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Abstract provides context for localization studies, membrane-tgbun

macromolecules also need to be delineated.[Such de-

Membrane-bound macromolecules are responsible for lineation enables, for example, membrane-bound macro-
structural support and mediation of cell-cell adhesion in molecules to be quantified on a cell-by-cell basis. At optica
tissues. Quantitative analysis of these macromolecules pr resolution, however, membrane signals may have nonuni-
vides morphological indices for damage or loss of tissue, form intensity around the cell boundary, be punctate (e.g.,
for example as a result of exogenous stimuli. From an op- connexin) or diffused (e.g., E-cadherin), and may even be
tical point of view, a membrane signal may have nonuni- Perceptual at certain locations (Fi@). Furthermore, there
form intensity around the cell boundary, be punctate or is a significant amount of heterogeneity as a result of tech-
diffused, and may even be perceptual at certain locationsnical and biological variations. In this paper, a new method
along the boundary. In this paper, a method for the de- is presented for quantifying macromolecule bound to the
tection and grouping of punctate, diffuse curvilinear sig- basal-lateral region of the cell.
nals is proposed. Our work builds upon the tensor vot-
ing and the iterative voting frameworks to propose an ef-
ficient method to detect and refine perceptually interesting
curvilinear structures in images. The novelty of our method
lies on the idea of iteratively tuning the tensor voting f&eld
which allows the concentration of the votes only over areas
of interest. We validate the utility of our system with syn-
thetic and anno_tate_d real data. The effectiveness of the turl Figure 1. Membrane-bound macromolecules has a complex pat-
able tensor voting is demonstrated on complex phenotypiCierm of localization along the cell membrane. Notice that shy-
signals that are representative of membrane-bound macro-pa| has an additional punctate pattern on top of an exisiffigséd
molecular structures. signal.

It is well known that symmetry, closure, and continuity
1. Introduction are preattentive processes in the human vision system that
can aid in object-level delineation and recognitici [In

Cell membrane macromolecules mediate the cell-cell ad-this paper, we propose a method that allows inference of
hesion of epithelial cells allowing the composition of meno curvilinear structures from noisy, often incomplete bound
layers in culture. One such macromolecule, E-cadherin, isary information, such as those found in membrane-bound
pathoneumonic for normal epithelia and its down regulation macromolecule signals. It involves perceptual grouping of
is associated with motility, epithelial-mesenchymal sian  pixels through voting. In the context of voting as a precurso
tion (EMT) and cancer initiation”]. Researchin the area of for grouping and clustering, many methods have been de-
guantitative analysis of cell-based assay has spannet lear veloped. For example, Hough introduced the notion of para-
ing techniques using texture-based features for charactermetric clustering in terms of well-defined geometry, which
izing patterns of macromolecule expressiéh peometric was later extended to the generalized Hough transféim [
techniques using nonlinear filtering and curve evolutiggn [ Guy and Medioni}] proposed a general purpose tensor vot-
and shape regularization for segmentation of subcellularing framework that uses deformable tensors to reveal per-
compartmentsi[1]. While segmentation of nuclear regions ceptual structures. Loss al. [6] extended this tensor voting



framework to accommodate iterative saliency thresholding Section2 describes the tensor voting and the iterative vot-
and multi-scale analysis. Parvit al. [9] developed an it-  ing frameworks, along with their applications to percep-
erative voting system that employs tunable kernels to refinetual grouping of linear structures. Secti8rintroduces our
paths of low curvature in images. In general, voting oper- method, extending the concepts of the tensor and the itera-
ates on continuity and proximity, which can occur at multi- tive voting frameworks. Experimental results are shown in
ple scales, e.g., points, lines, or lines of symmetry. One of Section4, and conclusions are presented in Secfion

the main advantages of voting frameworks is their reliance

on relative simple models, which reduces the number offree 2 \/oting frameworks

parameters considerably. Our work builds upon the tensor

voting and the iterative voting frameworks in order to pro- 2.1. Thetensor voting framework

