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Abstract

In this paper, we present the design and implemen-
tation of an image analysis system for the automatic
analysis of Heliothis zea insect images. The Heliothis
zea is a corn earworm eating corn crops. Biotech
researchers are interested in developing insecticidal
bio-toxins with the best performance to kill or stunt
the growth of this insects. The automated analy-
sis of Heliothis zea images is imperative for fast and
efficient biotech experiments. The proposed system
consists of three stages: (i) insect segmentation, (ii)
region processing, and (iii) instar and life classifica-
tion. A probabilistic model (PM) based on mixtures
of Gaussians has shown better performance for seg-
menting the insect images. And a back-propagation
neural network (NN) has shown better performance
for classifying the insect instar stage. The proposed
system has been evaluated on real data using a five-
fold cross validation procedure.

1 Introduction

With the increasing use of image analysis algorithms
for rapid analysis of experimental data in biologi-
cal experiments, it has become imperative to be able
to analyze the resulting data in an expeditious and
reliable manner. The relative paucity of automated
techniques for reliable and rapid analysis of biological
data has proved to be the rate-limiting step or bot-
tleneck in most high-throughput experiments. Most
of the experimental data in biological experiments
can be acquired and represented in the form of im-
ages. Thus, automated analysis of such data entails
the design and implementation of appropriate image
analysis algorithms. In this paper, we present the
design and implementation of an image analysis sys-
tem for the automated classification and analysis of
insect images.

1.1 Heliothis zea insect

The Heliothis zea, also called the corn earworm, is an
insect which is a pest to corn crops. Biotech compa-
nies are interested in developing insecticidal proteins
to fight pests. Usually, they inject experimental pro-
teins into plants. As the plant grows, the protein
becomes part of the plant’s tissue. Insects which
feed off the plant get a dose of the protein. The
protein causes the infected insects to die, or stunts
their growth, preventing them from reproducing. A
biotech insecticidal protein, therefore, reduces the
Heliothis zea population, which in turn reduces the
damage to the corn crops.

A successful biotech insecticidal protein should
meet certain criteria. It should reduce damage to
crops. Also, it must be non-toxic to mammals and
birds, because this same protein will be present in
the food which comes to the market place. A suc-
cessful biotech product has some attractive benefits.
Crops which use biotech products will not need to be
treated with as much chemical insecticide. Chemical
insecticides have a negative side effect called fungal
toxins, so using less insecticide results in less dam-
age from fungal toxins. Crops raised using biotech
products will benefit in these ways.

1.2 Bio-toxin analysis and scoring

To investigate the performance of the insecticidal
protein, biotech researchers need to test multiple lev-
els of protein with different concentration. Usually,
they perform the testing in assay plates. One assay
plate contains a large number of tiny wells. Each well
is approximately two centimeters in diameter. Inside
each well is a mixture of wheat germ mixed with con-
centrated a biotech insecticidal protein. These two
ingredients are mixed together thoroughly. A set of
Heliothis zea insects is then placed into each well.
The larvae are delivered on a type of silk, similar
to spider silk, which is hard for the lab technician
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to handle, so they cannot control the quantity of in-
sects per well, but it is usually between one and ten
insects. The experiment is run by letting the insects
eat the food with the protein and grow over a four-
day period. At the end of the experiment, the growth
rate of the insects is measured for each well. When
they have quantified the growth rate of a sufficient
number of sample wells, they can quantify the rating
of the biotech insecticidal protein at the concentra-
tion which was tested. Fig. 1 shows a 96-well assay
plate after a four-day growth period.

Figure 1: An assay plate with 96 wells.

