
INCREMENTAL SVDD TRAINING: IMPROVING EFFICIENCY OF
BACKGROUND MODELING IN VIDEOS

Alireza Tavakkoli1, Mircea Nicolescu1, Monica Nicolescu2, George Bebis1
1 Computer Vision Laboratory 2 Robotics Laboratory

University of Nevada, Reno
NV, USA 89557

email:{tavakkol,mircea,monica,bebis}@cse.unr.edu

ABSTRACT
Tracking moving objects in videos with quasi-stationary
backgrounds is one of the most important and challenging
tasks in video processing applications. In order to detect
moving foreground regions in such videos the background
and its changes should be modeled to help detecting mov-
ing regions of interest. Support Vector Data Descriptors
(SVDD) can be employed in order to analytically model the
background and explicitly account for its inherent changes.
The major draw back of the SVDD modeling is the issue
of training of the SVDD which is a quadratic programming
(QP) problem. In this paper we propose a method to effi-
ciently train the SVDD’s. The advantages of our technique
are its low memory requirement and its efficiency in terms
of speed. The proposed method runs in constant time with
respect to the size of the training data set since its retraining
is performed only on the support vector working set.
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1 Introduction

Background modeling is one of the most effective and
widely used techniques to detect moving objects in videos
with a quasi-stationary background. In these scenar-
ios, although the camera is considered to be fixed, the
background is not completely stationary due to inherent
changes, such as water fountains, waving flags, etc. In or-
der to detect moving objects in such scenes the background
of the video needs to be modeled. There are several statisti-
cal modeling approaches proposed in the literature. These
approaches can be used to estimate the probability density
function from which the data points are generated [2].

Parametric density estimation methods, such as Mix-
ture of Gaussians techniques (MoG), assume that the data
is generated from a mixture of normal distributions with
different weights, means and covariance matrices [8]. In
order to compute the parameters of the Gaussians Expecta-
tion Maximization (EM) technique is adopted [1]. Due to
computational complexity of the EM algorithm the MoG
modeling technique is slow. An online version of MoG is
presented by Lee in [5] which uses a recursive technique

to update the parameters of the Gaussians. However, the
parametric density estimation techniques may not be use-
ful when the data is not drawn from normal distributions.

As an alternative, non-parametric density estimation
approaches – also known as Parzen window – can be used
to estimate the probability of a given sample belonging to
the same distribution function as the data set [3], [9]. How-
ever, the memory requirement of the non-parametric ap-
proach is high. These techniques are also computationally
expensive since they require the evaluation of a kernel func-
tion for each data sample in the training data set. In order
to address these issues Tavakkoliet al. proposed a non-
parametric recursive modeling technique in [10] to model
background pixels in videos.

Support Vector Data Description (SVDD) is an ele-
gant technique which uses support vectors to represent a
data set [13]. The SVDD represents one class of known
samples in such a way that for a given test sample it can be
recognized as known, or rejected as novel. Tavakkoliet al.
in [11] proposed using the support vector data description
to model the background of videos. These descriptors are
trained using an online learning algorithm [14].

Tax and Laskov in [14] presented an online training
of SVDD using a limited sample set. Their method sweeps
through the data set, but instead of solving the problem by
keeping the whole data samples as the working set, it keeps
a portion of the data. This system adds a new sample and
removes the most irrelevant one at each run. However, this
system computes the optimum on the limited working set
by making approximations to solve the reduced optimiza-
tion subproblem. We observed, the online SVDD training
algorithm has some limitations when the number of train-
ing samples increases, since it reduces the size of the opti-
mization problem but still solves it in a canonical manner.

In this paper we present a novel incremental learning
scheme for SVDD training. The convergence of training
can be achieved by optimizing on only two data points with
a specific condition [4]. The condition requires that at least
one of the data points does not satisfy the Karush-Kuhn-
Tucker (KKT) conditions [7]. Our experimental results
show that the incremental SVDD training achieves higher
speed and require less memory than the online [14] and the
canonical (batch) training of SVDD [13].

