking into consideration that geometric hashing is

amenable to parallel implementation [6][7], a uniform distribution of data is highly desirable for solving the

load-balancing problem (i.e., distributing the data over the processors) [6]. Also, the non-uniform nature of

the distribution of invariants results in an inefficient storage of the data over the hash table which can slow

down recognition significantly. The key solution to the problem is the selection of a "good" geometric hash

function which can redistribute the data uniformly over the hash table. In addition, it is very important that

the hash function is proximity preserving, that is, it it maps similar data to hash bins located close together.

Hash functions which preserve proximity are very desirable because partial voting, a heuristic which

increases geometric hashing’s noise tolerance, can be implemented efficiently (see section 4).

It is well known, however, that "good" hash functions are difficult to find. In [11], several hash func-

tions were considered and evaluated to find which one performs best. The conclusion was that the selection

of a good hash function is data dependent. Rehashing is a different approach which has been recently sug-

gested [4][5]. The idea is to compute a transformation which maps the distribution of invariants to a uniform

one, using techniques from probability theory. Although rehashing is an interesting approach, it has two

drawbacks: first, it is based on the assumption that the probability density function (pdf) of the model point

-- --

- 3 -

features is known a priori (the pdf of model point features is required in the calculation of the distribution of

invariants). Second, the derivation of the rehashing transformation involves complex calculations which, in

certain cases, are even intractable [5].

In this paper, a new approach is presented which does not make any assumption about the statistical

characteristics of the distribution of model points and does not require the estimation of the pdf of invariants.

A shorter version of this work was presented in [8]. In geometric hashing, hash bins correspond to locations

in the space of invariants. The location of a hash bin is very critical because it determines which invariants

will access the hash bin. Common approaches distribute the hash bins in a way that does not always resemble

the distribution of invariants. More efficient approaches, like rehashing, distribute the hash bins uniformly but

then try to distribute the invariants uniformly over the hash bins. In contrast to these approaches, we proceed

oppositely by distributing the hash bins over the invariants, without redistributing the invariants. In other

words, the hash table used is not static but rather elastic. The key idea is to associate the hash bins with the

output nodes of a SOFM neural network which is trained using the invariants as training examples. In this

way, the location of a hash bin is determined by the weight vector of the node associated with the hash bin.

The behavior of the SOFM during training resembles an elastic grid which deforms over the space of invari-

ants. The objective of the deformation process is to distribute the weight vectors (i.e., hash bins’ locations)

according to the distribution of invariants. The training of the SOFM is performed using a variation of the

Kohonen algorithm [9], motivated by [13], which we call the Kohonen algorithm with conscience.

The proposed approach has the advantage that the hash function, implemented by the SOFM, is actu-

ally computed through learning. Since the choice of a proper hash function seems to be problem dependent,

the availability of a scheme which automatically finds a "good" hash function for a given problem, through

learning, is highly desirable. Also, the topology preserving property [9] implies that the computed hash func-

tion should be well behaved, that is, it should be piece-wise continuous and should not have singularities.

Thus, the learned hash function will be proximity preserving. Finally, the proposed approach is notable for its

simplicity and it is inherently parallelizable.

The organization of the paper is as follows: Section 2 discusses geometric hashing. Section 3 presents a

brief overview of the SOFM. In section 4 we show how the SOFM can be used to solve the problems caused

by the non-uniformity of invariants. In section 5, we discuss the problem of node underutilization and we

present an experimental study involving a number of variations of the Kohonen algorithm. Implementation

-- --

- 4 -

details, experimental results, and comparisons with existing approaches are given in section 6. Finally, sec-

tion 7 presents our conclusions.

2. Geometric hashing and rehashing

Geometric hashing is based on the idea of storing redundant, transformation-invariant, information

about an object in a database. During preprocessing, a number of feature points are extracted and the objects

are represented in an affine invariant way. This is performed as follows: first, three non-collinear points

(basis triplet) are chosen from the set of feature points and a coordinate frame based on these points is

defined. Then, the coordinates of all other feature points are recomputed in terms of the new coordinate

frame defined. Figure 1 shows the new coordinates (u,v) of point pi , computed in the coordinate system

defined by p1, p2 and p3. The new coordinates are called invariants because they remain unchanged to affine

transformations of the object, assuming that the same basis triplet is chosen [2]. The same procedure is

repeated for all possible triplets which can be formed by changing the order of the points in the triplet or

choosing new points from the set of feature points. The recomputed coordinates (u, v) are used, after proper

quantization, as an index into a hash table where an entry (composed of the basis-triplet and model) is

recorded.

<Figure 1 - about here>

During the recognition step, the hash table is used to determine which models are present in the scene.

First, an arbitrary ordered triplet of non-collinear points is chosen from the scene. Then, the coordinates of

the remaining scene points are recomputed in terms of the coordinate frame defined by this triplet. The

recomputed coordinates of each point are used as an index into the hash table and for each entry (basis-

triplet, model) recorded there, a vote is cast. Entries (basis-triplet, model) which score a large number of

votes imply possible matches between the model triplets they store and the scene triplet chosen. These possi-

ble matches (hypotheses) are then verified by seeking further evidence to support them. Figure 2 demon-

strates the preprocessing and recognition steps.