duce an efficient method to detect and refine perceptually In the framework proposed byi[, perceptual grouping
interesting linear structures in images. By coupling t€nso g 5chieved by vote casting between elements of an image.
and iterative voting fundaments we leverage advantages ofg,cp, elements are represented as tensors, mathematical en-
both met_hods_ to produce better results than tho_se achievegiios whose capability of encoding magnitude and orienta-
by them individually. The novelty of our method lies onthe i, make tensor voting particularly efficient for detectio
extension of the tensor voting framework to precisely detec of perceptually organized structures, such as edges, lines
and refine linear structures at different scales, by iteeati and regions. In 2D, tensors can be represented geometri-
tuning the tensor fields as pixel orientations are better de‘cally as ellipses or analytically as 2 by 2 matrices. Initial

fined. ized with an arbitrary size and shape (given respectively by
Our method starts by encoding each pixel in an image the eigenvalues);, \,, and eigenvectors; , e», of its ana-
as an unoriented tensor, whose size is proportional to pixellytical representation), input tensors are gradually defed
intensities. First, a tensor voting pass is executed using adue to the accumulation of votes cast by other neighboring
ball field, i.e. votes are propagated radially, as no initial tensors. Votes are also tensors composed of certain magni-
orientation is known. This allows tensors to start theirreha  tude and orientation, which encode the Gestalt principles o
acteristic structural deformation that consequently asie  proximity, smoothness and good continuation.
although still inaccurately, the presence or not of percep-  Depending on the nature of the input elements, a priori
tual lines in the image. Although the classical tensor \@tin - information about their orientation can be available or. not
would stop at this stage, we proceed with consecutive ten-Therefore, tensor voting offers two possible vote casting
sor voting passes aiming at refining previous results. Theseconfigurations: one that concentrates the votes according t
iterations are performed with stick fields, i.e. votes ane-co  the input orientation (stick field - Fig(a)) and another one
centrated along the pixel's tangent only, for this is the mos that casts votes radially (ball field - Fig(b)). The voting
natural continuation of a line passing through the pixele Th  fields are the composition of all votes that can be cast from
concentration of the votes through stick fields is possible b 3 tensor located in the center of the field to its neighboring
cause the first voting pass naturally produces an estimationensors. Given two tensors positioned in the image, the an-
of the orientation at each pixel. Note that, in contrast§o [ gle ¢, arc lengths and curvature: between them is used to
our method is independent of initial estimates of gradient (0] produce the vot® from one another’ as shown by Equation
curvature. One interesting observation is that the stidéisie (1), whereN is the vector normal to the smoothest path be-

are gradually tuned, i.e. the field aperture is reduced as theween the two tensors and is given bysin(0) cos(9)]T.
voting iterations proceed and the orientation estimatims  Note that the stick field exists only &t< 45°.

come more and more accurate. The method is applicable to

detection of linear features, has excellent noise immulisity 5% 4 cK?

tolerant to changes in target scale, and applicable to & larg Ve o2 NNT (1)
class of application domains.

In order to assess the improvements yielded by the iter-  The tensor deformation imposed by accumulating the
ative tuning of tensor voting, we perform experiments in- strength and orientation of the votes eventually reveals be
volving synthetic configurations and real microscopic im- havioral coherence among image elements. In other words,
ages. Synthetic images are used to help us analyze and presiements that lie on the same salient feature (e.g. a curve
dict the method'’s benaVior, in particular, in the preserfce (0] ora region) Strongly Support each other and deform the ten-
different linear curvatures and junctions. Experiments on sor at those sites according to the underlying structure ori
microscopic images of membrane-bound macromoleculesentation. Therefore, each kind of structure is expected to
a.im at eValuating the method on real Scenal‘iOS, prOViding produce tensors of a particu|ar Shape: Very e|ongated ten-
an InSIght about its potential and effectiveness. sors (h|gh/\l _ )\2) for lines, and more rounded ones (lOW

The remaining of this paper is organized as follows: \; — \;) for regions. Fig.3 exemplifies how a set of (a)