The rest of the paper is organized as follows. Sec-



1. Initialization;
C : Confidence, σ : bandwidth

2. For each frame at time t
For each pixel xij

2.1. Training stage
SVDij← IncTrain(xij[t])

2.2. Classification stage
Valueij ← Test(xij[t],SVDij)
Label pixel based on Valueij

Figure 1. The SVDDM algorithm.

tion 2 discusses the methodology used in this paper for the
training of SVDD’s. In Section 3 a comprehensive quan-
titative and qualitative set of experiments is carried out to
compare the proposed incremental SVDD with the online
and canonical training algorithms. Finally, Section 4 con-
cludes the paper and proposes future directions of study.

2 Methodology

In this section we present the background modeling algo-
rithm employed by our approach. In order to discuss the
proposed method we first introduce the SVDD method and
its application. Then, we present the proposed algorithm
for incremental training of the SVDD’s.

2.1 The Algorithm

Figure 1 shows the proposed algorithm in pseudo-code for-
mat1. The support vector data description confidence pa-
rameterC is the target false reject rate of the system, which
accounts for the system tolerance. The Gaussian kernel
bandwidthσ does not have a particular effect on the de-
tection rate as long as it is not set to be less than one, since
features used in our method are normalized pixel chromi-
nance values. For all of our experiments we setC = 0.1
andσ = 5. The optimal value for these parameters can
be estimated by a cross-validation stage. The training of
the support vector descriptors for each pixel is performed
using our proposed incremental learning scheme.

2.2 Support Vector Data Description

Data domain description concerns the characteristics of a
data set [13] whose boundary can be used to detect novel
samples (outliers). A normal data description gives a
closed boundary around the data which can be represented
by a hyper-sphere (i.e.F (R, a)). The volume of this
hyper-sphere with centera and radiusR should be mini-
mized while containing all the training samplesxi. As pro-
posed in [13] the extension to more complex distributions
is straightforward using kernels. To allow the possibility

1The proposed method is implemented in MATLAB 6.5, using Data
Description toolbox [12].

of outliers in the training set, slack variablesǫi ≥ 0 are
introduced. The error function to be minimized is defined
as:

F (R, a) = R2 + C
∑

i

ǫi ‖xi − a‖
2
≤ R2 + ǫi ∀i. (1)

subject to:
‖xi − a‖

2
≤ R2 + ǫi ∀i. (2)

Using Lagrange optimization the above results in:

L =
∑

i

αi(xi · xi) −
∑

i,j

αiαj(xi · xj) (3)

∀αi : 0 ≤ αi ≤ C

When a sample falls in the hyper-sphere then its corre-
sponding Lagrange multiplier isαi ≥ 0, otherwise it is
zero. After optimizing the function in (3) the following
equality constraint must hold:

∑

i

αi = 1 (4)

It can be observed that only data points with non-zero
αi are needed in the description of the data set, therefore
they are calledsupport vectors of the description. Given the
support vectorsxi, a new test samplezt can be classified as
known/novel data using:

‖zt − a‖
2

= (zt ·zt)−2
∑

i

αi(zt ·xi)+
∑

i,j

αiαj(xi ·xj)

(5)
whereαi are Lagrange multipliers and||zt − a|| is the dis-
tance of the new sample from the description center. The
sample is classified as novel if the distance is larger thanR.

In order to have a flexible data description, as opposed
to the simple hyper-sphere discussed above, a kernel func-
tion K(xi, xj) = Φ(xi) · Φ(xj) is introduced. This kernel
maps the data into a higher dimensional space, where it is
described by the simple hyper-sphere boundary. Instead of
a simple dot product of the training samples(xi · xj), the
dot product is performed using a kernel function. Several
kernels have been proposed in the literature [16]. Among
these, the Gaussian kernel gives a closed data description,

K(xi, xj) = exp
(

−
‖xi−xj‖

2

σ2

)

. The SVDD function us-

ing kernels becomes:

L =
∑

i

αiK(xi, xi) −
∑

i,j

αiαjK(xi, xj) (6)

∀αi : 0 ≤ αi ≤ C

Optimizing the functions in equations (3) and (6) is
a Quadratic Programming (QP) problem. Generally the
SVDD is used to describe large data sets. In such applica-
tions solving the above problem via standard QP techniques
becomes intractable. The quadratic form of (6) needs to
store a matrix whose size is equal to the square of the num-
ber of training samples. Due to this fact several algorithms
have been proposed to present faster solutions to the above
QP problem.



