
-- --

Learning Orthographic Transformations for Object Recognition

George Bebis†, Michael Georgiopoulos‡, and Sanjiv Bhatia†,

†Department of Mathematics & Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121
‡Department of Electrical & Computer Engineering, University of Central Florida, Orlando, FL 32816

Abstract
In this paper, we consider the problem of learning to

predict the correct pose of a 3D object, assuming ortho-
graphic projection and 3D linear transformations. A neural
network is trained to learn the desired mapping. First, we
consider the problem of predicting all possible views that
an object can produce. This is performed by representing
the object with a small number of reference views and using
algebraic functions of views to construct the space of all
possible views that the object can produce. Fundamental to
this procedure is a methodology based on Singular Value
Decomposition and Interval Arithmetic for estimating of the
ranges of values that the parameters of algebraic functions
can assume. Then, a neural network is trained using a num-
ber of views (training views) which are generated by sam-
pling the space of views of the object. During learning, a
training view is presented to the inputs of the network which
is required to respond at its outputs with the parameters of
the algebraic functions used to generate the view from the
reference views. Compared to similar approaches in the lit-
erature, the proposed approach has the advantage that it
does not require the 3D models of the objects or a large
number of views, it is extendible to other types of projec-
tions, and it is more practical for object recognition.

1. Introduction
In a recent paper [1], we studied the problem of

learning to predict the correct pose of a planar object,
undergoing 2D affine transformations (i.e., unconstrained
viewpoint). The idea was to train a single-layer neural net-
work (SL-NN) with a number of affine transformed views
of the object in order for it to learn to predict the parameters
of the affine transformation between the training views and
a reference view of the object. To demonstrate our
approach, we performed a number of experiments using
several objects. A separate neural network was assigned to
each object and was trained with views of this object only.
In this way, each network became specialized in the predic-
tion of the pose from views of a specific object only (object
specific networks). Our experimental results showed that
training was extremely fast and that only a small number of
training views was sufficient for the networks to generalize
well. By generalization we mean the ability of the networks
to predict the correct affine transformation even for views
that were never exposed to them during training. We also
considered issues related to the discrimination power and
noise tolerance of the networks. Our results showed that the
discrimination power of the networks was excellent. Their
noise tolerance was not very good initially, howev er, it was
dramatically improved by applying a preprocessing to the

inputs based on Principal Components Analysis (PCA) [2].

In this paper, we are extending the above work in the
case of 3D objects, assuming orthographic projection and
3D linear transformations. This extension is possible using
the theory of algebraic functions of views [3][4]. Algebraic
functions of views are simply functions which express a
relationship among a number of views of the same object in
terms of their image coordinates alone. For example, it has
been shown that in the case of orthographic projection, the
image coordinates of any three views of an object, undergo-
ing 3D linear transformations, satisfy a linear function [3].
This means that novel views of an object can be expressed
as a linear combination of two known (reference) views of
the object. Our goal here is to train a neural network to pre-
dict the pose of 3D objects, in terms of the parameters
(coefficients) of the algebraic functions of views.

A separate SL-NN was associated with each object in
[1]. This is because a single view is enough to represent
planar objects from any viewpoint. In the case of 3D
objects, more than one views are needed to represent differ-
ent aspects of the object. Two views correspond to the same
aspect if they capture almost the same 3D features. As dis-
cussed above, two views are enough to represent each
aspect. A separate neural network has been associated with
different aspects of an object (aspect specific networks). SL-
NNs are used again since the mapping to be approximated
is linear. To train the aspect specific networks, a number of
training views are generated. This is performed by sampling
the space of transformed views associated with the aspect of
interest. This space is constructed by combining the refer-
ence views associated with the aspect, using algebraic func-
tions of views [3][4]. The values of the parameters used in
the combination are obtained by sampling the ranges of val-
ues that the parameters can assume. To estimate the ranges,
a methodology based on Singular Value Decomposition
(SVD) [2] and Interval Arithmetic (IA) [5] is applied. Dur-
ing recognition, an unknown view is presented to the aspect
specific networks which predict sets of values for the
parameters of the algebraic functions. By combining the
reference views associated with an aspect specific network,
using the parameter values predicted, a view is predicted
which is then compared with the unknown view.