(a) (b)
Figure 2. Tensor voting fields. (a) Stick field - when an estana
of the initial orientation is known, and (b) Ball field - wherm n
orientation information is known.

input elements are (b) encoded as tensors, whose (c) defor-

mations resulting from accumulated votes reveal an under-
lying salient linear structure. The voting process can also
be eithersparseor dense Sparse voting restricts tensors to

-

cast votes only on other encoded input tensors, while denseFigure 4. The voting kernels developed i for the detection of

voting extrapolates the input configuration allowing tensso
to cast votes everywhere within their neighborhood. Tensor

linear patterns. The kernels’ energy is (1) dissipated asetion
of distance and (2) focused at consecutive iterations ¢¢@ottom

voting has been shown to be robust to considerable amount£oW):

of noise and does not depend on critical thresholds. The
only free parameter is the scale factgrwhich determines
the range of the voting neighborhood. More detailed infor-
mation can be found in7].

® o
(@) (b) ()

Figure 3. Example of perceptual grouping through tensoingot

A set of (a) input elements are (b) encoded as tensors, whkdse (

resulting deformations reveal a curve.

2.2. Iterative voting

The framework proposed by Parvt al. [9] also uses a
voting approach to detect and group linear patterns. Simi-
larly to the tensor voting framework, each pixel spreads its

magnitude by casting votes to its neighbors. Here, however,

pixels are initialized as negative curvature maxima and a se
of voting kernels are utilized (Figd). Each kernel repre-
sents the vote a pixel will cast to other pixels located in its
vicinity. The voting kernels present a Gaussian-like eperg
profile that decays with the distance from its center. After
voting, the orientation of each pixelis estimated from the d
rection of the maximum magnitude around this pixel. The

A refined set of lines are shown to be produced from the
iterative voting. The method is used to characterize mem-
brane signals, and scaled to deal with 3D images. Detailed
information can be found ir9].

3. Tunable tensor voting

We build upon the tensor voting] and iterative voting
[9] frameworks in order to produce an efficient method to
detect and refine perceptually interesting linear strestur
in images. The method is developed to tackle problems in
which lines (1) may be punctate and noisy, (2) are highly
surrounded by clutter, and (3) have nonuniform and diffuse
intensities. It is based on iterative tuning of the tensdr vo
ing fields, eventually concentrating the votes only ovel rea
lines, producing better, enhanced results, when compared t
the classical tensor voting (i.e. single run of ball voting)

Our method starts by encoding each pixel as an unori-
ented tensor, whose size is proportional to pixel inteesiti
(M = X2 = I,;). First, a tensor voting pass is executed us-
ing the ball field (Fig.2(b)), as no initial pixel orientation is
known. This allows tensors to start their characteristiecst
tural deformation that consequently reveals, althoudh sti
inaccurately, the presence or not of perceptual lines in the
image. Although the classical tensor voting would stop at
this stage, we proceed with consecutive dense tensor voting
passes aiming at refining the previous results. These conse-

estimated orientations are them used to realign the kernelgjuent iterations are performed with stick fields (Fifa)),
in subsequent iterations. Since a better estimation of theas the first voting naturally produces an estimation of the

pixel orientation is produced after each iteration, thekés
have their energy tuned from initially diffuse to eventyall
focused over linear structures emerging from the process.

orientation at each pixel. An interesting observation &t th
the stick fields are gradually tuned (i.e. the field aperture
is reduced) as the voting iterations proceed and the orienta



tion estimations become more and more accurate (Bg.

only over real lines, producing better, enhanced resutie T

At each iteration, tensors that do not deform as lines (low iterations stop when the aperture of the voting field is small
A1 — A2) are eliminated so their influence is not accounted enough, producing the same field as in a previous iteration

into the following iterations. Fig6 depicts the process.

@) (b)

......

(c) (d)
Figure 5. The signal along the curvilinear path is graduagfined
by using tunable filters: (a) Original image. (b) After firtriation
(ball voting). (c) After four iterations (at = 30°). (d) Final result
(atd = 5°).
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Figure 6. Detection of linear patterns by tunable tensangotThe
primary theme is the feedback loop for iterative change efvibi-
ing aperture for continuous refinements.

oratf = 1°.

