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Abstract

This paper introduces a system applicable to au-
tonomous planetary exploration rovers that provides local-
ization in the inevitable absence of a Global Positioning
System (GPS). Given a terrain elevation map previously
constructed from satellite imagery, the proposed method
determines rover pose using new imagery from an on-
board stereo camera system by combining visual odome-
try, 3D terrain matching, and horizon visibility refinement.
This system is evaluated on experimental data recorded
during a 3km traverse using a prototype planetary rover
testbed. Results indicate a reduction in localization error
by over 60% compared to that derived from wheel odom-
etry alone.

1 Introduction

Planetary rover localization on past and current
NASA missions typically relies on tedious manual match-
ing of rover camera views and orbital terrain maps (image
and elevation). Alternatively, the location of rovers can
occasionally be verified by spacecraft imagery. [1] Figure
1 illustrates several digital elevation models (DEM) re-
constructed from the stereo navigation camera (navcam)
on-board the Mars Science Laboratory (MSL) rover that
have been aligned over the Martian orbital DEM recon-
structed from satellite imagery data from the HiRISE mis-
sion through stereo image processing. Note in this ex-
ample that the rover location changes between the pre-
dicted path (purple) and the actual location of the rover
panoramas. The automated system described in this pa-
per attempts to use the same information (orbital terrain
maps and on-board rover imagery) to complement and en-
hance or possibly eventually completely replace current
practices.

A typical approach to image-based pose estimation is
to register successive point clouds generated from stereo
rover imagery by minimizing their square errors [2, 3] and
integrating the relative poses sequentially. To reduce in-

Figure 1. MSL rover panorama localized
over HiRISE terrain.

evitable error accumulation from such incremental pose
estimation, [4, 5, 6] most navigation systems take advan-
tage of efficient bundle alignment [7, 8, 9, 10] and make
use of Inertial Measurement Unit (IMU) and wheel odom-
etry measurements. [11] Automated horizon matching al-
gorithms have been also proposed to identify the location
of a rover using a panoramic surface image and a DEM of
the surrounding terrain. [12, 13]

In this paper, we propose a novel unified approach
for global pose estimation in the absence of GPS by min-
imizing a cost function of three sources of errors. The
cost function penalizes the errors between 1) the estimated
rover pose and the pose predicted through visual odome-
try, 2) the 3D terrain from the estimated rover pose and
the orbital terrain map, and 3) the horizon curve detected
in the rover imagery and the horizon rendered from the
estimated rover pose over the orbital terrain. A block di-
agram for the overall system is shown in Figure 2, the
components of which are explained in greater detail in the
following sections.



Figure 2. The overall rover localization system.

2 Terrain Reconstruction

The stereo imagery obtained from the camera sys-
tem [14] on board the rover is used to compute a set of
3D point clouds using the block matching algorithm im-
plemented in the well-known OpenCV package. [15] The
stereo camera system with a baseline of 30cm and fo-
cal length of 3.5mm is calibrated using the method de-
scribed by Zhang. [16] Outliers in the reconstructed ter-
rain are removed using a 3×3 morphological filter. Our
current system achieves 5Hz on the full image resolu-
tion (1388×1038). It is used in visual stereo odometry
(Section 3) and supports the localization framework (Sec-
tion 5) through 3D terrain matching with the terrain model
derived from stereo satellite imagery. The reconstructed
point clouds are limited to a range of 30m around the rover
location since points outside this range have a spatial res-
olution below the resolution of the orbital terrain model
and often correspond to noisy data. Figure 3 shows an
example left camera image of the stereo system and its
corresponding disparity map.

3 Stereo Visual Odometry

Stereo visual odometry re-estimates the rover pose at
every frame using the rover imagery and the point clouds
generated as described in Section 2. The stereo visual
odometry system starts with the detection of SURF key-
points. [17] SURF keypoint extraction is faster than using
SIFT [18] features and allows for a larger and more re-
liable set of matches than may be obtained using either
BRISK [19] or ORB [20] keypoints. The keypoints ex-
tracted from the current image are matched against images
from the previous frame using the FLANN fast approx-
imate nearest-neighbor library. [21] To reduce the num-
ber of false matches, the process is repeated by matching

Figure 3. Left camera image of the stereo
system (top) and corresponding dispar-
ity image (bottom).

keypoints in the previous frame to keypoints in the cur-
rent frame and selecting only those keypoints and matches
that pass both conditions. Additional remaining outlier
matches are removed using the RANSAC algorithm [22]
and by constraining a homographic transformation be-



tween matched keypoints in consecutive frames. The
current rover pose relative to its previous pose is esti-
mated using the matched keypoints and their associated
3D position (Section 2) with the method described by
Umeyama. [3] The output of stereo visual odometry pose
is used as one input to the localization framework de-
scribed in Section 5. Figure 5 shows two sections of a 3D
and texture mapped terrain model built using our stereo
visual odometry approach.

