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Abstract. Immersive virtual environments with life-like interaction ca-
pabilities have very demanding requirements including high precision
and processing speed. These issues raise many challenges for computer
vision-based motion estimation algorithms. In this study, we consider
the problem of hand tracking using multiple cameras and estimating its
3D global pose (i.e., position and orientation of the palm). Our interest
is in developing an accurate and robust algorithm to be employed in
an immersive virtual training environment, called ”Virtual GloveboX”
(VGX) [1], which is currently under development at NASA Ames. In
this context, we present a marker-based, hand tracking and 3D global
pose estimation algorithm that operates in a controlled, multi-camera,
environment built to track the user’s hand inside VGX. The key idea of
the proposed algorithm is tracking the 3D position and orientation of an
elliptical marker placed on the dorsal part of the hand using model-based
tracking approaches and active camera selection. It should be noted that,
the use of markers is well justified in the context of our application since
VGX naturally allows for the use of gloves without disrupting the fidelity
of the interaction. Our experimental results and comparisons illustrate
that the proposed approach is more accurate and robust than related
approaches. A byproduct of our multi-camera ellipse tracking algorithm
is that, with only minor modifications, the same algorithm can be used
to automatically re-calibrate (i.e., fine-tune) the extrinsic parameters of
a multi-camera system leading to more accurate pose estimates.

1 Introduction

Virtual environments (VEs) should provide effective human computer interac-
tion (HCI) for deployment in applications involving complex interaction tasks.
In these applications, users should be supplied with sophisticated interfaces al-
lowing them to navigate in the VE, select objects, and manipulate them. Imple-
menting such interfaces raises challenging research issues including the issue of
providing effective input/output. At the input level, new modalities are neces-
sary to allow natural interaction based on direct sensing of the hands, eye-gaze,
head or even the whole body.
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Computer vision (CV) has a distinctive role as a direct sensing method be-
cause of its non-intrusive, non-contact nature; on the other hand, it is also facing
various challenges in terms of precision, robustness and processing speed require-
ments. Various solutions have been proposed to support simple applications (i.e.,
no intricate object manipulation) based on gesture classification and rough esti-
mates of almost rigid hand motion. However, systems that can support advanced
VE applications with life-like interaction requirements have yet to come. Appli-
cations such as immersive training or surgical simulations require very accurate
and high frequency estimates of the 3D pose of the hand in a view indepen-
dent fashion (i.e., the user need not even know where the cameras are located).
Recovering the full degrees of freedom (DOF) hand motion from images with
unavoidable self-occlusions is a very challenging and computationally intensive
problem [2][3].

This study is part of an effort to improve the fidelity of interaction in an
immersive virtual environment, called ”Virtual GloveboX” (VGX) [1], which
is currently under development at NASA Ames (see Fig. 1). Our objective is
to employ computer vision-based hand motion capture. VGX is being designed
to assist in training astronauts to conduct technically challenging life-science
experiments in a glovebox aboard the International Space Station. It integrates
high-fidelity graphics, force-feedback devices, and real-time computer simulation
engines to achieve an immersive training environment.

Fig. 1. Virtual Glove Box: A stereoscopic display station provides a high-resolution
immersive environment corresponding to a glovebox facility. The users interact with
virtual objects using datagloves.

The effectiveness of VGX as a training tool depends both on precision of
the sensed motion and ease of use. The current interface of VGX uses off-the-
shelf tracking and haptic feedback devices which contain cumbersome elements
such as wired gloves, tethered magnetic trackers, and haptic armatures inside
the workspace. All of these hinder the ease and naturalness with which the user
can interact with the computer controlled environment and calibration of each
measured degree of freedom is time consuming and imprecise. Further research
is thus required to reduce the need for encumbered interface devices and increase
the value of VGX as a training tool.
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A fully generic unconstrained and precise solution to the hand pose estima-
tion is not available yet. Existing unadorned hand tracking systems are mostly
limited to a single camera and implicitly or explicitly accompanied with a num-
ber of viewing constraints to minimize self-occlusions [2][3]. Obviously, such ap-
proaches are not acceptable in this and similar applications. Although some
marker-based approaches are available, precision issues are often not addressed
in these studies.