Our work has similarities with [6]. In specific, the
problem of approximating a function that maps any per-
spective view of a 3D object to a standard object view was
considered in [6]. This function was approximated by train-
ing a Generalized Radial Basis Functions Neural Network
(GRBF-NN). The training views were obtained by sampling
the viewing sphere, assuming that the 3D model of the
object is available. Despite the fact that the two approaches

-- --

consider different types of projections, which we discuss
later, there are a number of other differences between the
two approaches. The first important difference is in the way
that the training views are obtained. In [6], the training
views can be obtained easily only when the 3D models of
the objects are available. Since it is not always possible to
assume this, an alternative way must be used to obtain the
training views, for example, by taking pictures of the
objects from different viewpoints. This approach, however,
requires more effort and time: edges must be extracted,
interest point must be detected, and point correspondences
across the views must be established. On the other hand,
our approach requires only a small number of views. Then,
the training views can be generated by combining these
views, using algebraic functions of views.

The second difference is in the kind of outputs that
the neural networks have been trained to produce. In [6], the
GRBF-NN predicts the coordinates of a standard view of
the object. In a similar approach [3], a linear operator was
built to distinguish between views of a specific object and
views of other objects, assuming orthographic projection.
This was done by mapping every view of the object to a
vector which uniquely identifies the object. In our approach,
however, the SL-NN predicts the values of the parameters
of the algebraic functions of views. Although the above two
approaches are mostly biological motivated, it is the practi-
cal value of the neural network approach which is of inter-
est to us here. In particular, our objective is to benefit
approaches which operate under the hypothesize and verify
paradigm [7][8]. In this context, objects are hypothesized
and verified during recognition by back-projecting them
onto the unknown scene. In the case of recognition using
algebraic functions of views [4][9], back-projection simply
implies the combination of the reference views of the candi-
date object. Thus, a candidate set of parameter values must
be computed for every hypothesis. We show that the accu-
racy of the neural network approach in predicting the cor-
rect parameters is as good as that of a traditional least-
square scheme (SVD), however, the neural network
approach has less computational requirements.

To simplify training, we show that it is not necessary
to consider both the x- and y-coordinates of the views dur-
ing training (views are represented here as a collection of
points given by their location in the image). In fact, training
the networks using only one of the two is enough. This sim-
plification has many benefits (smaller networks, faster train-
ing) and adds only a minor cost during pose prediction
(pose must now be predicted in two steps). The current ver-
sion of our method deals with orthographic projection only.
However, orthographic approximates perspective quite well
when the camera is not very close to the object [10]. Since
orthographic projection is linear, linear networks (SL-NN)
are required to learn the mapping as opposed to nonlinear
networks (GRBF-NN) used in the case of perspective [6].
On the other hand, extending the current approach to other
types of projections is possible due to the fact that algebraic
functions of views have been shown to exist in the case of
paraperspective [12] as well perspective projection [4].

The organization of the paper is as follows: Section 2
presents a brief overview of the theory of algebraic func-
tions of views. The procedure for estimating the range of

values that the parameters of the algebraic functions can
assume is presented in section 3. In Section 4, we describe
the methodology for obtaining the training views and the
procedure for training the aspect specific neural networks.
Our experimental results are given in Section 5. Finally,
section 6 contains our conclusions.

2. Background on algebraic functions of views
Algebraic functions of views were first introduced, in

the case of scaled orthographic projection (weak perspec-
tive), by Ullman and Basri [3]. They showed that if we let
an object to undergo 3D rigid transformations, namely, rota-
tions and translations in space, and we assume that the
images of the object are obtained by orthographic projec-
tion followed by a uniform scaling, then any novel view of
the object can be expressed as a linear combination of three
other views of the object. In specific, let us consider three
reference views of the same object V1, V2, and V3, which
have been obtained by applying different rigid transforma-
tions, and three points p′ = (x′, y′), p′′ = (x′′, y′′), and
p′′′ = (x′′′, y′′′), one from each view, which are in correspon-
dence. If V is a novel view of the same object, obtained by
applying a different rigid transformation, and p = (x, y) is a
point which is in correspondence with p′, p′′, and p′′′, then
the coordinates of p can be expressed in terms of the coor-
dinates of p′, p′′, and p′′′ as follows:

x = a1 x′ + a2 x′′ + a3 x′′′ + a4 (1)

y = b1 y′ + b2 y′′ + b3 y′′′ + b4 (2)