<Figure 2 - about here>

The efficiency of the geometric hashing technique relies heavily on the distribution of invariants over

the hash space. The number of hypotheses generated depends on the distribution of invariants. In the extreme

case where all the invariants hash into the same hash bin, geometric hashing will be very inefficient since all

-- --

- 5 -

possible matches will have to be considered. In general, the invariants are heavily non-uniformly distributed

which implies that the hash entries will also be stored non-uniformly over the hash table. Rehashing [4][5]

has been proposed as an effective approach for dealing with the non-uniformity of invariants. Specifically,

rehashing is a transformation which maps the distribution of invariants to a uniform distribution. This is per-

formed by assuming that the model points are generated by either a Gaussian random process or a process

that is uniform over the unit disc or the unit square. Based on these assumptions, the distribution of invariants

was calculated.

Three classes of transformations were considered: rigid, similarity, and affine. The transformation

which maps point features to invariants can be found easily for each of these cases. Once the pdf of invariants

was known for a given geometric transformation, another transformation that maps the pdf of invariants to a

uniform distribution was calculated using probability theory techniques again. However, analytical formulas

could not be derived in every case because of the intractability of the computations involved [5]. In particular,

analytical expressions were derived for all three cases of transformations, only under the assumption that the

pdf of model point features was Gaussian with zero mean. In these cases, the distributions of invariants were

shown to be variations of the Cauchy distribution with zero mean.

Although rehashing is a mathematically sound approach, it has two drawbacks: first, it is based on the

assumption that the model point features are drawn from a known distribution. However, this assumption is

not always valid, especially when the number of models is not very large or there is not much variance in the

database. Section 6 provides a number of examples. Second, the steps involved in the derivation of the

rehashing transformation are complex.

3. The Self Organizing Feature Map

In this section, we present a brief overview of the SOFM and its properties. The SOFM consists of an

input layer and a single output layer of nodes which usually form a two-dimensional array. The training of

the SOFM is usually performed using the Kohonen algorithm [9]. The are two phases of operation: the simi-

larity matching phase and the weight adaptation phase. Initially, the weights are set to small random values

and a pattern is presented to the input nodes of the network. During the similarity matching phase, the dis-

tances di between the inputs and the weights are computed:

di =
j

Σ(xµ
j − wij(t))

2

-- --

- 6 -

where xµ is the µ-th training pattern and wij(t) is the weight from input node j to output node i at step t.

Next, the output node i* having the minimum distance di* is chosen and is declared as the "winner" node. In

the weight adaptation phase, the weights from the inputs to the "winner" node are adapted. In addition, a

topological neighborhood N (i, i*) of the winning node i* is defined and the weights connecting the inputs to

the nodes contained in this topological neighborhood are also adapted. The weight changes are based on the

following rule :

wij(t + 1) = wij(t) + η(xµ
j − wij(t))

for i ∈ N (i, i*). The parameter η is the learning rate of the algorithm. Generally, the neighborhood N (i, i*)

and the learning rate η are decreasing functions of time [9]. A typical choice for N (i, i*) is

N (i, i*) = exp
−|ri − ri* |2

2σ 2(t)

which is equal to 1 for i = i* and decreases with the distance (ri − ri*) between units i and i* in the two-

dimensional array (ri is the location of the node i in the array and σ (t) is a width parameter that is gradually

decreased) [15]. A common choice for η(t) and σ (t) is

η(t) = η0b−γ t

σ (t) = σ0c−γ t

where γ = 1/tmax, and η0, σ0, b, c are constants [15]. The training procedure is repeated for a number of steps

tmax which is specified a priori.

The SOFM possesses some very useful properties. Kohonen [9] has argued that the density of the

weight vectors assigned to an input region approximates the density of the inputs occupying this region. In

fact, the weight vectors converge to cluster centroids or probability extrema [10]. In other words, after train-

ing has been completed, the map will reflect the statistical characteristics of the inputs. Second, the weight

vectors tend to be ordered according to their mutual similarity (topology preserving property). This property

is a direct consequence of the use of topological neighborhoods during training. The importance of this prop-

erty is that at the end of learning, nearby nodes will respond to similar inputs. This implies that the mapping

from the input space to the space of nodes should be well behaved.

-- --

- 7 -

4. Alleviating the non-uniformity of invariants using the SOFM

In order to demonstrate the suitability of the SOFM for alleviating the non-uniformity of invariants, we

need to examine carefully the hash function employed by geometric hashing. It is a very simple hash function

which consists of a linear scaling of the invariants followed by quantization to yield an integer index that fits

the dimensions of the hash table. In this case, hashing merely implies a quantization of the space of invari-

ants. Assuming that Rk denotes the space of invariants, hashing defines a partition D1, D2, . . . , DN of Rk

such that:

Rk = D1 ∪ D2 ∪ . . . ∪ DN .