In this paper, we present an marker-based 3D global hand pose (i.e., position
and orientation of the palm) estimation system that operates in a multi-camera
environment built to track the user’s hand inside the VGX. The use of markers
is well justified in the context of our application since VGX naturally allows for
the use of gloves without disrupting the fidelity of the interaction. Moreover,
users are not looking at their hands during the simulation but at graphical hand
models displayed in the virtual environment (see Fig. 1).

Estimating the global pose of the hand has several advantages. First, it re-
duces the dimensionality of hand pose estimation by 6 DOF. Second, it is a
requirement for inverse kinematics-based methods. Finally, for some interfaces
(e.g. navigation in VE), estimating the rigid motion of the hand is sufficient to
generate control signals for the application. Our experimental results illustrate
that the proposed approach is more accurate and robust than related approaches.
A byproduct of our multi-camera ellipse tracking algorithm is that, with only mi-
nor modifications, the same algorithm can be used to automatically re-calibrate
(i.e., fine-tune) the extrinsic parameters of a multi-camera system. In our case,
camera re-calibration leads to improved hand pose estimates.

The rest of the paper is organized as follows: in the next Section, we present a
brief review of previous work on marker-based hand pose estimation approaches.
In Section 3, we describe the multiple camera environment used track the hand
in the context of our application. In Sections 4 and 5, we provide detailed de-
scriptions of the multiple camera ellipse tracking algorithm and its application
to camera re-calibration. Section 6 presents our experimental results and com-
parisons. Finally, Section 7 concludes this study.

2 Previous Work

Marker-based hand tracking is not a very common approach due its intrusive
nature. Nevertheless, there have been many attempts using point markers [4–9].
Placing a number of markers on the dorsal surface of the hand, fingertips and/or
joints can provide valuable information that can be used to estimate joint angles
by solving an inverse kinematics problem. In [6], Holden applied model-based
tracking using fingertip and joint markers for ASL recognition. Lien et al. [7]
and Lee [8] used stereo cameras to extract the 3D locations of a number of
markers on the palm and fingertips and then applied Genetic Algorithms (GAs)
to estimate the orientation of the palm. The state of the fingers was estimated
using inverse kinematics and regression techniques. In [4], closed form solutions
were derived to calculate the angles from 2D marker positions under orthographic
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projection. In a more recent study, Kim et al. [9] used white fingertip markers
under black-light and stereo cameras to extract 3D fingertip locations for gesture
classification.

The main problem with point markers is their susceptibility to occlusions and
localization difficulties. Because of the proximity and flexibility of fingers, loosing
some of the markers completely or collision of the markers on the image plane are
very likely events that increase the complexity of tracking [6]. Moreover, when
the hand is allowed to move in a relatively large area, it is not feasible to use point
markers due to localization errors which affect the precision of pose estimates.
In the case of fingers, it is not quite possible to use other than point or line
markers, which do not guarantee good precision and robustness due to practical
resolution constraints and abundance of these features in images. The palm,
however, is large enough allowing the use of more robust markers. Among them,
conics have often proved to be good candidates due to several following reasons
[10]. First, like points or straight lines, they are preserved under perspective and
projective transformations. Second, conics are more compact primitives which
contain global information of an object’s pose. Finally, a conic can be represented
by a symmetric matrix which is easy to manipulate. In some cases, a closed-form
solution [10, 11] can be obtained, avoiding more expensive non-linear iterative
techniques.

To the best of our knowledge, Maggioni et al. [12] is the only study using
conics, (i.e., two concentric circular markers) for estimating global hand pose
in 3D. Viewing the markers from a single camera is sufficient to obtain the
orientation and position of the palm.