Entomologists classify insect growth activity into
stages. At infancy a Heliothis zea insect is in its first
larval instar stage. About twenty-four hours later
the Heliothis zea will shed its skin, and enter a second
larval instar stage. At the second larval instar stage
the insect body size and the size of its spots are dis-
tinctly larger than they were in the first larval instar
stage. After yet another twenty-four hours the Helio-
this zea insect will again shed its skin and enter the
third larval instar stage. Heliothis zea insects in the
third larval instar stage are considerably large com-
pared to the second instar stage, and as before their
spot sizes are also distinctly larger. At the end of
the four day experiment the Heliothis zea would nor-
mally have reached an instar stage no greater than
the third instar stage. The larval instar stage classi-
fication is the most important measure which is used
to quantify growth rate of insects in the experiments.
After a four-day period experiment, an insect which
undergoes normal growth (and is not affected by the
biotech insecticidal proteins) will have grown to the
third instar stage. When the well contains a high de-
gree of biotech insecticidal protein, the insects gen-
erally die in the first instar stage. Also the insects
may get stunted, or die in the second instar stage,
depending on the concentration of the protein.

By monitoring the growth activities of the insects

in the assay plate, including number of insects in
each well, the instar stages of each insect, the life
information( whether the insect is dead or alive),
biotech researchers can score each well in the as-
say plate according to the concentration levels of
the protein in that well. Based on these scores, the
standard industry measurement, called EC50, can be
computed. EC50, or Effective Concentration 50%, is
computed for each biotech insecticidal protein. It is
a standard form of measurement of biotech insecti-
cidal protein potency.

1.3 Why using image analysis

Currently, the scoring of the Heliothis zea images is
done by experienced biotech experts manually. They
watch each image of the well and use their vision to
perform the analysis. There are usually 5000 images
to be analyzed weekly. Therefore, it is imperative to
automate this process to reduce the workload of the
biotech researchers. The objective of our work is to
design and implement algorithms for the automatic
classification of the insects’ life and instar stages. We
do not deal with automating the scoring process in
this paper.

The proposed system consists of three stages:
(i) insect segmentation from background, (ii) re-
gion processing, and (iii) instar and life classification.
Two models have been implemented and compared
in the segmentation and classification stages. The
first is a back-propagation NN, while the second is a
PM based on mixture of Gaussians. We have eval-
uated each model using real images and a five-fold
cross validation procedure.

The paper is organized as follows. In Section 2,
a literature review of related work is presented. Sec-
tion 3 deals with the insect segmentation problem.
Region processing and instar and life classification
are introduced in Sections 4 and Section 5 respec-
tively. The training of the NN and PM are presented
in Sections 6 and 7. Experimental results are pre-
sented in Section 8. Finally, our discussion of results
and conclusions are given in Section 9.

2 Review of Previous Work

There have been several efforts to automate the anal-
ysis of image data arising from biological or medical
experiments [16, 3, 4, 1, 18, 2]. Recent research has
focused on either NNs [8, 10, 12, 4, 13, 18] or PMs
[14, 6, 9, 2].

Ghosh and Chinnaiyan [6] have proposed a sta-
tistical model based on mixture of Gaussians in the



context of hierarchical clustering of gene expression
data from DNA microarray experiments. Jain et al.
[9] describe a program called UCSF Spot for fully
automatic quantification of DNA microarrays. The
program automatically locates both, subarray grids
and individual spots while requiring no user identi-
fication of any image coordinates. Manduchi et al.
[14] describe a protocol by which discrete values are
used to provide an easily interpretable description of
differential expression. Novel statistical methods are
proposed to attach confidence levels to the hypoth-
esis that changes in expression levels represents true
changes.

In [2], the design and implementation of a com-
puter vision system called DNAScan was presented
for the automated analysis of DNA hybridization im-
ages. A recursive segmentation procedure was de-
signed and implemented to extract spot-like features
in hybridization images in the presence of a highly
inhomogeneous background. Positive hybridization
signals were extracted from the spot-like features us-
ing grouping and decomposition algorithms based on
computational geometry. A mathematical model for
the positive hybridization patterns and a Bayesian
pattern classifier based on the shape-based moments
were proposed and implemented to distinguish be-
tween the clone-probe hybridization signals.