Each group Di is associated with a hash bin, that is, if x belongs to Di , then hashing will assign x to the hash

bin associated with Di . In order for the hash entries to be distributed uniformly over the hash table, hashing

should be able to divide the space of invariants into equiprobable regions.

A simple way to form these regions is by splitting the space of invariants into equal size squared

regions. This can be done by projecting a grid of fixed cell size onto the space of invariants. Then if we asso-

ciate each cell to a hash bin, the invariants falling into the same cell will all be hashed into the hash bin asso-

ciated with the cell. Partitioning the space of invariants in this way will yield good results only if the distribu-

tion of invariants is uniform. In this case, each cell will contain almost the same number of invariants (see

Figure 3(a)). Obviously, a grid with a fixed cell size will not yield good results when the distribution of

invariants is non-uniform. In this case, certain cells will become over-populated while other cells will remain

almost empty. One way to deal with this problem is by choosing a variable cell size. For example, assuming

that the distribution of invariants resembles a Gaussian distribution, it is reasonable to make the cell size pro-

portional to the distance of the cell from the center of the distribution. Hence, cells close to the center of the

distribution will be given small sizes while cells far away will be given large sizes as is illustrated in Figure

3(b). This approach was followed in [2]. A variable cell size will work well as far as the invariants are dis-

tributed uniformly around the center of the distribution. However, the shape of the distribution of invariants

varies from case to case and in fact, it depends on the number of objects in the database and their geometrical

characteristics. Figure 3(c) shows an example of a possible distribution.

<Figure 3 - about here>

In this paper, a new approach is proposed based on an elastic grid. According to this approach, the cell

-- --

- 8 -

size as well as the locations of the cells are not chosen in an a-priori manner, based on assumptions that

might not be true, but through a learning procedure which extracts the statistical characteristics of the distri-

bution of invariants and determines the size and location of the cells adaptively. The idea is to move the cells

of the grid over the populated regions of the space of invariants and adjust their size in a way that eventually

ev ery cell encloses almost the same number of invariants. That is, the cells should be distributed according to

the density of the invariants in a particular region.

The key idea in implementing the above approach is to associate the cells of the grid (i.e., hash bins)

with the output nodes of a SOFM, which is trained using the invariants as training examples. In this way, the

location of a hash bin in the space of invariants is determined by the weight vector of the node associated

with the hash bin. During training, sample invariants are presented to the network and the weight vectors

change positions according to Kohonen’s learning rule given is section 3. The learning procedure distributes

the weight vectors (i.e., hash bins) according to the distribution of invariants. After training, the SOFM

implements a non-linear mapping from the input space (i.e., space of invariants) to the space of nodes. This

mapping actually quantizes the space of invariants by partitioning it into a number of regions Di . To under-

stand this better, one can visualize the nodes of the network as points in the space of invariants. In general,

nodes can be visualized as points in two different spaces: the space of nodes and the input space. A node’s

location in the space of nodes is just the physical location of the node in the two-dimensional grid of nodes,

while a node’s location in the input space is the location determined by the weight vector associated with this

node. After the locations of the nodes have been plotted in the space of invariants, two points are connected if

their corresponding nodes are physical neighbors (i.e., neighbors in the space of nodes) [9]. Figure 4 shows

an example in the case of node i and its neighbors. Each node’s location has been plotted in the input space

and i’s location has been connected with the locations of all the other nodes since they are physical neighbors

of i in the space of nodes. The region Di defined by node i contains all the points which are closer to the vec-

tor wi than to any other vector w j , i ≠ j.

By representing the nodes of the SOFM as points in the space of invariants and connecting them

together according to the procedure described above, the nodes of the SOFM form an elastic grid over the

space of invariants. During training, the locations of the nodes change since the weights of the network

change. Thus, training can be seen as a deformation of an elastic grid over the space of invariants. The objec-

tive of the deformation process is to distribute the nodes of the elastic grid proportionally to the distribution

of invariants, that is, to assign more nodes in the more crowded areas and less nodes in the lower density

-- --

- 9 -

areas. It should be mentioned that by changing the locations of the hash bins, their sizes change as well. This

is because the size of a hash bin depends on the locations of its neighboring hash bins as Figure 4 illustrates.

The importance of the proposed approach is that no assumptions about the distribution of invariants need to

be made and that it is a process that adapts to the invariants.