3 Operational Environment

The glovebox environment has some features that can be easily exploited by
vision-based algorithms for hand tracking. First, the users are expected to wear
gloves, which enables the use of markers naturally. Second, hand motion is re-
stricted to a relatively small area inside the glovebox. This justifies the use of
multiple cameras to deal with occlusions and controlled lighting along with uni-
form background to enable segmentation of the hands. Taking these facts into
consideration, we have built a mock-up of VGX to perform our experiments as
shown in Figure 3.

Specifically, the VGX mock-up contains 8 hardware-synchronized cameras lo-
cated at the corners of the box, several fluorescent lights, and a white background
to help segmenting the hands. The intrinsic parameters of the cameras and radial
distortion parameters were calibrated using Matlab’s Calibration Toolbox [13].
To estimate the extrinsic camera parameters, Svoboda’s [14] multiple camera
self-calibration procedure was used.

During simulation, users wear a glove with an elliptical marker placed on the
dorsal part of the palm. In principle, it is possible to estimate the pose of the
hand using two coplanar ellipses [10], however, resolution limitations combined
with un-constrained hand motion can make it difficult to locate each ellipse
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separately. Therefore, we decided to use a single ellipse, which would need to be
visible from at least two cameras for estimating its pose [11]. Camera placement
in the VGX mock-up satisfies this visibility constraint.

4 Multiple-Camera Ellipse Tracking

Ellipse pose estimation is a well studied topic and there exist several efficient al-
gorithms for estimating pose information using one or two cameras under certain
conditions. In our initial experiments, we found Quan’s algorithm [11] using two
views of a single ellipse to be very efficient, fast, and accurate. This algorithm
deals with the problem of conic correspondences and reconstruction in 3D from
two views using projective properties of quadric surfaces. A closed-form solution
for both projective and Euclidean reconstruction of conics as well as a mecha-
nism to select the correct two ellipses in each of the two images are described in
[11].

The use of multiple cameras was deemed necessary in our application to allow
hand tracking independent of viewpoint. In our system, the elliptical marker
could be visible from up to four cameras. Although not all of the cameras would
contain reliable information for pose estimation (i.e., see Section 4.1), it would be
possible in general to use information from more than two cameras to improve
pose estimation and robustness. Therefore, we have developed a model-based
hand tracking approach that integrates information from any number of cameras.

In model-based tracking, at each frame of an image sequence, a search in
the parameter space is performed to find the best parameters that minimize a
matching error between groups of model features and groups of features extracted
from the input images. In the case of multiple cameras, the errors over all the
available views are accumulated. The search is often initiated by a prediction
based on the dynamics of the system. In the first frame, however, a prediction
is not available and a separate initialization procedure is required.

In our system, we have used Quan’s algorithm [11] for initialization purposes.
There are many different ways to conducting the search or equivalently mini-
mize the matching error. Here, we present an algorithm based on Martin and
Horaud’s [15] extension of Lowe’s model-based pose estimation algorithm [16].
Specifically, there are three main processing steps in our algorithm: (1) active
camera selection, where the best cameras for pose estimation are determined, (2)
matching error computation, where the similarity between the projected model
ellipse and the image features is calculated, and (3) pose estimation, where the
matching error is minimized.

4.1 Active Camera Selection

We use a number of criteria to select the ”best” cameras for pose estimation.
First, we select only those cameras that provide us with images of the ellipse at a
satisfactory resolution. If the ellipse is too far away, large changes in its pose will
only cause small image displacements. The criterion used to test this constraint
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is the area covered by the ellipse in the image. Second, we try to avoid selecting
cameras that provide an image where the contour of the ellipse is too close to
the silhouette of the hand. The criterion used for this is the angle between the
normal to the ellipse and the vector that goes from the center of the camera to
the center of the ellipse. Finally, we do not consider cameras that provide images
where the ellipse is completely or partially occluded.