where the parameters a j, b j, j = 1, . . . , 4, are the same for all
the points which are in correspondence across the four
views. It should be mentioned that the parameters follow
certain functional restrictions [3]. The above result can be
simplified if we generalize the orthographic projection by
removing the orthonormality constraint associated with the
rotation matrix. In this case, the object undergoes a 3D lin-
ear transformation in space and only two reference views
are required. The corresponding algebraic functions are
shown below:

x = a1 x′ + a2 y′ + a3 x′′ + a4 (3)

y = b1 x′ + b2 y′ + b3 x′′ + b4 (4)

where the parameters a j, b j, j = 1, . . . , 4, are the same for all
the points which are in correspondence across the three
views. It should be noted that not all the information from
the second reference view is used but only "half" of it (only
the x-coordinates). Of course, (3) and (4) can be rewritten
using the y-coordinates of the second reference view
instead.

The extension of algebraic functions of views in the
case of perspective projection has been carried out by
Shashua [4] and by Faugeras and Robert [11]. In particular,
it was shown that three perspective views of an object sat-
isfy a trilinear function. Moreover, Shashua [4] has shown
that a simpler and more practical pair of algebraic functions
exist when the reference views are orthographic. This is
useful for realistic object recognition applications. Here, we
consider the case of orthographic projection and 3D linear
transformations only.

-- --

3. Estimating the ranges of the parameters
We start by introducing some terminology and mak-

ing certain assumptions. We assume that each object m is
represented by a number of aspects Am. In the case of
convex 3D objects, six aspects should be enough, while in
the case of general 3D objects, more aspects are necessary
to represent the object from different viewing directions.
Each aspect is represented by V different views which we
call, reference views. The number of reference views V
will be equal to two here, since we have assumed the case
of linear transformations. For each aspect, we assume a
number of "interest" points Nm(a), a = 1, 2, . . . , Am (e.g., cor-
ners or junctions) which are common in all the views asso-
ciated with the aspect. We also assume that the point corre-
spondences across the views have been established.

Under the assumption of orthographic projection, two
reference views V1 and V2 must be combined in order to
obtain a new view V , as Eqs. (3) and (4) illustrate. Given
the point correspondences across the three views, the fol-
lowing system of equations must be satisfied:

x ′
1

x ′
2

. . .

x ′
Nm(a)

y′
1

y′
2

. . .

y′
Nm(a)

x ′′
1

x ′′
2

. . .

x ′′
Nm(a)

1

1
. . .

1

a1

a2

a3

a4

b1

b2

b3

b4

=

x1

x2

. . .

xNm(a)

y1

y2

. . .

yNm(a)

(5)

where (x ′
1, y′

1), (x ′
2, y′

2), . . . (x ′
Nm(a)

,y′
Nm(a)

) and (x ′′
1, y′′

1), (x ′′
2,

y′′
2), . . . (x ′′

Nm(a)
,y′′

Nm(a)
) are the coordinates of the points of the

reference views V1 and V2 respectively, and (x1, y1), (x2,
y2), . . . (xNm(a)

, yNm
(a)) are the coordinates of the points of the

novel view V . Instead of the x-coordinates of the second
reference view V2, its y-coordinates could have been used.
The above system can now be split into two subsystems,
one involving the a j parameters and one involving the b j

parameters. Using matrix notation, they can be written as
follows:

Pc1 = px (6)

Pc2 = py (7)

where P is the matrix formed by the x- and y-coordinates of
the reference views (plus a column of 1’s), c1 and c2 are
vectors corresponding to the a j and b j parameters of the
algebraic functions and px , py are vectors corresponding to
the x- and y-coordinates of the new view. Since both (6) and
(7) are overdetermined, we can solve them using a least-
squares approach such as SVD [2]. Using SVD, we can fac-
torize the matrix P as P = UPWPV T

P where both UP and VP

are orthonormal matrices, while WP is a diagonal matrix
whose elements wP

ii are always non-negative and are called
the singular values of P. The solution of the above two sys-
tems is c1 = P+ px and c2 = P+ py where P+ is the pseudoin-
verse of P. Assuming that P has been factorized, its pseu-
doinverse is P+ = VPW +

PUT
P where W +

P is also a diagonal
matrix with elements 1/wP

ii if wP
ii greater than zero (or a very

small threshold in practice) and zero otherwise. In specific,
the solutions of (6) and (7) are given by the following equa-
tions [2]:

c1 =
k

i=1
Σ(

uP
i px

wP
ii

)vP
i (8)

c2 =
k

i=1
Σ(

uP
i py

wP
ii

)vP
i (9)

where uP
i denotes the i-th column of matrix UP, vP

i denotes
the i-th column of matrix VP and k = 4.