Lerner [13] applied neural networks to automate
the analysis of chromosome images, in all aspects
of the analysis including segmentation, feature de-
scription, selection and extraction, and classification.
He used a new approach called a classification-driven
partially occluded object segmentation (CPOOS) to
separate clusters of touching chromosomes. And a
multi-layer perceptron (MLP) was used to score and
verify hypotheses. Such a NN based system classified
5500 chromosomes with a success rate of 83.6%.

In [4], Cheng et al. used a competitive Hopfield
neural network for segmenting grey scale medical im-
ages. It is a kind of Hopfield network that incor-
porates the winner-takes-all (WTA) learning mech-
anism. The image segmentation is conceptually for-
mulated as a problem of pixel clustering based upon
the global information of the gray level distribution.
Patel et al. [18] used a neural network for automat-
ing the process of grading eggs. They reported an
accuracy of 92.8% for blood spots, 85% for dirt and
stain detection, and 87.8% for crack detection. The
features used by Patel et al. were formed by com-
puting a histogram of the RGB color space of each
image and using the counts from each histogram bin
as a feature. They used 768 (256*3) histogram bins
corresponding to 768 nodes in the input layer of the
neural network.

(a) (b)

Figure 2: (a) a typical Heliothis zea image, (b)
Hough transform result.

3 Insect Segmentation

Fig. 2(a) shows a typical Heliothis zea insect image.
It is a 600*800 color image captured by a digital cam-
era mounted on a robot arm. All the images have
one thing in common which is the circular shaped
well in which the experiment is taking place. The
insects are located inside the well with the colored
background which is the biotech insecticidal protein.
Our first goal was to segment all the insects from the
background. Here, we propose to use a segmentation
framework with two phases: training and segmenta-
tion. The flow chart is shown in Fig. 3.

3.1 Feature selection

Since the area of interest of the insect image is the
area inside the circular well, the first step is to detect
the rim of the well and remove the well from the im-
age. Here, the Hough Transform for circle detection
was used to extract the circle underlying the rim of
the well. Once the well was detected, we removes it
from the image. Fig. 2(b) shows the results of the
Hough transform applied to the image in (a). Be-
cause the camera may not be exactly perpendicular
to the assay plate during shooting, we might not get
perfect results for every image, however, the results
are very satisfactory.

Feature selection is always a crucial problem in
pattern classification. The basic rule in feature selec-
tion is to choose features that would result in large
between-class distance and small within-class vari-
ance in the feature vector space. To judge if a pixel in
the image belongs to the insect or not, we need to use
multiple criteria for each pixel. Our feature selection
method is based on a small window or sub-image cen-
tered on that pixel. In this way, we compute many
features based on this window. After careful investi-
gation and testing through experiments, we adopted
the following five features:
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Figure 3: Flow-chart of the segmentation stage.

• Average hue (hue is a numerical representation
of a color, e.g. yellow=1.57)

• Average saturation (grey has saturation 0.0, and
vivid colors like red, yellow, blue have 1.0)

• Grey-scale percentage (measured by saturation
and a threshold)

• Intensity variance

• Count of spots (if the windows contains some-
thing that looks like a spot)

Here we convert the image from RGB color space
to HSV space [15, 19] to compute the average hue
value and the average saturation value.

4 Region Processing

Based on the segmented results of the insect images,
in this stage, we apply image processing to refine the
segmented regions. Goatsias et al [7] proposed mor-
phological operations as a method of merging pix-
els into sets of pixels that share the same properties
based on their densities and proximities. We use two
morphological operations, ”morphological opening”
and ”morphological closing.” Each of these opera-
tions consists of two processes: dilation and erosion.

The goal of morphological operations is to convert
areas of the image which consists of dense points of
foreground into solid regions each of which represent
the insects. The morphological opening includes two
steps, dilation followed by erosion. After morpholog-
ical opening, the next step is morphological closing,
the reverse of morphological opening. It is the same

as morphological opening, except the erosion and di-
lation steps are reversed. The purpose of morpho-
logical closing is that the erosion step will eliminate
tiny false positive regions which are too small to be
considered insect.