In the next section, we experimentally show that our tun-
able tensor voting produces refined, more accurate mem-
brane lines than the previous methods.

4. Experimental results

We demonstrate here the benefits of the Tunable Ten-
sor Voting (TTV) for detection and grouping of membrane-
bound macromolecule signals (e.g. E-cadherin). We vali-
date the utility of our system using synthetic and annotated
real data. TTV’s effectiveness is demonstrated on complex
phenotypic signals that are representative of membrane-
bound macromolecular structures.

4.1. Synthetic data

Fig. 7 shows how the TTV performs on a few synthetic
configurations. The synthetic images (a) were generated in
an attempt to simulate real punctate, diffuse, noisy sgynal
found in real applications. The first row shows three signals
of different curvature and strength, the second column has
a punctate T-junction, and the third column has a punctate,
diffuse X-junction contaminated with random noise. Inter-
mediate results are shown on (b) ball voting (also classical
tensor voting result) and (c) stick voting with= 45°) col-
umn. (d) shows the resulting signal obtained by TTV. The
results combine pixels whose either stick or ball salieiscy i
high. This is important to better preserve junctioris Pne
can notice how the tunable tensor voting is able to evolve
from a punctate, diffuse signal to a more or less strong fila-
ment.

4.2. Real data

TTV was applied in quantifying E-cadherin that is bound
to the basal-lateral region of the cell. E-cadherin is ex-
pressed along the cell boundary under normal mammary
tissue homeostasis (Fid). At optical resolution, the mem-
brane signal is sometimes visualized as punctate and noisy,
has nonuniform intensity, and is perceptual at some loca-
tions. Fig. 8 shows (a) localization of macromolecules at
the membrane, (b) the result of first iteration (also from bal
voting), (c) result of an intermediate tuning iterationdan
(d) overlay of iterative voting on the original image. The
enhancement achieved (Fig(d)) is clear when compared
with the original membrane signal (Fig3(a)). Note that
by iterating over the result obtained first by a regular appli
cation of tensor voting, pixels belonging to the curvilinea
structure are determined with better precision.

Fig. 9 shows examples of actual results produced by our

This tuning process eventually concentrates the votesmethod. Images on the top row are sub-images of the orig-



Figure 9. Results of tunable tensor voting on membrane gngup
First row - original membrane signal; second row - resultimgm-
brane detected. Even in the presence of noisy and dim sjgnals
TTV was able to infer lines interpolating punctate and diéid
patterns, filling up perceptual gaps.

@ (d)
Figure 7. Synthetic signals processed by TTV. Examples ef ex
pected results produced by TTV on (first row) curves of défar
curvature, (second row) a T- junction, (third row) X- jurariiand
noise. (a) original images; (b) ball voting results (alsassical

tensor voting result); (c) intermediate results with stiigtds; (d) - -
resulting signal. detect using a computer mouse. Annotation was performed

with membrane signals presenting similar characteristics
Ground truth was produced by two cell biologists, whose
only instruction was to trace all cell membranes they could

to around 5% of the images. The discrepancy between the
two sets of independently marked membranes was evalu-
ated to determine human performance on the data set. Per-
formance was reported by recall vs. precision plots. In the
problem at hand, precision measures the probability of a
marked line to be a true membrane. Recall is a measure of
the probability of a membrane to be marked. In order to ac-
count for natural misalignment between results, evalumatio
was performed after dilating ground truth lines by a certain
number of pixels. The amount of dilation was used as a pa-
rameter that varies from 1 to 20 pixels wide. Precision and
recall rates were then computed after overlapping a set of
marked lines with each dilated ground truth. The number
of pixels in agreement between a set of marked lines and
the dilated ground truth could then be quantified and com-