To determine the range of values for c1 and c2, we
assume that the image of the unknown view has been scaled
so that its x- and y-coordinates belong to a specific interval.
This can be done, for example, by mapping the image of the
unknown view to the unit square. In this way, its x- and y-
image coordinates are mapped in the interval [0, 1]. To
determine the range of values for c1 and c2, we need to con-
sider all possible solutions of (6) and (7), assuming that the
px and py belong to [0,1]. To solve this problem, we have
used IA [5]. In IA, each variable is represented as an inter-
val of possible values. Given two interval variables
t = [t1, t2] and r = [r1, r2], then the sum and the product of
these two interval variables is defined as follows [5]:

t + r = [t1 + r1, t2 + r2]

t * r = [min(t1r1, t1r2, t2r1, t2r2), max(t1r1, t1r2, t2r1, t2r2)]

Applying the interval arithmetic operators to (8) and (9)
instead of standard arithmetic operators, we can compute
interval solutions for c1 and c2 by setting px′=[0,1] and
py′=[0,1]. In interval notation, we want to solve the systems
Pc1 = pI

x and Pc2 = pI
y, where the superscript I denotes an

interval vector. The solutions c I
1 and c I

2 should be under-
stood to mean c I

1 = [c1: Pc1 = px , px ∈pI
x] and

c I
2 = [c2: Pc2 = py, py ∈pI

y]. It should be mentioned that since
both (8) and (9) involve the same matrix P and px , py

assume values in the same interval, the interval solutions c I
1

and c I
2 will be the same.

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7

model1-ref1

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7

model1-ref2

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7

model2-ref1

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7

model2-ref2’

Figure 1. Some test 3D objects.

As an example, let us consider the 3D objects shown
in Figure 1. Two different reference views per object are
used (we assume that the objects are transparent). Table 1
shows the range of values computed for c1. It should be
mentioned at this point that when interval solutions are
computed, not every solution in c I

1 and c I
2 satisfies the inter-

val system of equations. In other words, not every solution
in c I

1 and c I
2 corresponds to px and py that belong to pI

x and
pI

y [13]. Thus, pI
x⊆Pc I

1 and pI
y⊆Pc I

2. In the context of our
approach, if we generate new views by choosing the param-
eters from the interval solutions obtained, then we might

-- --

generate views that do not lie entirely in the unit square. We
call these solutions, "invalid solutions". Clearly, predicted
views based on invalid solutions should be rejected. By test-
ing whether the coordinates of a predicted view lie inside
the unit square, we can easily reject invalid solutions.

Table 1. The computed ranges using the original views.

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [-25.32 25.32] [-10.15 10.15] [-23.17 23.17] [-5.94 6.94]

model2 [-27.77 27.77] [-10.15 10.15] [-24.32 24.32] [-8.49 9.49]

It can be seen from Table 1 that the width of the
ranges varies from parameter to parameter. It can be shown
that the width of the ranges depends on the condition of the
matrix P (see Eqs. (6) and (7)) and that the original refer-
ence views can be "preconditioned" to narrow the ranges of
values [14]. By preconditioning we imply a transformation
that can transform the original reference views to new refer-
ence views, yielding tighter ranges of values. Tighter
ranges have the advantage that they yield less invalid views
during the generation of the training views. We hav e
applied the preconditioning procedure on the views shown
in Figure 1. Table 2 shows the new, tighter, ranges of val-
ues.

Table 2. The computed ranges using the preconditioned views.