After the above morphological operations, we can
build our lists of regions in each image. Smaller re-
gions which include less than 1,000 pixels are filtered
out. These regions are considered as the noise or
peeled skin of the insects. We have also applied the
snake algorithm [11] to find a better boundary for
each region. Fig. 4 shows the improved boundaries
of the insect regions.

Figure 4: Improved boundaries using snake algo-
rithm.

5 Instar and Life Classification

5.1 Insect spot detection

We start by visiting each pixel in the region. We use
the Breadth-First-Search (BFS) algorithm to grow
sub-regions, such that each sub-region contains sets
of pixels with similar intensity, or brightness. We
continue in this way until each region pixel is as-
signed to one sub-region. This will partition the set
of region pixels into pair-wise disjoint subsets, each
subset being a sub-region of an image region.

From the sub-regions, we next try to find candi-
date sub-regions which might contain insect spots.
We do this by visiting each sub-region, then visit-
ing its surrounding field of pixels, and evaluating the
degree of contrast between the region and its field.
When we find sub-regions which are candidate spots,
we append all of the sub-region pixels onto a large
list of pixels. We use a queue data structure for this
list.

We can find the spots by their darkness, or inten-
sity values. Each pixel has an elevation correspond-



ing to its darkness. The dark pixels on the spots form
hills. We can find the spot regions by finding these
hills. At the present point in processing, we have a
list which holds most of the pixels which comprise
the hills. We take a pixel off the queue and pass it
as a seed to BFS. BFS grows an area of contiguous
pixels, and returns the result as a list of pixels. We
traverse the list to find its darkest pixel. This pixel
is the “top of a hill”. We pass this “top of the hill”
pixel again as a seed to BFS, and this time the BFS
procedure enforces the constraint that as grows the
spot, it is not allowed to go uphill. This is exactly
how we identify two spots close to each other as two
distinct spots.

The resulting list returned by BFS is now a can-
didate spot, and we put it on a master list of spot
regions. We also mark these pixels on our mapped
image as “spot”, We return to our original list of
spot candidate pixels, and retrieve the next pixel.
Pixels on this queue already marked on our mapped
image as spot are disregarded, and we move on to
the next pixel on the list. When we find a pixel not
yet marked as a spot pixel, we repeat the procedure
described above. When we have processed the entire
list of candidate spot pixels in this way, we will have
a list of spots on an insect region.

We can validate spots for roundness. First, we
find the size of the min-max box around the spot.
Then we compute the relation between the count of
spot pixels, and the count of pixels in the min-max
box. A perfectly round circle will have the relation
circle/square = π/4. Of course, we do not look for
perfectly round spots. We use a roundness threshold,
which has the effect of filtering out regions which
are not round enough to be spots. This allows us to
consider only round spots for classification purposes.

The most important goal of the classifier is to
identify the larval instar stage of the insects. An
interesting thing that we have noticed about the in-
sects is, that even though the insects grow rapidly,
the size of their spots seem to remain consistent
within each instar stage. One possible explanation
of this may come from the fact that they shed their
skin each time they change instar stages. We can use
the pixel count of the spots as a measure of spot size.
We use thresholds for size classifications which dis-
tinguish between the classes. We have defined three
spot size classifications: small, medium, large. This
size gives us a good feature for correctly classifying
the instar stage of the insects. Fig. 5 shows an exam-
ple of the spot detection (i.e., the green colored spots
are classified as small; the red spots are classified as
medium; the magenta colored spots are classified as
large).

Figure 5: Spot detection (third instar).

5.2 Feature selection

With the master list of spots completed, we are ready
to extract features. We define one feature vector for
each region. For each region, we look for the most
useful features to extract, and compute the region
features. After experimentation, we decided to use
the following features:

• count of small spots

• count of medium spots

• count of large spots

• ratio of spot pixels to region pixels

• skin brightness near the spots

The first three features are useful for instar classi-
fication, and the last two features are intended to be
useful for life classification, however, we use all five
features for performing each classification task. As
in the segmentation classification task, our feature
vectors are five dimensional.