<Figure 4 - about here>

The SOFM possesses two properties which make it very suitable for the problem at hand. First, the

density of the weight vectors approximates the density of the inputs and second, the mapping implemented

by the SOFM preserves the topology of the map (see section 3). The first property implies that the space of

invariants should be partioned into a number of equiprobable regions. Ideally, the probability of a randomly

selected invariant (selected according to the pdf of invariants), being closest to any giv en weigh vector

should be 1/m where m is the number of output nodes. As a result, each hash bin is expected to hold almost

the same number of entries. Unfortunately, this is not quite true in practice and certain heuristics must be

incorporated in the the training algorithm to improve results (see next section). The second property implies

that the mapping from the space of invariants to the space of "nodes" or "hash bins", will be proximity pre-

serving. Thus, similar invariants will be mapped to hash bins located close together. This property is very

desirable for implementing partial voting efficiently. Very briefly, partial voting is a heuristic for improving

the noise tolerance of geometric hashing. When noisy data are used to retrieve data from the model data base,

it is quite unlikely that the correct hash bins will be accessed. In partial voting, instead of voting for a single

hash bin, multiple votes are cast for hash bins in a neighborhood around the targeted hash bin. Although this

heuristic increases the number of hypotheses during recognition, it has be shown to be very beneficial and its

use is imperative [2][5].

5. Adding conscience to the Kohonen learning algorithm

A serious problem with competitive learning algorithms is that they often lead to solutions where sev-

eral nodes of the network remain underutilized or completely unutilized. For example, if some region of the

input space is more crowded than others and the initial density of weight vectors is too low in this region,

specific nodes will be winning the competitions consistently. The Kohonen learning algorithm attempts to

overcome this problem by using topological neighborhoods. Although this approach is very effective, it does

not alleviate the problems completely. There are a number of approaches in the literature which try to deal

with these problem [9]. Three of them, which are quite representative, hav e been considered here.

-- --

- 10 -

The first approach is based on a convex combination of the inputs [12]. According to this method, all

the initial weights are set to the same value 1/√ n, where n is the dimensionality of the input vectors. Then,

each component xi of the input vector is substituted by the value α xi + (1 − α)/√ n, where α is turned up

gradually from 0 to 1 giving the opportunity to the input vectors to attract the weight vectors slowly. The

second approach is called competitive learning with conscience [13]. The idea is to associate a threshold

with each node of the network. If a node has won more than 1/m of the time (where m is the number of nodes

in the network), its chance of winning again is reduced by raising its corresponding threshold. The third

method is called competitive learning with attention [14]. This approach is very similar to [13]. In particular,

a counter is assigned to each node of the network which keeps track of the number of times the node wins the

competition. Weight vectors are adjusted according to the frequency at which nodes have won in the past.

Each of the above methods adapts the weights of the winning node only and the learning rate is assumed to

be constant in [13].

<Figure 5 - about here>

TABLE 1. Standard deviation of the votes received by the nodes of the networks.

Standard deviation
Uniform Gaussian Circle

Convex 3.93 10.49 43.57
Attention 0.77 1.63 3.89
Conscience 0.72 1.0 2.18
Kohonen 3.68 7.30 10.90

All of the above methods were tested using the data sets shown in Figure 5. The number of training

epochs was chosen to be 6,000 for the convex combination approach and 1,000 for the other approaches. To

estimate the utilization of nodes after training, we presented to the networks all the training patterns once

(without changing the weights) and we recorded how many times each node became a winner. We call this

procedure "voting" (each input votes for a node), relating it implicitly to the voting scheme of geometric

hashing (each invariant votes for a hash bin). Then, we computed the standard deviation of the votes received

by each node. The standard deviation is a measure of the utilization of nodes since a small standard deviation

indicates that all the nodes are utilized (i.e., every node receives almost the same number of votes) whereas a

large standard deviation implies that certain nodes have been underutilized and others have been overutilized.

Table 1 shows the standard deviation of the votes received by the nodes of the networks. For comparison pur-

poses, we also included results using the Kohonen algorithm. Clearly, the competitive learning with

-- --

- 11 -

conscience approach performed best in all the cases.

<Figures 6,7 - about here>

Figure 6 shows the maps obtained by each approach. As it was expected, only the Kohonen algorithm

preserves the topology. This is a direct consequence of the fact that all other algorithms change the weights

of the winning node only. Howev er, Kohonen algorithm’s performance as far as node utilization is concerned

is not satisfactorily. Since the topology preserving property is very critical in the computation of a well

behaved hash function, we decided to combine the Kohonen algorithm, which preserves the topology, with

each one of the other three approaches, which improve node utilization. Our objective was to strengthen the

performance of the Kohonen algorithm in terms of node utilization, while preserving the topology at the

same time. Three variations were created in this way for comparison: the Kohonen algorithm using convex

combination of inputs (SOFM-CV), the Kohonen algorithm with attention (SOFM-A), and the Kohonen

algorithm with conscience (SOFM-C).

Since it was not evident from the beginning whether the incorporation of these heuristics into the Koho-

nen algorithm will affect the topology forming process or not, all the variations were consistently tested

using the same data sets and the same number of training epochs. The results obtained show that all the varia-

tions were able to find solutions which preserve the topology. A slight distortion in the computed maps might

occur, but it does not seem to be very significant. Among the three variations, the SOFM-C gav e the best

results in terms of node utilization. Table (2) shows the standard deviation of the votes for each case. Clearly,

the node utilization exhibited by the Kohonen algorithm with conscience is superior to the node utilization

exhibited by the Kohonen algorithm itself as can be seen by comparing the last rows of Tables (1) and (2).