4.2 Computation of Matching Error

The ellipse model is represented by a set of uniformly sampled points on its
boundary. For each active camera i, a signed error vector ei is computed by
(1) projecting the m points onto the camera’s image plane using the current
prediction of the pose of the ellipse, and (2) searching for the maximum gradient
along the normal to the projected contour at the sampled points. The errors of
all the points are concatenated to form a vector:

ei =
[
ei1, ..., eim

]T
(1)

where i denotes camera i. It should be noted that, a large number of sample
points m would provide a better estimate; however, it would also slow down the
system significantly.

4.3 Pose Estimation

Pose estimation corresponds to finding the pose parameters T (i.e., position
and orientation of the ellipse) that minimize the matching error. Many studies
[16] [15] employ Newton’s method which subtracts a vector of corrections, x
from the current estimate for T at each iteration. If T k is the parameter vector
corresponding to iteration k, then,

T k+1 = T k − x (2)

By linearizing the system at the current estimate, the correction vector is
calculated by solving an over-determined system of equations:

e = Jx (3)

where J is the Jacobian. The total error vector e is is obtained by weighting and
concatenating the error vectors (see Eq. 1) of the active cameras given by:

e =
[
w1e1, ..., wnen

]T
(4)

where the weights wi are calculated as a combination of (1) calibration error
(i.e., the larger the calibration error the smaller the weight), and (2) area (i.e.,
the larger the area covered by the ellipse on this camera’s image the larger the
weight). Weighting mainly helps to reduce the number of iterations required by
the algorithm to converge an it does not really improve results.
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5 Extrinsic Parameters Re-calibration

Multiple camera calibration assuming an arbitrary camera configuration is a dif-
ficult problem. Svoboda’s [14] approach provides a relatively practical solution.
Instead of a complex calibration pattern, it uses a colored light source (e.g.,
a small LED in our case), which is visible by many cameras simultaneously.
Calibration is performed by moving the light source arbitrarily inside the area
covered by the cameras. The trajectory of the light source as perceived from
different cameras provides the necessary information for calibration purposes.
However, this process is rather slow, it requires some user interaction, and it
does not always guarantee good results since it depends on how well the trajec-
tory of the light source covers the area enclosed by the cameras.

Re-calibration of a multi-camera system could be necessary for many reasons,
for example, when the cameras move. In this case, even a slight variation in the
position or orientation of the cameras could affect pose estimation. To update
and further optimize the extrinsic camera parameters, we have employed our
ellipse tracking algorithm. Specifically, re-calibration works as follows:

1. For all frames run the tracking algorithm and record (i) the pose of the
ellipse and (ii) which cameras are active for each frame (see Table 1, top)

2. For each camera, load the poses, images, and frames p where this camera
was active; we will be referring to these frames as active frames (see Table
1 bottom).

3. Using this information, compute the errors as explained in 4.2, however,
instead of putting them in a vector, add their absolute values (m is the
number of samples per frame):

ei =
p∑

k=1

m∑

j=1

| eikj(x
i) | (5)

where k indicates the frame number, j indicates the sample number, and
i indicates the camera number. ei

kj is a function of the extrinsic camera
parameters xi. The Nelder-Mead’s Simplex algorithm [17] was used to find
the ∆xi that minimizes the error ei.

4. Go to step 1 until the error is smaller than a threshold or a maximum number
of iterations has been reached.

6 Experimental Results

In this section, we present quantitative and visual experimental results to eval-
uate the pose estimation and re-calibration algorithms. In all the experiments,
we assumed that the ellipse was placed flat on the dorsal part of the hand (see
Fig. 2).
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Table 1. Example for a sequence with 999 frames. Top Recover the ellipse pose for
all frames. Bottom Run re-calibration for all cameras (A = Active camera/frame; I
= Inactive camera/frame)

1- Run ellipse tracking for whole training sequence

Frame Camera Ellipse pose
⇓ 0 1 . . . 7 Orientation Position
1 I I . . . A → θ1 p1

2 I I . . . A → θ2 p2

...
... →

...
...

