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Abstract: Despite recent advances in the area of fingerprint identification, fingerprint matching continues
to be a challenging pattern recognition problem. The first step to this problem is the extraction of
landmarks known as minutiae points from a print. Once extracted, these points are then compared to all
sets on file in search of a match. The accurate extraction of minutiae from an image is the basis for the
entire matching process. Various minutiae extraction approaches have been proposed in the literature,
each with its own merits and degree of success. The most common approach is to extract the ridges in the
fingerprint image through skeletonization, apply ridge-following, and use rule-based classification for
minutiae detection. Our emphasis in this paper is on extracting the minutiae from the original gray-scale
images, without any image preprocessing. In particular, we have implemented and compared three
methods based on eigenspace representations and neural network classifiers. Moreover, we present
preliminary results of an attempt to fuse the outputs of these three methods using a clustering algorithm
unique to this type of problem.
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1.  Introduction

Due to steady increases in computing power and the advent of unobtrusive, easy-to-use fingerprint sensors,
fingerprints are used more frequently as a biometric (identification based on a physiological or behavioral
characteristic) for identification and recognition [1][6]. Since fingerprints are unique, even between
identical twins, they are perfect for various security uses. The primary technique for matching newly-
acquired prints is the extraction and matching of landmarks known as minutiae. Minutiae are areas where
the ridges of the print either terminate to form a ridge ending, or split into two new ridges, forming a ridge
bifurcation [2] (see Figure 1 (a-d)).

Numerous procedures have been proposed for the extraction of minutiae points from fingerprint images.
Most of them, however, involve extensive pre-processing of the fingerprint image. A common approach for
example, involves the thinning of the ridges, also known as skeletonization or ridge extraction [3] [4]. The
process of ridge extraction requires extensive pre-processing, which is time consuming. In this paper, we
compare four techniques which we apply without any pre-processing of the fingerprint images.  Two
representation schemes are considered, the first based on raw data and the second based on eigenspaces.
Each technique improves upon the previous, and the final approach combines the results of the initial three
in an attempt to classify the data through clustering. Each technique classifies an extracted frame into one
of three groups: (1) a ridge ending, (2) a bifurcation, or (3) a plain ridge (or simply, no minutia point). All
four techniques and the data used in our experiments are described below. First, we present a brief
overview of the theory of eigenspace representations that form the basic representation scheme for
two of our methods.



2. Review on Eigenspace Resepresentations

Eigenspace representations of images use Principal Components Analysis (PCA) [5] to linearly project an
image in a low-dimensional space. This space is spanned by the principal components (i.e., eigenvectors
corresponding to the largest eigenvalues ) of the distribution of the training images. After an image has
been projected in the eigenspace, a feature vector containing the coefficients of the projection is used to
represent the image. We refer to these features as eigen-features. Here, we just summarize the main ideas.

Representing each image ),( yxI  as an NxN  vector iΓ , first, the average face Ψ is computed:
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where R is the number of faces in the training set. Next, the difference Φ of each face from the average

face is computed: Ψ−Γ=Φ ii . Then the covariance matrix is estimated by:
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where, ][ 21 RA ΦΦΦ= L . The eigenspace can then be defined by computing the eigenvectors iµ of

C . Since C  is very large ( )22xNN , computing its eigenvectors will be very expensive. Instead, we can

compute iv , the eigenvectors of AAT , an RxR  matrix. Then, iµ can be computed from iv  as follows:
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Usually, we only need to keep a smaller number of eigenvectors kR corresponding to the largest

eigenvalues. Given a new image, Γ , we subtract the mean ( Ψ−Γ=Φ ) and compute the projection:
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where Φ= T
ii uw are the coefficients of the projection. The projection coefficients allow us to represent

images as linear combinations of the eigenvectors. It is well known that the projection coefficients define a
compact image representation and that a given image can be reconstructed from its projection coefficients
and the eigenvectors (i.e., basis). The eigenspace representation of images is very powerful and has been
used in various applications such as image compression and face recognition.

2.  Methodology

Initially, we considered the eigenspace approach that has been used successfully for face recognition [5].
We used three different eigenspaces to represent (i) bifurcations, (ii) endings, and (iii) other. Classification
was based on a minimum distance classifier. This approach produced reasonably good results. However, it
was obvious that further improvements were possible. For comparison purposes, we fed the raw,
standardized frames directly to a neural network. We were surprised to find that this simpler approach
produced better results than the eigenspace technique. With this improvement, we then used PCA features
which were fed to a neural network. This technique produced even better results than either of the prior
two. However, the two neural network techniques produced results that were quite close. This led to the
idea of combining the results of all three. Due to the overlap of many missed frames, we determined that a
simple voting system would not suffice. We decided that a form of clustering may be the key to
improvement over the best of these three algorithms.