Figure 7 shows the maps found by the SOFM-C. Figure 8 shows the steps involved in the SOFM-C. C and D

are constants associated with the biasing term added to the distance measure of the algorithm.

<Figure 8 - about here>

TABLE 2. Standard deviation of the votes received by the nodes of the networks.

Standard deviation
Uniform Gaussian Circle

SOFM-CV 3.79 6.52 11.73
SOFM-A 0.88 1.61 3.85
SOFM-C 0.60 0.92 1.38

-- --

- 12 -

6. Experimental results

In this section, we present a number of experimental results which demonstrate the effectiveness of the

proposed approach. Comparisons with rehashing are also provided.

6.1. Experiment 1

The purpose of this experiment is to examine the performance of rehashing. Similarity transformations

have been considered in this experiment. First, we considered the objects shown in Figure 9(a). The distribu-

tion of invariants for this data set is shown in Figure 9(c). Applying the rehashing transformation derived for

the case of similarity transformations yields the distribution shown in Figure 9(e). Obviously, rehashing per-

forms quite satisfactorily in this case. Next, we considered the objects shown in Figure 9(b). The distribution

of invariants computed for this data set is shown in Figure 9(d) while the rehashed distribution is shown in

Figure 9(f). Obviously, rehashing does not perform well in this case. According to the theoretical in [4], the

rehashing transformation computed for the case of similarity transformations was based on distribution of

invariants very similar to the Cauchy distribution. Although the distribution of Figure 9(c) resembles the

Cauchy distribution, the distribution of Figure 9(d) is very different. This is the reason rehashing does not

perform well in this case. Figures 10(a), and 10(c) show the distribution of hash entries over a 20 x 20 hash

table in the case of the original and rehashed invariants correspondingly.

<Figure 9,10,11 - about here>

Next, we trained a SOFM-C with two inputs and 400 output nodes, arranged on a 20 x 20 grid. The net-

work was trained for 500 epochs. The number of invariants used during training was 31,572 and they were

normalized in the range [0, 1] x [0, 1]. The initial weights of the SOFM were also chosen from the same

range. The parameters of the network were chosen as follows: η0=1.0, σ0=20 (equal to the maximum of the

dimensions of the feature map), b = c = 1. 0/15tmax, C=1.0 and D=0.01. The feature map to which the net-

work converged is shown in Figure 11(a). The structure of the feature map illustrates the way the hash bins

were distributed over the invariants. Figure 10(e) shows the distribution of entries over the hash table. To

estimate the hash table utilization, we computed the standard deviation (SD) of the number of entries stored

at each hash bin. The first row of Table (3) shows the results. Obviously, the SOFM-C has found a superior

solution. At the beginning of the training process, the SD was 422. Then, it gradually decreased during train-

ing as shown in Figure 12(a).

-- --

- 13 -

TABLE 3. Standard deviation of the number of hash entries.

Standard deviation
Unrehashed Rehashed SOFM-C

Similarity transf. 62.31 35.33 13.40
Affine transf. 194.20 86.06 25.38

6.2. Experiment 2

In this experiment, we consider the case of affine transformations. Figure 13 shows the set of the real

objects used. Invariants based on unstable basis triplets were rejected using the area based criterion [11]. Fig-

ure 14(a) shows the distribution of invariants in this case. The application of the rehashing transformation,

derived under the assumption of affine transformations, does not yield good results, as is demonstrated in

Figure 14(b). To explain why, let us observe that the third quadrant of the distribution of invariants in Figure

14(a) is less crowded than any the other quadrant. This is in agreement with the qualitative results of [4][5],

under the assumption that the distribution of model points is uniform over a convex domain. However, no

rehashing transformation was derived under this assumption because of the intractability of the computations

involved. The only rehashing transformation derived in the case of affine transformations is based on the

assumption that the distribution of model features is Gaussian over a convex domain and this is the one used

here. We believe that this is the reason rehashing did not perform well in this example.

<Figures 12,13,14 - about here>

Figures 10(b) and 10(d) show the distribution of hash entries over a 20 x 20 hash table, for the case of

the original invariants and rehashed invariants correspondingly. A SOFM-C with the same architecture as in

the previous experiment was utilized in order to demonstrate the performance of our approach. The same net-

work parameters were chosen as before except for the number of epochs which was chosen to be 100. The

number of invariants used to train the SOFM-C was 41,292, normalized in the range [0, 1] x [0, 1]. The ini-

tial weights were chosen from the same range. The map to which the network converged is shown in Figure

11(b). Figure 10(f) illustrates the distribution of hash entries over the hash table while the second row of

Table (3) shows the computed SDs (for the hash table utilization). It can be be noticed from Figure 10(f) that

several hash bins are still over-populated, especially in the boundaries of the hash table, but most hash bins

hold almost the same number of entries. Figure 12(b) shows the decreasing behavior of the SD during train-

ing (initial value was 224).