6 PM Training

Mixture models are a type of density model which
comprises a number of component functions, usually
Gaussian. These component functions are combined
to provide a multi-modal density. They have been
employed to model the color distribution of objects
for real-time segmentation and tracking [15]. The
task can be made more robust by generating a mix-
ture model corresponding to background colors in
addition to foreground model and employing Bayes’
rule to perform pixel classification.



Let the conditional density for the sample data ξ
belonging to a multi-colored object O be a mixture
with M component densities:

p(ξ|O) =
M∑

j=1

p(ξ|j)π(j) (1)

where a mixing parameter π(j) corresponds to
the prior probability that data ξ was generated by
component j and where

∑M
j=1 π(j) = 1. Each mix-

ture component is a Gaussian with mean µ and co-
variance matrix Σ, i.e. in the case of a N dimensional
space:

p(ξ|j) =
1

(2π)
1
2 |Σj | 12

e−
1
2 (ξ−µj)

T Σ−1
j

(ξ−µj) (2)

Expectation-Maximization (EM) algorithm pro-
vides an effective maximum-likelihood algorithm for
fitting such a mixture model to a set of training data
[17]. The EM algorithm is iterative with the mix-
ture parameters being updated. It monotonically in-
creases the likelihood in each iteration, converging to
a local maximum. Mixture models provide greater
flexibility and precision in modelling the underlying
statistics of sample data. Once a model is generated,
posterior probabilities can be computed according to
the Bayes’ rule. Given density estimates for both an
object O,and the background S,the probability that
a sample data, ξ belongs to the object is given by
the posterior probability P (O|xi):

P (O|ξ) =
p(ξ|O)P (O)

p(ξ|O)P (O) + p(ξ|S)P (S)
(3)

7 NN Training

Instead of explicitly estimating the pdf of the data,
NNs learn the classification boundary from a set of
examples. NNs are computational systems inspired
by the structure, processing methods, and learning
ability of a biological brain [5].

In general, NNs implement a nonlinear mapping
of the from u = G(x). The mapping function G
is established during a training phase where the net-
work learns to correctly associate input patterns x to
output patterns u (i.e., supervised learning). During
training, their free parameters (i.e., weights and bi-
ases) are adjusted in a systematic way so as to min-
imize a cost function. Typically, the cost function
is defined on the basis of the mean-square error be-
tween a desired network response (i.e., u) and the ac-
tual network output. In the context of classification,

NNs can learn highly non-linear decision boundaries,
without explicitly estimating the probability distri-
bution of the data.

In this paper, we considered two-layer feed-
forward NNs (see Fig. 6) with sigmoidal activation
functions, trained by back-propagation, a popular
learning algorithm that uses gradient descent to ad-
just the network weights and biases [5].

Figure 6: Topology of the neural network model.

8 Experimental Results

A set of 88 images provided by Verdia Corporation
were used in our experiments. We used a five-fold
cross validation procedure to evaluate the accuracy
statistically. In detail, we randomly divided the
whole set of images into three subsets. Subset 1
is called the training data set consisting of 50% of
the images, which were used to train both the neural
network model and the probabilistic model. Subset
2 is the validation set consisting of 25% of the im-
ages, which were used for bootstrapping (see below).
Subset 3 is the test set consisting of the last 25% of
the images, which was used to test the performance
of the classifiers. We do the partition of the three
sub-sets five times, and we compute the average per-
formance of the classifiers.

8.1 Results for image segmentation

For the insect image segmentation, we first get the
ground truth images for each insect image by hand
using a graphics program. The set of the ground
truth images were used to measure the accuracy of
the proposed segmentation methods. We estimate
segmentation accuracy as follows:



(a) (b)

Figure 7: (a) original image (b) segmented image.

accuracy =
2 ∗ Segi

(Segn + Segh)
(4)

where Segh is the number of insect pixels per
ground truth image. And Segn is the number of
insect pixels segmented by the classifier. Segi is the
intersection of Segh and Segn.