3. Experiments and Results

3.1. Dataset and normalization

The dataset used in our experiments consists of 300 prints from ten people (10 prints from each). For
evaluation purposes, we have manually extracted a large sample of frames (21x31 pixels each) from a
subset of the fingerprints. Endings were extracted from 71 different prints from 27 people. Bifurcations
came from 88 different prints from 27 people. Plain ridges came from 20 different prints from 14 people.
Each of our extracted frames has the object of interest centered in it. We extracted a total of 820 endings,
715 bifurcations and 820 plain ridges for a total of 2,355 sample frames. These frames were then split into
five groups in preparation for using five-fold cross-validation with 20% of the images in each test set (20%
each of the three types), and 80% in each training set. Another set of 300 frames (100 each of endings,
bifurcations and plain ridges) were used for validation of the neural networks.

               (a) A fingerprint image.

(b) Plain ridge                    (c) Bifurcation                    (d) Ending

(e) Rotated plain ridge                            (f) Rotated bifurcation                         (g) Rotated ending

Figure 1. Examples of minutiae (b-d) and normalized minutiae (e-g).



When attempting to identify a minutia in a frame, one must orient the ridges in the same direction as the
frames used to train the system. Many techniques perform this task by identifying flow or direction fields
through applying gradients or other calculus-based techniques. We avoid the pre-processing these
techniques require and simply determine the angle of rotation based on intensity variations along the two
frame diagonals. This rotation algorithm requires that we start with a square frame, so we initially extract a
frame of 38x38 pixels. Next, we calculate the intensity variations along the diagonals of this square frame.
We compare the difference in these two values to calculate an angle of rotation. Obviously our technique
has many additional details, but this description explains the basics of the algorithm. This technique works
quite well and has proven more than adequate for our purposes. The examples in Figures 1(e-g) show the
success of this algorithm.

For each of the initial three algorithms, we produced five results files, each containing results for 20% of
the entire 2,355 frame set. These files were then combined to create a single file with the results of all three
approaches applied to all 2,355 manually-extracted frames. Finally, this single file was clustered using our
algorithm explained in section 3.5 below.

3.2.  Using Eigenspace Representations

The eigenspace approach [5] was our model for this first attempt. We start by building three separate
eigenspaces using 80% of the extracted frames, one for endings, one for bifurcations and one for plain
ridges. Each eigenspace consists of 20 eigenimages which are the principal components of the three sets of
extracted fingerprint frames. We retained a large variation of principal components for the eigenspaces
(from 5 to 150) and found that 20 seems to work best (this approach will be referred to as ES20). After the
three spaces have been constructed, we project each of the test images into each space, then reconstruct
three images from  these three projections. We compare each reconstructed image with its original by
calculating the Euclidean distance between each, producing three distance measures. The reconstructed
image with the smallest distance will determine the classification for this frame (either ending, bifurcation
or plain ridge). Using the five data sets (described in the data section) our final classification errors were
2.8%  for endings, 9.23%  for bifurcations, and 5.73%  for plain ridges. The average error was 5.77% (see
Table 1 below).

Table 1: Overall errors for the four techniques tried.

Endings Bifurcations Plain Ridges Average Error
ES20 2.8 9.23 5.73 5.77
PCA99+NN 1.83 5.31 1.95 2.93
Raw+NN 1.6 5.31 2.4 3.01
Clustering 1.1 5.31 2.44 2.845

3.3.  Using Raw Standardized Images and Neural Networks

We wished to compare our eigenspace results with a standard approach so we implemented a neural
network classifier with the raw image frames after standardization to [0, 1] (the Stuttgart Neural Network
Simulator, SNNS, version 4.1 was used for all neural network simulations). All trials implemented a feed-
forward neural network using back-propagation with momentum to classify the test data. Many different
combinations of network architecture and settings were tried. However, 651 input units (21x31
pixels=651), 40 units in the first hidden layer, 18 in the second hidden layer, and 2 output units with a
learning rate of 0.1, momentum of 0.8 and flat spot elimination of 0.01 proved the best combination. Our
results were very good for raw data using many input features. The final error rates (averaged over the five
test sets as with the other results) were 1.6% for endings, 5.31%  for bifurcations, and 2.4% for plain
ridges. The average error was 3.01% (refer to Table 1).