2.3 Incremental SVDD

Our incremental training algorithm is based on the theorem
proposed by Osunaet al. in [7]. According to this theorem
a large QP problem can be broken into series of smaller
sub-problems. The optimization on these sub-problems
converges when new samples are added as long as at least
one sample violates the KKT conditions.

In the incremental learning scheme at each step we
add one sample to the training working set. The training
working set only consists of the support vectors. This is
a direct result of the above theorem. Assume we have a
working set which minimizes the current SVDD objective
function for the current data set. If a new sample belongs
to the description then it satisfies the KKT conditions. This
means that its inclusion to the working set does not min-
imize the currently minimum objective function, and thus
it will be discarded. If the KKT conditions do not hold
for this sample the SVDD optimization is solved for the
new working set which includes the new sample. Since the
working set contains only support vectors of the data set,
its size is considerably smaller than the actual data set and
the optimization can be performed efficiently.

From (4) it can be observed that Lagrange multipli-
ers have a linear relationship. In order to further increase
the optimization efficiency, we propose to solve the small-
est possible sub-problem [4] which consists of only two
samples. Since only the new sample violates the KKT con-
ditions, at every step our incremental learning algorithm
chooses one sample from the working set along with the
new sample and solves the optimization on this two sample
sub set.

Figure 2. The two Lagrange multipliers should satisfy the
inequality constraint (3) and the linear equality (7).

Solving the QP problem for two Lagrange multipli-
ers can be done analytically. The two Lagrange multipliers
should satisfy the inequality constraint in (3) and the fol-
lowing linear equality constraint (Figure 2):

α1 + α2 = γ : γ ≤ 1 (7)

The main component of our incremental learning al-
gorithm is based on an analytical method to solve for
the two Lagrange multipliers. We first compute the con-
straints on each of the two multipliers. From Figure 2
the two Lagrange multipliers should lie on a diagonal line
(equality constraint) within the rectangular box (inequal-
ity constraint). By expressing the two ends of this line

we can easily find bounds for one of the two multipliers
and from there we start the optimization process. With-
out loss of generality we consider that the algorithm starts
with finding the upper and lower bounds onα2 which are
H = min(C,αold

1
+ αold

2
) andL = max(0, αold

1
+ αold

2
),

respectively. The new value forαnew
2

is computed by find-
ing the maximum along the direction of the linear equality
constraint:

αnew
2

= αold
2

+
E1 − E2

K(x2, x2) + K(x1, x1) − 2K(x2, x1)
(8)

whereEi is the error in evaluation of each multiplier in
equation (5). The denominator in (8) is a step size (sec-
ond derivative of objective function along the linear equal-
ity constraint). Next, we determine whether the new value
for αnew

2
has exceeded the bounds and needs to be clipped.

We call thisα̂new
2

. Finally, the new value forα1 is com-
puted using the linear equality constraint:

αnew
1

= αold
1

+ αold
2

− α̂new
2

(9)

3 Experimental Results and Comparison

In this section we present a set of qualitative and quanti-
tative experiments. The experiments are conducted in two
main categories. The first set compares the performance of
the proposed method in training of the SVDD’s with the
traditional canonical and online training methods, on syn-
thetic data sets. In the second set of experiments we show
the performance of the proposed technique on real videos.

3.1 Comparison

In order to show the performance of the proposed method
and its efficiency we compare the results obtained by our
technique with those of the online SVDD [14] and canoni-
cal SVDD [13]. We compare the speed of the algorithms as
well as several error values for these techniques using dif-
ferent number of training samples and different data sets.

Table 1. Speed comparison of the incremental, online and
canonical SVDD on thebanana data set.

Training Incremental Online[14] Canonical [13]
Set Size SVDD SVDD SVDD
100 0.66 0.73 1.00
200 1.19 1.31 8.57
500 2.19 2.51 149.03
1000 4.20 6.93 1697.2

The SVVD Training Speed.In this section we com-
pare the speed of incremental SVDD against its online and
canonical counterparts. The experiments are conducted in
Matlab 6.5 on a P4 Core Duo processor with 1GB RAM.
The reported training times are in seconds. Table 1 Shows



a report the training speed of our incremental SVDD, on-
line and canonical versions on various sizes of data set.
As seen, the proposed SVDD training technique runs faster
than both canonical and online algorithms and its asymp-
totic speed is linear with the data set size. The online
SVDD runs in linear time but for larger data sets its training
time is more than the proposed method. Our observation
showed that this is due to the fact that online SVDD retains
more unnecessary support vectors than the proposed tech-
nique. As expected, both online and our SVDD training
methods are considerably faster than the canonical training
of the classifier. Notice that the training time of a canoni-
cal SVDD for 2000 training points is not available since it
takes hours to finish the experiment.