To reduce the number of false segmentations, we
used bootstrapping [5]. Specifically, after training a
particular classifier (i.e., NN or PM) using the ini-
tial training set, we used the classifier to classify
each pixel in the validation set as background or
foreground. After classifying each pixel, the ground
truth data set was consulted to see if the network
made any classification error. We chose 10% from the
pixels which were misclassified to generate new win-
dows of data and augment the training data. This
process was repeated until the number of false posi-
tives dropped below a given threshold.

Table 1 summarizes our segmentation results.
The columns “S1” to “S5” indicate the five-fold par-
tition of the images. The accuracy of each classifier
on the test set for each partition is shown on each
column. The last column shows the average accu-
racy for the different classifiers. Our results indicate
that the PM performs better than the NN for this
task. Fig. 7(b) shows the segmented results of the
image shown in in Fig. 7(a).

Table 1: Segmentation results.

Model S1 S2 S3 S4 S5 Avg
NN 90% 58% 90% 91% 87% 83%
PM 89% 90% 89% 90% 86% 89%

8.2 Results for instar and life classifi-
cation

Tables 2 and 3 summarize the results for the NN
and PM classifiers for instar and life classification.
In each table, the second column indicates the ac-
curacy for insect counting. We got 77.4% and 84%
accuracy on average. There are several reasons for
this relatively low accuracy. First, the insect images
have much noise, such as the skin and the head cap
peeled off from the insects. Second, the insects may
overlap with each other. This is the most important
factor affecting the accuracy of the insect counting.
Currently, the system does not handle overlapped
insect regions.

The third column of each table indicates the ac-
curacy for the instar classification. We got 95.2%
accuracy on average using NNs and 62% using PMs.
The main reason that the PM did not perform as well
for instar classification is due to the limited number
of training examples. The last column shows the ac-
curacy for the life classification. We believe that we
did not get good accuracy for the life classification
due to several reasons. First, life classification is diffi-
cult. The insects assay plate was frozen before taking
pictures (i.e., otherwise the insects would climb out
of the well during the shooting). The frozen process
might have changed the skin color of the insects. It
is even hard for humans to make this decision cor-
rectly when the insects are dying. Second, the fea-
ture we used to train the classifier might not have
been optimal. In any case, compared to the instar
classification, life classification plays less important
role in the final scoring system to compute the EC50.

Table 2: Classification results using NNs.

Partition Insect count Instar Life
S1 74% 97% 67%
S2 78% 95% 69%
S3 77% 93% 56%
S4 78% 96% 67%
S5 80% 95% 71%

Avg 77.4% 95.2% 66%

9 Conclusions

We presented an image analysis system for process-
ing Heliothis zea insect images. The system includes
three main stages: insect segmentation, region pro-
cessing, and instar and life classification. Two mod-



Table 3: Classification results using PMs.

Partition Insect count Instar Life
S1 81% 59% 69%
S2 89% 83% 63%
S3 83% 67% 60%
S4 85% 29% 80%
S5 83% 75% 71%

Avg 84% 62% 69%

els were implemented and compared in the segmen-
tation and classification stages respectively: a back-
propagation NN, and a PM based on mixture of
Gaussians. Our results indicate that the PM per-
forms better for the segmentation task while the neu-
ral network model performs better for instar classi-
fication which is most important for computing the
EC50.

Although we demonstrated our system for the
case of the Heliothis zea insect, it could be ex-
tended to handle other types of insects such as
the Spodoptera exigua (beet armyworm) or the Tri-
choplusia ni (cabbage looper). Future work includes
resolving the cases where insects overlap with each
other for more accurate classification, optimizing fea-
ture selection, and employning more powerful classi-
fier (e.g., Support Vector Machines).
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