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [-0.45 0.45] [-0.42 0.42] [-0.39 0.39] [0.0 1.0]

model2 [-0.44 0.44] [-0.41 0.41] [-0.42 0.42] [0.0 1.0]

4. Learning the mapping
First, the training views must be generated for every

object. This is performed by sampling the space of views
that the object can produce. This is actually performed by
sampling the ranges of values that the parameters of alge-
braic functions can assume. The sampling procedure is
straightforward: first, we pick a sampling step and then we
sample the range of values associated with each parameter.
Then, we pick a sampled value for each parameter and we
form sets of sampled values. Each set of sampled values is
then used to generate a new view by combining the refer-
ence views using the algebraic functions. If a view is
invalid, then we reject it as discussed in section 3. During
learning, each training view is presented to the inputs of the
network (i.e., the coordinates of the points representing the
view) which is required to respond at its outputs with the
sampled set of values used for the generation of the view.
Figure 2(a) shows the neural network scheme.

As discussed in section 3, both a j and b j assume val-
ues from the same ranges. Taking also into consideration
that the same vector is involved in the computation of the x-
and y-coordinates of the training views (i.e., (x′, y′, x′′)), it
turns out that the transformation which generates the x-
coordinates is exactly the same to the transformation which
generates the y-coordinates. Since it is not necessary to
force the network to learn the same transformation twice,
we perform training using only one of the two coordinates
(the x-coordinates here). This is shown in Figure 2(b). This
simplification has only a minor cost in the prediction of the

pose. The parameters of the algebraic function must now be
predicted separately: first, we predict a j’s by presenting to
the network the x-coordinates of the unknown the view and
second, we predict b j’s by presenting to the network the y-
coordinates of the unknown view.

x′
1

x′
2

.

.

.

x′
1

y′
1

x′
2

y′
2

N NN N

(a) (b)

a1
a1

a2

b1

b2.
.
.

.

.

. a2

.

.

.

.

.

.

ak

bk

ak
x′

Nm(a)

y′
Nm(a)

x′
Nm(a)

Figure 2. The neural network scheme.

Evaluating neural networks’ noise tolerance in [1],
we found that it was dramatically improved by preprocess-
ing the inputs using PCA [2]. We hav e also adopted this
idea here. PCA is a multivariate technique which transforms
a number of correlated variables to a smaller set of uncorre-
lated variables. In specific, PCA works as follows: first, we
compute the covariance matrix associated with our corre-
lated variables and we find the eigenvalues of this matrix.
Then, we sort them and we form a new matrix whose
columns consist of the eigenvectors corresponding to the
largest eigenvalues. Deciding how many eigenvalues are
significant depends on the problem at hand. The matrix
formed by the eigenvectors corresponds to the transforma-
tion which is applied on the correlated variables to yield the
new uncorrelated variables. Here, we think of each view as
a vector with components the x-coordinates of the points in
the view (the y-coordinates are not used for training) and
we apply the procedure as described above.

Despite the fact that PCA improves noise tolerance, it
has also two other important benefits: first, it reduces the
dimensionality of the input vectors and as a result, smaller
size networks are needed. Second, it can guide us in choos-
ing a sufficient number of training views so that the net-
works learn a good mapping. Performing experiments to
evaluate the noise tolerance of the networks using different
number of training views, we verified the same results as in
[1]. In particular, we found that in cases where the perfor-
mance of the networks was very poor, the number of non-
zero eigenvalues associated with the covariance matrix of
the training views was consistently less than four. More
training views did not improve the results, as long as the
number of non-zero eigenvalues remained less than four. By
including more training views which increased the number
of non-zero eigenvalues to four, a dramatic improvement
was observed. Adding more training views after this point
neither improved the results nor increased the number of
non-zero eigenvalues. It seems thus that the number of non-
zero eigenvalues of the covariance matrix of the training
views plays an important role in deciding how many views
to select for training. In fact, we think that there is a simple
reason that the number of non-zero eigenvalues never
exceeded four, giv en in the form of a theorem in [9]: "the

-- --

views of a rigid object are contained in a four-dimensional
linear space".

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

model1
back-projected model1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

model1
back-projected model1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

model2
back-projected model2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

model2
back-projected model2

Figure 3. Recognition results.

Table 3. Actual and predicted parameters.