-- --

- 14 -

6.3. Experiment 3

One of the goals in redistributing the data over the hash table is to reduce the number of hypotheses

during recognition. To illustrate this we have performed a number of recognition experiments. Here, we

report two of them. In the first experiment, we considered the scene shown in Figure 15(a). A Laplacian

edge detector separated the objects from the background and a boundary following routine extracted their

boundaries (see Figure 15(c)). The interest points shown correspond to curvature maxima and zero-crossings

of the boundary (22 interest points were extracted) [16]. The recognition results are shown in Figure 15(e)

(the correctly recognized models have been back-projected on the scene).

<Figure 15 - about here>

TABLE 4. Number of hypotheses tried during verification.

Number of hypotheses
Unrehashed Rehashed SOFM-C

Scene1 (Model3) 140998 99329 69835
Scene1 (Model4) 11335 8550 6861
Scene2 (Model1) 320512 292046 204997
Scene2 (Model2) 220435 178334 144546
Scene2 (Model3) 34295 26947 19784

The first two rows of Table (4) show the number of hypotheses tried by each approach until both mod-

els recognized correctly (60% or more of the model points were required to match with the scene). As can be

observed, the proposed approach verified fewer hypotheses. Next, we considered the scene of Figure 15(b).

This is a fairly complicated scene. The same procedure, as above, was applied in order to extract the object

boundaries (only the outer boundaries were used in our experiment) and the interest shown in Figure 15(c)

(45 interest points were extracted). The recognition results are shown in Figure 15(f) and the number of

hypotheses verified by each approach is shown in the last three rows of Table (4). Clearly, the proposed

approach has verified fewer hypotheses. Overall, the proposed approach verified about 35% - 50% less

hypotheses than the hypotheses verified by geometric hashing without rehashing and 20% - 30% less

hypotheses than the hypotheses verified by geometric hashing with rehashing.

7. Discussion and conclusions

In this paper, we considered the geometric hashing technique, an indexing based object recognition

method which suffers from the problem of the non-uniform distribution of the data over the hash table. A

new approach for alleviating this problem was presented based on the SOFM. The proposed approach has a

-- --

- 15 -

number of advantages. First, it is not based on any assumption about the characteristics of the distribution of

invariants. Second, the hash function is implemented by the SOFM and is actually computed through learn-

ing. Third, the topology preserving property of the SOFM guarantees that the computed hash function

should be well behaved. The availability of a learning scheme which can be used to find a geometric hash

function having nice properties, independently of the problem at hand, is particularly attractive. The indepen-

dence of the proposed approach from any assumption and the good behavior of the solutions obtained sug-

gest that it might be a useful tool in helping us to derive approximate analytical rehashing functions in cases

where a closed form solution cannot be found using traditional approaches.

One disadvantage of the proposed approach is that the solutions obtained are sensitive to the selection

of certain parameter values, namely, the number of training epochs tmax and the parameter C used in the

modified distance measure of the SOFM-C. Both parameters were chosen by trial and error during our exper-

imentation. We believe that further improvements in the solutions found by the SOFM-C are possible (i.e.,

solutions with lower SDs). However, this requires extensive experimentation. It is should be mentioned that

after the completion of our work, a new, improved version of the competitive learning with conscience

approach came to our attention [17]. Specifically, it was shown that the choice of the parameter C is data

dependent and a new algorithm which chnages C adaptively during learning was introduced. We strongly

believe that this approach can further improve our results (i.e., obtain smaller SDs).

Acknowledgements

The first author is particularly obliged to Dr. Isidore Rigoutsos for his valuable comments and help. This

work was supported by a grant from the FSGC (Florida Space Grant Consortium) and TRDA (Technological

Research and Development Authority).

References

[1] R. Chin and C. Dyer, "Model-based recognition in robot vision", Computing Surveys, vol. 18, no. 1, pp.

67-108, 1986.

[2] Y. Lamdan, J. Schwartz and H. Wolfson, "Affine invariant model-based object recognition", IEEE Trans.

on Robotics and Automation, vol. 6, no. 5, pp. 578-589, October 1990.

[3] Y. Lamdan, J. Schwartz, & H. Wolfson, "On recognition of 3D objects from 2D images", IEEE

-- --

- 16 -

International Conference on Robotics and Automation, pp. 1407-1413, Philadelphia, April, 1988.

[4] I. Rigoutsos and R. Hummel, "Several results on affine invariant geometric hashing", In Proceedings of

the 8th Israeli Conference on Artificial Intelligence and Computer Vision, Tel Aviv, Israel, December

1991.

[5] I. Rigoutsos, Massively parallel bayesian object recognition, Ph.D. dissertation, Computer Science

Department and Courant Institute of Mathematical Sciences, New York University, 1992.

[6] I. Rigoutsos and R. Hummel, "Massively parallel model matching: geometric hashing on the connection

machine", IEEE Computer, pp. 33-42, February 1992.