Figure 4. Visual feature matches between
the current (right) and previous (left)
frame using BRISK (top) and SURF
(bottom) features.

4 Horizon Matching

Beyond the range in which terrain can be recon-
structed from stereo imagery, visual features from satel-
lite imagery and rover imagery are often difficult to match
due to variations in image resolution, camera viewing an-
gle, terrain illumination, and unknown local albedo. How-
ever, the horizon curve in rover images frequently re-
mains a discriminant visual feature that enables global
pose estimation by matching with the rendered horizon
obtained from the orbital terrain map. The next subsec-
tions describe the horizon detection and rendering tech-
niques used in our approach.

4.1 Horizon Detection
The statistical approach for horizon detection de-

scribed in this paper does not use any specific knowledge
of local terrain or sky intensity distribution and is meant to
perform well on a large variety of images collected from
Earth, Mars, the moon, or other planetary bodies. Our
method uses a Bayesian image formation model and a set
of visual observations to determine the best image seg-

Figure 5. Rover map obtained through vi-
sual odometry.

mentation into ground and sky areas and thereby deter-
mine the most likely horizon curve.

A pixel at position (i, j) in the image (row i and col-
umn j) is associated with an observation (visual feature)
Oi j and a hidden node qi j. The hidden nodes have an un-
known binary value corresponding to lying on either sky
or ground segments. The dense (per pixel) visual features
used for horizon detection consists of the pixel gray scale
intensity and local feature density. The gray scale inten-
sity image was chosen to support the development of a
color-independent method usable in various illumination
conditions and planetary environments. The local feature
density is computed as the ratio of the number of local
edges within a local window around each pixel and the
area (in pixels) of the local window. In our particular im-
plementation the edges are computed using a 3×3 Sobel
edge detector and the size of local window is chosen to be
7×7 pixels.

Let P(Oi j|qi j) be the distribution of observation vec-
tor Oi j at pixel i j in the image given the binary value
(g:ground or s:sky) of the corresponding hidden node qi j.
Figure 6 illustrates the initial distribution of visual fea-
tures over ground (ground 1 and 2) and sky (clear sky
and cloudy). High-intensity areas (low and high feature
density) are associated with cloud regions. High-intensity
features and low feature density area are associated with



sky. Low-intensity features having low density are asso-
ciated with terrain in heavy shadows (ground 2), while
low-intensity features in high-density areas are associated
with regularly lit terrain.

Figure 6. P(Oi j|qi j) sky (clear sky and
cloudy sky) and terrain (ground 1 and 2)
distribution over the space of visual fea-
tures (image intensity and feature den-
sity).

Let H be the height of the image and P(O j|Q j) be the
probability of the observation vectors O j = O1 j . . .OH j

in image column j given the corresponding sequence of
hidden nodes Q j = q1 j . . . qH j. For observation vectors
extracted by scanning each column from top to bottom,
we can reasonably assume that there is only one transition
from sky to ground and none from ground to sky. There-
fore, the observation probability in column j given that
the transition from sky to ground occurs in pixel at posi-
tion (k, j) is given by the following equation:

P(O j|Q j) =

k∏
i=1

P(qi j = s)
H∏

i=k+1

P(qi j = g). (1)

There are a total H values associated with each Q j se-
quence, one for each pixel in the column j where the
unique transition from sky to terrain occurs. The pixel lo-
cation that achieves the highest value in Equation 1 is the
horizon pixel in column j. The set of all the horizon pixels
in each column defines the horizon line. The approach de-
scribed here assumes that each column is independent of
its neighbors, which can generate large variations in the
horizon line from column to column that often does not
correspond to natural environments. A post-processing
step to smooth the resulting curve is thus applied to gen-
erate the final horizon line.

Figure 7 illustrates an example of the horizon curve
detection (blue) in a rectified image captured by an on-
board camera.

Figure 7. Example of horizon curve (blue)
detection over a rectified navcam image.