3.4.  Using PCA and Neural Networks

Next, we extracted the principal components from the training sets using PCA, standardized the values to
[0, 1], and trained a feed-forward neural network using back-propagation with momentum to classify the
test data. We retained 90%, 95% and 99% of the components on three separate trials but 99% proved best.
We also attempted a wide variety of network structures (different number of hidden layers and different
nodes in each hidden layer) as well as a wide variety of settings for the learning rate and momentum. The
best results were found using 365 input units, 50 units in the first hidden layer, 20 units in the second
hidden layer, and 2 output units. The settings were 0.1 for the learning rate, 0.7 for momentum and 0.01 for
flat spot elimination. The final classification errors were 1.83%  for endings, 5.31%  for bifurcations, and
1.95%  for plain ridges. The average error was 2.93%  (refer to Table 1).

3.5.  Classifier Fusion Using Clustering

We decided that some form of classification involving the results of the above three techniques could lower
the error rate. After considering a simple voting approach, we decided that this would not help, since there
was much overlap between the mis-classified frames in the three techniques. However, this overlap may
not affect a clustering technique, since clustering would not operate on binary data but actual distance data
produced by the other algorithms.

Each of the neural network approaches above produced two values between [0, 1] with ideal
values being [1, 0] for an ending, [0, 1] a bifurcation and [0, 0] a plain ridge. The data from the ES20
approach, however, was in a three-number format with the upper value above 1,000. Due to this, we
decided to standardize this data with the smallest of the 3*2355 values mapping to 0 and the largest
mapping to 1. For the ES20 data a value of [0, 1, 1] was the ideal for an ending, [1, 0, 1] for a bifurcation
and [1, 1, 0] for a plain ridge. Thus, the data used for clustering consisted of seven values between [0, 1] for
each original frame.

Initially we calculate a Euclidean distance matrix for all vectors. From this matrix, we find the
distance from each vector to its closest neighbor. The average of these minimum distances is used in the
first step for clustering of the vectors. We remove upper and lower outliers from the average minimum
distance based on two numeric values, used as multipliers, from the user. We find that 3 for the upper and 2
for the lower work best (a larger value will cause more outliers to be included in the average minimum
distance calculation). A third value entered by the user is used as a multiplier for the distance metric when
it is determined that it must be increased in order for continued clustering (we find that 4 works well). After
these matrices have been created and the distance metric calculated, we determine the best three vectors (or
nodes) for seeds by determining which three have the largest minimum separation. These three will be used
as the seeds for the first three clusters or classes. This approach successfully produces a seed node from
each of the three groups we are attempting to cluster.

Next, we start the classification process. First we find the closest unclassified element to a
classified element and, if it is within the average of the minimum distances, then it is included in this class.
We continue this process until no new elements are classified. Then, we recalculate the average minimum
distance using only elements that have not yet been classified (we again remove outliers from this
calculation). If the new distance is not larger than the old one, then we multiply the old by the distance
multiplier mentioned in the previous paragraph (this value must be larger than 1.0 to ensure that we do not
get stuck in a loop), to ensure a larger distance metric for class inclusion. With this new distance, if no new
classifications occur, we create a new class using the unclassified element that is the farthest from any
classified element. For our specific problem of minutiae clustering, this procedure for the creation of new
classes should never occur, since we start off with three classes. Next, we recalculate the distance measure
but allow the possibility of the new distance to be smaller than the previous, so that the new group will be
more likely to obtain members than the current groups. This process continues until all elements are
classified. Even though new classes could have been created, none were. The three starting classes



represented by the initial three seeds remained the only groups for the entire process. This situation is ideal,
since we knew in advance that there were only three classes. This fact validates our algorithm’s ability to
determine the correct number of classes.

When all vectors have been included in a group, the classification of each group is determined by
a simple check of the average of two of its seven values. Each of the two values from the raw neural
network approach are averaged together for each group. Their Euclidean distance from the three ideal
classes (ending=[1, 0], bifurcation=[0, 1], plain ridge=[0, 0]) determines the entire groups classification.
The final results show a slight improvement over the best of the previous three approaches. The final errors
were 1.01%  for endings, 5.31% for bifurcations, and 2.44%  for plain ridges. The average error was
2.845% (see Table 1).

4.  Conclusions

We have considered the problem of minutiae detection without any preprocessing of the fingerprint images.
Several different techniques were implemented and compared in this study. The first was based on
eigenspace representations using a minimum-distance classifier. The second and third techniques used a
neural network classifier with (i) raw data and (ii) eigen-features. The last technique, which produced the
best results, was based on classifier fusion using clustering. While the improvement from the best of the
three individual approaches (PCA99+NN) to the clustering approach was not great, there was a large
decrease in the mis-classification of endings (from 1.83 to 1.1). This shows that the clustering approach
was able to make an improvement over the best of the individual approaches for at least one cluster. This
approach to classification shows great promise and will be further investigated.
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