[7] O. Bourdon and G. Medioni "Object recognition using geometric hashing on the connection machine",

International Conference on Pattern Recognition (ICPR), Vol II, pp. 596-600, Atlantic City, New Jer-

sey, 1990.

[8] G. Bebis, M. Georgiopoulos and N. da Vitoria Lobo, "Learning Geometric Hashing Functions for Model

Based Object Recognition", Fifth International Conference on Computer Vision (ICCV-95), pp.

543-548, Boston, Massachusetts, June 1995.

[9] T. Kohonen, Self-organizing maps, Springer-Verlag, 1995.

[10] B. Kosko, "Stochastic competitive learning", IEEE Transactions on Neural Networks, vol. 2, no. 5, pp.

522-529, 1991.

[11] M. Costa, R. Haralick, and L. Shapiro, "Optimal affine matching", In Proceedings of the 6th Israeli Con-

ference on Artificial Intelligence and Computer Vision, Tel Aviv, Israel, December 1989.

[12] R. Hecht-Nielsen, "Counterpropagation networks", Applied Optics, vol. 26, pp. 4979-4984, 1987.

[13] D. DeSieno, "Adding a conscience to competitive learning", IEEE International Conference on Neural

Networks, vol. I, pp. 117-124, San Diego, California, 1988.

[14] G. Huerter, "Solution of the traveling salesman problem with an adaptive ring", IEEE International Con-

ference on Neural Networks, vol. I, pp. 85-92, San Diego, California, 1988.

[15] H. Ritter and K. Schulten, "Convergence properties of Kohonen’s topology preserving maps: fluctua-

tions, stability, and dimension selection", Biological Cybernetics, vol. 60, pp. 59-71, 1988.

[16] F. Mokhtarian and A. Mackworth, "A theory of multiscale, curvature-based shape representation for pla-

nar curves", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp.

-- --

- 17 -

789-805, 1992.

[17] L. Chen and S. Chang, "An adaptive conscientious competitive learning algorithm and its applications",

Pattern Recognition, vol. 27, no. 12, pp. 1787-1813, 1994.

-- --

- 18 -

Figure Captions

Figure 1. An illustration of the computation of invariants.

Figure 2. A demonstration of the geometric hashing algorithm. In the preprocessing step, a model basis

triplet is chosen and the coordinates (invariants) of each other point are computed in the coordinate sys-

tem defined by this triplet. Then, the hash table is accessed using the coordinates as indexes. In the

recognition step, a scene triplet is chosen and the coordinates of all other scene points are computed in

the coordinate frame defined by the scene triplet. Then, the hash table is accessed again using the coor-

dinates as indexes. If the scene triplet chosen during the recognition step corresponds to a model triplet

chosen during the preprocessing step, then the same hash bins will be accessed. This is illustrated in

the example where the scene triplet p1′, p2′, and p3′ corresponds to the model triplet p1, p2, and p3.

Figure 3. Partioning the space of invariants into regions.

Figure 4. An illustration of the regions formed by the SOFM.

Figure 5. The data sets.

Figure 6. The maps obtained using the convex combination (first row), competitive learning with atten-

tion (second row), competitive learning with conscience (third row) and Kohonen (last row) algorithms.

Figure 7. The maps produced using the SOFM-C

Figure 8. The Kohonen algorithm with conscience (SOFM-C).

Figure 9. (a) The set of numbers, (b) the set of knives, (c) the distribution of invariants for the set of

numbers, (d) the distribution of invariants for the set of knives, (e) the rehashed distribution of invari-

ants for the set of numbers, (f) the rehashed distribution of invariants for the set of knives.

Figure 10. (a), (c), (e) the distribution of hash entries under similarity transformations (Figure 9d) using

the original approach, rehashing, and the SOFM-C correspondingly, (b), (d) (f) the distribution of hash

entries under affine transformations (Figure 14a) using the original approach, rehashing, and the

SOFM-C correspondingly.

-- --

- 19 -

Figure 11. the structure of the SOFM-C for the case of (a) similarity transformations (Figure 9d), and

(b) affine transformations (Figure 14a).

Figure 12. The improvement of the standard deviation during training in the case of (a) the objects

shown in Figure 9(b) (assuming similarity transformations) and (b) the objects shown in Figure 13

(assuming affine transformations).

Figure 13. The set of different models.

Figure 14. (a) The distribution of (affine) invariants for the set of different objects, (b) the rehashed dis-

tribution of invariants.

Figure 15. (a) and (b) two real scenes with overlapped models, (c) and (d) the boundary contours with

the interest points (curvature maxima and zero-crossings) marked, (e) and (f) the recognition results.

-- --

p

p

p

p

1

2

3

i

u
v

p - p = u (p - p) + v (p - p)i 1 2 1 3 1

Figure 1

-- --

p p

p

p

p
1

2 3

4

5.

.
..

.
.

.
. .

(model,p ,p ,p)
1 2 4

(model,p ,p ,p)
1 2 3

(model,p ,p ,p)
1 2 3

hash table

p p

p

p

p
1

2 3

4

5.

.
..