4.2 Horizon Rendering

Horizon rendering generates a synthetic view of the
horizon as would be observed by the rover-mounted cam-
era. This view is based on the orbital DEM and the camera
intrinsic and extrinsic calibration. An accurate rendered
horizon curve is often determined by remote topographi-
cal features captured in large coverage orbital terrain mod-
els. However, handling very large terrain surfaces at the
resolution required for terrain matching can easily exceed
computer memory limits. This is of particular concern
when the processing is offloaded from the host computer
to a Graphical Computational Unit (GPU) for fast render-
ing. To accommodate these constraints, a low-coverage
(.8×.8 km), high-resolution (1 m per post) terrain model
is augmented with a large-coverage (10×10 km) low-
resolution terrain (9 m per post). The resulting terrain
model is split into a set of tiles with multiple subsam-
pled resolution levels. This approach satisfies both the
wide coverage requirements for horizon rendering and
high resolution requirements for terrain matching, while
accommodating the memory constraints of a typical GPU
(around 1 GB for our processors). The rendered image is
computed using standard OpenGL libraries, [23] and the
horizon curve is computed as the boundary of the rendered
surface. Figure 8 illustrates a rendered image as seen by
the left camera of the stereo system on board the rover and
from a known rover pose. The red area denotes the sur-
face rendered by using the large coverage, low resolution
orbital terrain model. This area would not be visible if the
only the low-coverage, high-resolution terrain were used
in rendering, leading to incorrect horizon curve rendering.



Figure 8. Example of a rendered horizon
image depicting both local (gray) and
wide-area (red) models.

5 Localization Framework

The output of each of the preceding components is
used as a contribution to an overall rover pose as now de-
scribed. First, wheel odometry is obtained through a typ-
ical Extended Kalman Filter (EKF) fusing IMU, steering,
and wheel rotation measurements. The incremental joint
wheel and visual odometry (Section 3) estimate is used as
an initial seed for finding the rover pose within the pre-
determined orbital map.

Rover localization—finding the optimal rotation (R)
and translation (T) from a global reference point—is for-
mulated as a cost function L minimization problem,

{R̃, T̃} = arg min
{R,T}

L(R,T).

The localization cost function L(R,T) is given by

L(R,T) = ωh(hd − hr(R,T))2 + ωe(eo − er(R,T))2,

where hd and hr(R,T) are the detected and rendered hori-
zon curves (Section 4) respectively. eo is the terrain eleva-
tion of the orbital map, and er(R,T) is the terrain elevation
determined from the point clouds obtained from the rover
stereo camera (Section 2) and the rover estimated global
position. x(R,T) is the global position determined by the
estimated global rotation and translation. The weights ωh

and ωe are chosen such that ωh + ωe = 1 and represent
the reliability of each of the horizon and terrain elevation
modules used in localization respectively. These weights
are also chosen to normalize with various number of sam-
ples and vector sizes in each modality.

With the current system, the rover localization within
the orbital map cannot be computed at every frame due to
its high computational complexity. To provide a trade-off

between localization accuracy and run-time requirements

in current experiments, the overall rover pose is computed
every 300 frames with odometry updates available at each
image frame.

6 Experimental Results

Data used to validate the described algorithms were
gathered from a 3km traverse of a prototype planetary
rover operating in the Basalt Hills State Park, California at
an average speed of 0.8m/s. Images from the stereo cam-
era system on-board the rover described in Section 2 were
captured at an average 2Hz. Figure 9 shows a typical re-
duction in localization error obtained using the proposed
system (labeled “advanced nav”) as compared to errors
introduced by using a purely wheel odometry-based lo-
calization solution. These errors are calculated with refer-
ence to ground truth data obtained by a high-end GPS-INS
system operating concurrently. Large steps in localization
error visible in this plot are due to the aforementioned pe-
riodic invocation of the proposed system due to runtime
resource constraints. On average, localization error is re-
duced by over 60% compared to the wheel odometry so-
lution.
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Figure 9. Localization errors for the pro-
posed method (blue) and wheel odom-
etry (red) vs true GPS position.

Figure 10 shows an overhead view of the rover tra-
verse ground truth determined by GPS (green) compared
against the estimated trajectories using wheel odometry
(red) and the proposed solution (blue). Note that the dif-
ferences between the GPS and wheel odometry trajec-
tories increase from the starting point (top right in Fig-
ure 10) due to inevitable incremental error accumulation,
while the proposed solution that periodically incorporates



absolute measurements remains significantly closer to the
GPS track during the entire traverse.

Figure 10. Estimated rover track using the
proposed method (blue), wheel odome-
try (red), and GPS (green).

7 Conclusions

The localization method presented in this paper com-
bines several vision-based techniques—visual odometry,
terrain matching, and horizon visibility refinement—using
data from both live local rover and existing global orbital
views to accurately determine the rover location within an
orbital map. The accuracy of the method makes it suit-
able for autonomous or semi-autonomous robotic plane-
tary exploration in the absence of a pre-existing GPS or
other beacon-based infrastructure. Future work will be di-
rected towards improved real-time implementation of the
localization system and testing with various rover config-
urations in a variety of terrestrial environments, as well as
with imagery returned from current Mars missions.
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