997 A A . . . I → θ997 p997

998 A A . . . I → θ998 p998

999 A A . . . I → θ999 p999

Total 300 351 . . . 415

2- Run re-calibration for all cameras

Camera Frame Extrinsic Parameters
⇓ 0 1 . . . 999 Rotation Translation
0 I I A → R0 t0
1 I I A → R1 t1
2 I I I → R2 t2
3 I I . . . I → R3 t3
4 A A I → R4 t4
5 I I A → R5 t5
6 I I A → R6 t6
7 A A I → R7 t7
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6.1 Accuracy of Ellipse Pose Estimation

To evaluate the accuracy of pose estimation, we compared our algorithm with
Quan’s ellipse pose estimation algorithm, which, in our opinion, is the best avail-
able algorithm for a two camera system. To be able to use Quan’s algorithm in
our multi-camera environment, we used the same criteria given in section 4.1 for
selecting the best two cameras.

Fig. 2 shows the re-projection error (i.e., matching error given in section 4.2)
for both algorithms. The square wave shaped curve on the top of the graph indi-
cates the number of active cameras at each frame. Two interesting observations
can be made:

1. When only two cameras are active in the case of the multiple-camera al-
gorithm, both algorithms give very close results. However, when more than
two cameras are active, the performance of the multiple-camera algorithm
is significantly better.

2. Although the re-projection error is smaller in the multiple-camera case, it
increases with the number of cameras. The reason is that there are more
calibration errors involved as the number of cameras increases.
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Fig. 2. The re-projection error of Quan’s algorithm and our algorithm.

Fig. 3(Left) shows the differences in the position estimates of the two al-
gorithms. Interestingly enough, these differences resemble the differences in the
re-projection error shown in Fig. 2. Overall, we can conclude that when both
algorithms use the same two cameras, the results are very similar, however, when
more cameras are available, the multiple-camera approach yields more accurate
position estimates which implies lower re-projection error. Similar observations
can be made for the orientation estimates of the ellipse.

Finally, Fig. 3(Right) shows several examples to demonstrate our multiple-
camera algorithm in the case of three active cameras.
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for frame 42 of a sequence. The images where the re-projected ellipse is drawn in green
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6.2 Processing Speed

A disadvantage of the multiple camera tracking system is the higher computa-
tional requirements due to its iterative nature. Quan’s algorithm processes each
frame in about 4 ms. The multiple camera algorithm deals with more cameras
and computational cost depends linearly on the number of sampled points of
the ellipse used for re-projection. Using a rather conservative number of samples
(100) and un-optimized code, the processing speed was about 150 ms per frame.
The most expensive part of the algorithm is the matching error calculation step,
which is repeated a few times at each frame.

6.3 Effects of Re-calibration

The results of the multiple-camera algorithm on a sequence taken in the VGX
were used to re-calibrate the extrinsic camera parameters. To asses the effects
of re-calibration, the modified extrinsic parameters were used to estimate the
pose parameters on a different test sequence. Fig. 4 shows the re-projection
errors obtained with and without re-calibration assuming different number of
iterations. As it can be observed, lack of re-calibration increases the re-projection
error as number of active cameras increases. However, re-calibration reduces the
dependency of the re-projection error on the number of active cameras, to the
point where it is almost constant.

7 Conclusion and Further Work

We have presented a multiple camera, model-based ellipse tracking algorithm
for global hand-pose estimation in an immersive training environment. We have
also shown how to employ the proposed algorithm for re-calibrating the extrinsic
parameters of a multi-camera system. Our experimental results illustrate the
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Fig. 4. The re-projection error on a testing sequence with and without re-calibration.
(Left) Average re-projection error per frame for the testing sequence computed with the
extrinsic parameters iterations 0, 4 and 9. (Right) Average error of the whole sequence
per camera

effectiveness of the proposed approach both in terms of pose estimation and re-
calibration. For future work, we plan to consider the problem of estimating the
full DOF of the hand. Estimating the global pose of the hand is an important
step in this process.
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