Table 2. Comparison of the number of support vectors for
the incremental, online and canonical SVDD on thebanana
data set.

Training Incremental Online [14] Canonical [13]
Set Size No. of SV’s No. of SV’s No. of SV’s
100 12 16 14
200 14 23 67
500 16 53 57
1000 19 104 106

Number of Support Vectors. A comparison of the
number of retained support vectors for our technique and
canonical and online SVDD learning methods is presented
in Table 2. In this experiment the parameters of the SVDD
system areC = 0.1 andσ = 5 with a Gaussian kernel
for all three classifiers. As it can be observed both online
and canonical SVDD training algorithms increase the num-
ber of support vectors as the size of the data set increases.
However, our method keeps almost a constant number of
support vectors. This can be interpreted as mapping to the
same higher dimensional feature space for any given num-
ber of samples in the data set.

Notice that by increasing the number of training sam-
ples the proposed SVDD training algorithm requires less
memory than both online and canonical algorithms. This
makes the proposed algorithm very suitable for applica-
tions in which the number of training sample increases by
time, i.e. in the case of growing data sets. Since the number
of support vectors is inversely proportional to the classifi-
cation speed of the system in (5), the processing time of a
classifier trained by the proposed method is constant with
the number of samples compared with the canonical and
online methods.

Classification Boundaries and Receiver Operating
Curves. In Figure 3(a) the classification boundaries of the
three SVDD training algorithms are shown. In this fig-
ure the blue dots are the training samples drawn from the
banana data set and the circles represent the test data set
drawn from the same probability distribution function. The
⋆, ×, and+ symbols are the support vectors of the incre-
mental, online and canonical SVDD training algorithms,

respectively. As it can be observed the proposed incremen-
tal learning had fewer support vectors compared to both on-
line and canonical training algorithms. From Figure 3(a) it
can be observed that the decision boundaries of the classi-
fier trained using the incremental algorithm (dashed curve)
is objectively more accurate than those trained by online
(dotted curve) and canonical (solid curve) methods.

(a) (b)

Figure 3. Comparison of incremental with canonical and
online SVDD: (a) Classification boundaries (b) Receiver
Operating Curve (ROC).

Figure 3(b) shows the comparison between Receiver
Operating Curve (ROC) of the three algorithms. The solid
curve is the ROC of the incremental learning while the dot-
ted and the dashed curves correspond to the online and
canonical learning algorithms, respectively. Notice thatthe
true positive rate is higher for small false positive rates in
the case of the proposed incremental learning algorithm
compared to both canonical and online learning. This can
be expected since the proposed method explicitly takes the
small trade-off parameter (C) into account by learning the
support vectors incrementally. As it can be seen from the
figure, the true positive rate for the proposed method is
higher than the canonical method. This shows that the
proposed method, under the same conditions and with the
same parameters, has higher precision and recall rates.

Figure 4 shows a comparison of the classification
boundaries and support vectors between the three SVDD
training algorithms. Figure 4(a) shows the result of classi-
fication on a 2-D normal distribution and Figure 4(b) is the
experiment on a data set drawn from a more complex distri-

(a) (b)

Figure 4. Comparison of incremental with online and
canonical SVDD: (a) Complex (egg) data set. (b) Normal
data set.



(a) (b) (c) (d)

Figure 5. Water surface video: comparison of methods in
presence of irregular motion. (a) Original frame, (b) MoG,
(c) AKDE, (d) INCSVDD.

bution function in 2-D (egg shape). As seen from the figure
the proposed incremental SVDD results in more accurate
classification boundaries than both online and canonical
versions. Notice that the proposed method keeps a smaller
number of support vectors to describe both data sets com-
pared to the other two methods.