Original membrane signal. (b) Ball tensor voting result§é\tlas- pareq ,to the ground truth, forming a Curvg in the recall vs.
sical tensor voting result). (c) Result of an intermediateirg precision plot. The human performance is, therefore, the

iteration. (d) Enhancement promoted by tunable tensongoti average curve produced by using one of the sets of manu-
ally marked lines as ground truth at a time, and the remain-

ing one for evaluation. For instance, if the results produce
inal one, while those on the bottom are their respective re- py the biologists were identical, they would have achieved
sults. In general, membrane signals are highly dispersed; 0o, precision and 100% recall rates. Since discrepancies
along the cell membrane. This is pal’tlally due to wide field did exist, human performance was used as qua“ty assess-
microscopy, the influence of out-of-focus light, and/or sam  ment to computer algorithms, whose performance could be
ple preparation. Note that even in the presence of noisy andevaluated in the same fashion described (i.e. average curve

dim signals, our method was able to infer lines interpotatin - resulting from each human set of lines as ground truth at a
punctate and diffused patterns, filling up perceptual gaps. time).

Figure 8. Membrane grouping through tunable tensor votiag.

Fig. 11 shows four of the most challenging images and
4.3. Annotated data the computed result by TTV. The top row shows the origi-
Visual inspection clearly shows the benefits of detection nal (enhanced for a better display) images. The bottom row
and grouping by TTV. To quantify these benefits, we com- shows the lines extracted by TTV and the specialists. Red
pared the results produced by TTV with manually marked and green lines were marked by each specialist, while the
results. Our data set consists of 274 1344x1024 imageswhite one shows the thinned line resulting from TTV. One
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Figure 11. Results of the detection of punctate, diffuse brame

signals. The top row shows original (enhanced for a bettgldy)
images. The bottom row shows the lines extracted by TTV aed th
specialists. Red and green lines were marked by each sgégcial
while the white one shows the thinned line resulting from TTV
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Recal 5. Conclusions and future work

Figure 10. Recall vs. precision plot of the overall perfonoa. GT . . .
stands for Ground Truth, i.e. the specialists’ performaideéfor In this paper, we introduced a tunable tensor voting
tensor voting (ball voting) alone, and TTV for the Tunableer ~ Method, able to detect and refine punctate, diffused linear
\Voting. TTV not only performs better than TV but also prodsice ~ Signals, including membrane-bound macromolecules. The
as high as 91% rate of agreement with GT in precision and 94% in method couples tensor and iterative voting frameworks to
recall. leverage advantages of both methods. As a result, com-
plex patterns along a curvilinear path could be perceptuall
grouped and regularized. Such regularization can serve as

Table 1. Rate of agreement between the methods and GT. ~ Pre-processing step, making possible to membrane-bound
Precision Recall macromolecules to be quantified on a cell-by-cell basis, for

5 5 example.

'IIP(/ g?of giof The method was shown to produce fairly high qual-
0 0 . . .

ity detection of membrane-bound macromolecule signals
when compared to its previous method and the perfor-
mance achieved by the specialists. In particular, our ntetho
achieved as high as 91% precision and 94% recall rates of
can notice that TTV produced results in fairly high agree- agreement with the latter. One observation is that junction
ment with the specialists in most of the cases. A larger localization is particularly affected by our method, lower
disagreement happened at junctions, as predicted by théng its overall performance. This issue could, however, be
synthetic results from Fig7. Results were quantitatively —overcome by including aad hocjunction detector in the
measured and the overall average is shown in Ei. GT framework. For future work, we plan to extend our method
stands for Ground Truth, i.e. the specialists’ performance to detect membrane signals in 3D cell cultures. One impor-
TV for tensor voting (ball voting) alone, and TTV for the tant remark is that membrane lines in 2D become surfaces
Tunable Tensor Voting. Analysis of the behavior of TTV in3D. Similarly to the tensor voting framework, our method
reveals that it was the closest curve to GT and had sim-can be naturally scaled to deal with 3D signals.
ilar improvement rates as produced by the specialists, re-
sulting in similar decay as we reduced the amount of GT Acknowledgments
dilation. Furthermore, comparing the rate of agreement be- .
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