Parameters

Actual parameters (Figure 3(a)) Predicted parameters (Figure 3(a))

a1,a2,a3,a4 -0.08248 -0.15374 0.09463 0.55224 -0.08222 -0.15323 0.09412 0.55223

b1,b2,b3,b4 -0.05775 0.02241 0.13408 0.48342 -0.05732 0.02222 0.13413 0.48313

Actual parameters (Figure 3(b)) Predicted parameters (Figure 3(b))

a1,a2,a3,a4 -0.01866 -0.14224 0.00280 0.46931 -0.01863 -0.14223 0.00280 0.46932

b1,b2,b3,b4 0.07291 0.04679 0.19096 0.44305 0.07288 0.04675 0.19093 0.44299

Actual parameters (Figure 3(c)) Predicted parameters (Figure 3(c))

a1,a2,a3,a4 -0.06960 -0.13060 0.08588 0.53691 -0.07512 -0.13366 0.08039 0.53807

b1,b2,b3,b4 -0.06665 0.02818 0.16177 0.49026 -0.06666 0.02814 0.16176 0.49025

Actual parameters (Figure 3(d)) Predicted parameters (Figure 3(d))

a1,a2,a3,a4 -0.14990 0.08872 0.14231 0.61792 -0.14990 0.08868 0.14231 0.61792

b1,b2,b3,b4 -0.21708 -0.12707 0.01205 0.55004 -0.21713 -0.12714 0.01200 0.54999

5. Experiments
First we performed a number of experiments using

the artificial objects shown in Figure 1. The interest points
used were the points corresponding to the corners of each
object. For each object, we generated a number of training
views and we trained a SL-NN to learn the desired map-
ping. Back-propagation with momentum was used for the
training of the networks [15]. The learning rate used was
0.2 and the momentum term was 0.4. The networks
assumed to have converged when the sum of squared errors
between the desired and actual outputs was less than
0.0001. To evaluate the quality of the mapping found by the
networks, we generated a number of test views per object
by combining linearly the reference views of the object,
choosing the parameters of the linear combination ran-
domly. To ensure that the x- and y-coordinates of the test
views were in [0,1], we chose a random subsquare within
the unit square and we mapped the square enclosing the
view of the object to the randomly chosen subsquare. We
also added some random noise in the location of the points
to simulate sensor noise. To find how accurate the predic-
tions of the networks were, we compared the predicted
parameters with the actual parameters which were com-
puted using SVD. Also, we back-projected the candidate
view onto the test view to evaluate the match visually. Fig-

ure 3 shows some examples while Table 3 shows the actual
and predicted parameters.

0

50

100

150

200

0 50 100 150 200 250 300

’ref1’

0

50

100

150

200

0 50 100 150 200 250 300

’ref2’

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

’ref1’

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

’ref2’

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. The real objects.

Next, we performed a number of experiments using
the real objects shown in Figure 4. A single aspect was con-
sidered and the reference views used to represent it are
shown in Figures 4(a),(b) and 4(e),(f). To detect a number
of interest points, we applied a corner and junction detector
[16]. Then we manually picked sets of points which were
common in both views. Figures 4(c),(d) and 4(g),(h) show
the interest points chosen (the lines connecting the points
have been drawn only for visualization purposes). The ref-
erence views were preconditioned and the ranges computed
are shown in Table 4. Figure 5(a,c) shows some novel
views. Note that none of them is exactly the same to any of
the reference views. To interest points in the novel views
were detected using the same corner detector ([16]). Then,
we picked manually the points present in the reference
views and we fed them to the corresponding networks.
Table 5 shows the actual and predicted parameters. Figure
5(b,d) shows the predicted views, back-projected on novel
views. It is important to mention at this point that the order
in which the data are presented to the networks is impor-
tant. This is because the networks are not invariant to shifts
in the input sequence. This was also the case in [3] and [6].
Depending on the context of the application, however, the
order might be available. For example, we have incorpo-
rated the neural network scheme in an indexing-based
object recognition system [14]. In this system, groups of
points (for occlusion tolerance) are chosen from the
unknown view and are used to retrieve hypotheses from a

-- --

table. Each hypothesis contains information about a model
group as well as information about the order of the points in
the group. This information can be used to place the points
in the correct order before they are fed to the network.

Table 4. The computed ranges (preconditioned views).

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [-0.41933 0.41933] [-0.36234 0.36234] [-0.42926 0.42926] [0.0 1.0]

model2 [-0.44177 0.44177] [-0.45138 0.45138] [-0.43368 0.43368] [0.0 1.0]

(a) (b)

(c) (d)

Figure 5. Recognition results.

Table 5. Actual and predicted parameters (real data).