3.2 Application to Background Modeling

In this section we show the results of our method applied
for background modeling in video sequences. We applied
the incremental SVDD (INCSVDD) to speed up the pro-
cess in section 2. We also compare the proposed method
with the traditional background modeling techniques.

Comparison in the presence of irregular motion.
By using thewater surface video sequence, we compare
the results of foreground region detection using our pro-
posed method with a typical AKDE [9] and MoG [8]. For
this comparison the sliding window of size L=150 is used
in the AKDE method. The results of MoG are shown in
Figure 5(b), the AKDE method results are shown in Figure
5(c) and the foreground masks detected by the proposed
technique are shown in Figure 5(d). As it can be seen, the
proposed method gives better detection since it generates
a more accurate descriptive boundary on the training data,
and does not need a threshold to classify pixels as back-
ground or foreground.

(a) (b) (c)

Figure 6. Results of the foreground detection using the pro-
posed incremental SVDD to the background modeling. Top
row: Original videos. Bottom row: Detection results.

Detection results in difficult scenarios. Figure 6
shows the results of foreground detection in videos using
the proposed method. The water fountain in Figure 6(a),
waving tree branches in Figure 6(b) and flickering lights
and monitor in Figure 6(c) pose challenges in foreground
detection. However, as seen our method detects the fore-
ground regions reliably and models the inherent changes in
the background explicitly.

Comparison summary. Table 3 provides a com-
parison between different traditional background modeling
methods and our incremental SVDD technique. The com-
parison includes the classification type, memory require-
ments, computation cost and type of parameter selection.

As seen in Table 3, the Wallflower method uses a K-
means decision criterion where other systems except both
SVDD and incremental SVDD (INCSVDD) use a Bayes
classifier. The only methods which explicitly deal with the
single class classification are the two SVDD techniques by
fitting the description of data belonging to the background
class in their rather simple training stage. Other methods
shown in the table use a binary classification scheme and
use heuristics ([3], [8] and [15]) or a more complex training
scheme ([9] and [10]) to make it useful for the single-class
classification problem of background modeling.

From the computational cost row, the only method
suitable for scenarios where there is a steady and very
slow motion in the background is the INCSVDD tech-
nique. Other methods fail to build a long term representa-
tion for the background model because of the fact that their
cost grows linearly by the number of training background
frames, as it can be seen from Table 3. Also in scenarios
where there is no empty set of background frames, called
non-empty backgrounds, the INCSVDD method is suitable
and works independently without any need to perform post
processing steps.

4 Conclusions

Tracking moving objects in videos with quasi-stationary
backgrounds is a very challenging task. In order to detect
moving foreground regions in such videos the background
and its changes should be modeled. Support Vector Data
Descriptors (SVDD) can be employed in order to analyti-
cally model the background.

SVDD training is a quadratic programming (QP)
problem. By increasing the number of training samples,
solving this QP problem becomes intractable both in terms
of memory requirements and speed. This paper proposes a
method to efficiently train an SVDD. The proposed algo-
rithm solves the optimization problem by reducing its size
to the number of support vectors, thus making it run in lin-
ear time with respect to the number of training samples.

Another advantage of our technique is in its constant
memory requirements. The experimental results show its
superiority over both the canonical SVDD and the tradi-
tional online training methods. We showed the results of



Table 3. Comparison between the proposed methods and traditional techniques.

INCSVDD SVDD[11] AKDE[9] KDE[3] Spatio-temp[6] MoG[8] Wallflower[15]
Automated Yes Yes Yes No No No No
Post proc. No No No No Yes No No
Classifier INCSVD SVD Bayes Bayes Bayes Bayes K-means
Memory req.∗ O(1) O(1) O(N) O(N) O(N) O(1) O(N)
Comp. cost∗ O(1) O(N) O(N) O(N) O(N) O(1) O(N)

∗ : Per-pixel
N : number of training frames

the proposed technique in a background modeling system,
while comparing the system with traditional techniques.

The proposed incremental training of the SVDD is a
general method that can be employed in many novelty de-
tection applications such as face detection. The issue in
face detection systems is that samples of only one class of
the data (faces) are available. Most object detection and
recognition systems can be presented as a single-class clas-
sification applications and the proposed training algorithm
can be used to train their corresponding SVDD.
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