.
.

.
. .

’

’

’
’

’

’

p
p

p

p

p
1

2
3

4

5
. . .

.
...
.

.

’’’’PREPROCESSING

RECOGNITION

Figure 2

-- --

(a) (b) (c)

Figure 3

-- --

Di

i

i1

i2

i3

i4

i5
i6i7

i8

Figure 4

-- --

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’’

Figure 5

-- --

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’UNIFORM - CONVEX’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

’NORMAL - CONVEX’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’CIRCLE - CONVEX’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’UNIFORM - ATTENTION’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

’NORMAL - ATTENTION’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’CIRCLE - ATTENTION’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’UNIFORM - CONSCIENCE’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

’NORMAL - CONSCIENCE’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’CIRCLE - CONSCIENCE’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’UNIFORM - KOHONEN’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’NORMAL - KOHONEN’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’CIRCLE - KOHONEN’

Figure 6

-- --

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’UNIFORM - KOHONEN WITH CONSCIENCE’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

’NORMAL - KOHONEN WITH CONSCIENCE’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’CIRCLE - KOHONEN WITH CONSCIENCE’

Figure 7

-- --

1. Initialize the network

Define wij (1 ≤ j ≤ n, 1 ≤ i ≤ m) to be the weight from input j to node i, where n is the dimensionality

of inputs and m is the number of nodes of the network. Set the initial weights to small random values.

Set the biases pi(0) equal to 1/m. Choose the number of training steps tmax.

2. Similarity matching phase

Present an input pattern and compute the biased distance between the input and each weight vector

associated with the output nodes

di =
j

Σ(xµ
j − wij(t))

2 − C(
1

m
− pi(t))

3. Select the minimum distance di*

di* = mini di

4. Update the bias associated with the winning node

pi*(t + 1) = pi*(t) + D(1 − pi*(t))

5. Weight adaptation phase

Update weights for node i* and nodes contained in the neighborhood N (i, i*) of the winning node

wij(t + 1) = wij(t) + η(t)N (i, i*)(xµ
j − wij(t))

6. if t = tmax, then stop; otherwise repeat by going to step 2.

Figure 8

-- --

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30 35 40

’xy1’
’xynu1’

’xy2’
’xynu2’

’xy3’
’xynu3’

’xy4’
’xynu4’

’xy5’
’xynu5’

’xy6’
’xynu6’

’xy7’
’xynu7’

’xy8’
’xynu8’

’xy9’
’xynu9’
’xy10’

’xynu10’

0

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400 450 500 550

’xy1’
’xykn1’

’xy2’
’xykn2’

’xy3’
’xykn3’

’xy4’
’xykn4’

’xy5’
’xykn5’

’xy6’
’xykn6’

’xy7’
’xykn7’

’xy8’
’xykn8’

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

’INVARIANTS_numbers’

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

’INVARIANTS_knives’

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’REHASHED_INVARIANTS_numbers’

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’REHASHED_INVARIANTS_knives’

(a) (b)

(c) (d)

(e) (f)

Figure 9

-- --

’HASH_TABLE_DISTRIBUTION - Similarity’

0

’HASH_TABLE_DISTRIBUTION - Affine’

0

’REHASH_TABLE_DISTRIBUTION - Similarity’

0

50

100

150 ’RE-HASH_TABLE_DISTRIBUTION - Affine’

0
50

100
150
200
250
300
350
400
450
500

’SOFM_TABLE_DISTRIBUTION - Similarity’

0

50

100

150

’SOFM_TABLE_DISTRIBUTION - Affine’

0
50

100
150
200
250
300
350
400
450
500

(a) (b)

(c) (d)

(e) (f)

Figure 10

-- --

-60

-40

-20

0

20

40

60

-80 -60 -40 -20 0 20 40 60 80

’SOFMC-NN - Similarity’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

’SOFMC-NN - Affine’

(a) (b)

Figure 11

-- --

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

’SD_Similarity’

20

40

60

80

100

120

140

160

180

200

220

240

10 20 30 40 50 60 70 80 90 100

’SD_Affine’

(a) (b)

Figure 12

-- --

0

50

100

150

200

250

300

0 50 100 150 200 250

’Model1’
’Interest points’

0

50

100

150

200

250

0 50 100 150 200 250

’Model2’
’Interest points’

60

80

100

120

140

160

180

200

0 50 100 150 200 250

’Model3’
’Interest points’

20

40

60

80

100

120

140

160

180

200

220

60 80 100 120 140 160 180 200

’Model4’
’Interest points’

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

’Model5’
’Interest points’

Figure 13

-- --

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

’INVARIANTS_different_objects’

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’REHASHED_INVARIANTS_different_objects’

(a) (b)

Figure 14

-- --

0

50

100

150

200

250

0 50 100 150 200 250

’Scene1’
’Interest points’

0

50

100

150

200

250

300

0 50 100 150 200 250

’Scene2’
’Interest points’

(a) (b)

(c) (d)

(e) (f)

Figure 15

-- --