Parameters

Actual parameters (Figure 5(b)) Predicted parameters (Figure 5(b))

a1,a2,a3,a4 0.03704 0.19696 0.04488 0.63449 0.03700 0.19692 0.04485 0.63446

b1,b2,b3,b4 -0.12358 0.05752 0.01046 0.53638 -0.12353 0.05757 0.01051 0.53644

Actual parameters (Figure 5(d)) Predicted parameters (Figure 5(d))

a1,a2,a3,a4 -0.041474 0.22793 0.02362 0.57797 -0.04145 0.22798 0.02365 0.57802

b1,b2,b3,b4 0.123646 -0.05775 -0.00653 0.50611 0.12360 -0.05781 -0.00658 0.50606

To compare the computational requirements of the
SVD approach with that of the neural network approach, let
us assume that SVD decomposition takes place off-line as is
the case with the training of the neural networks. Then,
assuming that the average number of points per view is N
and that the number of parameters is 2k (k=4 here), the neu-
ral network approach requires 2kN multiplications and 2kN
additions while SVD requires 2k(N + 2k) multiplications,
2kN divisions, and 2k(N + 2k) additions (see Eqs. (8) and
(9)). Given that these computations must be repeated hun-
dreds of times during recognition, the neural network
approach has obviously lower computational requirements.

6. Conclusions
The problem of predicting the pose of a 3D object,

assuming orthographic projection and 3D linear transforma-
tions was considered in this study. The proposed approach
has the advantage that it does not require the 3D models of
the objects and it is more practical for object recognition.
Extensions to perspective projection are currently being
explored.

References
[1] G. Bebis, M. Georgiopoulos, N. da Vitoria Lobo and M. Shah,

"Learning Affine Transformations of the Plane for Model-
based Object Recognition", 13th International Conference
on Pattern Recognition (ICPR-96), vol. IV, pp. 60-64,
Vienna, Austria, August 1996.

[2] W. Press et. al Numerical recipes in C: the art of scientific pro-
gramming, Cambridge University Press, 1990.

[3] S. Ullman and R. Basri, "Recognition by linear combination of
models", IEEE Pattern Analysis and Machine Intelligence,
vol. 13, no. 10, pp. 992-1006, October 1991.

[4] A. Shashua, "Algebraic Functions for Recognition", IEEE
Tr ansactions on Pattern Analysis and Machine Intelligence,
vol. 17, no. 8, pp. 779-789, 1995.

[5] R. Moore, Interval analysis, Prentice-Hall, 1966.

[6] T. Poggio and S. Edelman, "A network that learns to recognize
three-dimensional objects", Nature, vol. 343, January 1990.

[7] Y. Lamdan, J. Schwartz and H. Wolfson, "Affine invariant
model-based object recognition", IEEE Trans. on Robotics
and Automation, vol. 6, no. 5, pp. 578-589, October 1990.

[8] D. Huttenlocher and S. Ullman, "Recognizing solid objects by
alignment with an image", International Journal of Com-
puter Vision, vol. 5, no. 2, pp. 195-212, 1990.

[9] R. Basri, "Recognition by combination of model views: align-
ment and invariance", in Applications of Invariance in
Computer Vision, Lecture Notes in Computer Science, vol.
825, pp. 435-450, 1994.

[10] D. Thompson and J. Mundy, "Three dimensional model
matching from an unconstrained viewpoint", Proceedings
of the IEEE Conference on Robotics and Automation, pp.
208-220, 1987.

[11] O. Faugeras and L. Robert, "What can two images tell us
about a third one ?", Third European Conference on Com-
puter Vision (ECCV’94), pp. 485-492, 1994.

[12] R. Basri, "Paraperspective ≡ Affine", International Journal of
Computer Vision, vol. 19, no. 2, pp. 169-179, 1996.

[13] E. Hansen and R. Smith, "Interval arithmetic in matrix com-
putations: Part II", SIAM Journal of Numerical Analysis,
vol. 4, no. 1, 1967.

[14] G. Bebis, M. Georgiopoulos, M. Shah, and N. La Vitoria
Lobo, "Indexing based on algebraic functions of views",
submitted for publication.

[15] J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory
of neural computation, Addison Wesley, 1991.

[16] S. Smith and J. Brady, "SUSAN: A new approach to low lev el
image processing", DRA Technical Report TR95SMS1,
Dept. of Engineering Science, Oxford University, 1995.

