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Understanding intent is an important aspect of communication among people and is
an essential component of the human cognitive system. This capability is particularly
relevant to situations that involve collaboration among multiple agents or detection of
situations that can pose a particular threat. In this paper, we propose an approach
that allows a physical robot to detect the intent of others based on experience acquired
through its own sensory–motor capabilities, then use this experience while taking the
perspective of the agent whose intent should be recognized. Our method uses a novel
formulation of hidden Markov models (HMMs) designed to model a robot’s experience
and interaction with the world when performing various actions. The robot’s capability to
observe and analyze the current scene employs a novel vision-based technique for target
detection and tracking, using a nonparametric recursive modeling approach. We validate
this architecture with a physically embedded robot, detecting the intent of several people
performing various activities.

Keywords: Human-robot interaction; intention modeling; hidden Markov models; theory
of mind; vision-based methods.

1. Introduction

The ability to understand the intent of others is critical for the success of commu-
nication and collaboration between people. In our daily interactions we rely heavily
on this skill, which allows us to “read” other people’s minds. While people are
very good at recognizing intentions, endowing a robot with similar skills is a more
complex problem, which has not been sufficiently addressed in the field. If robots
are to become effective collaborators in human environments, their cognitive skills
must include mechanisms for inferring intent which allow them to understand and
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communicate with people at or close to their level. In this paper, we propose a
method that targets the development of such capabilities.

The general principle of understanding intentions that we propose in this work
is inspired by psychological evidence of a theory of mind,1 which states that peo-
ple have a mechanism for representing, predicting and interpreting one another’s
actions. This mechanism, based on taking the perspective of others,2 gives peo-
ple the ability to infer the intentions and goals that underlie action.3,4 We base
our work on these findings and we take an approach that uses the observer’s own
learned experience to detect the intentions of the agent or agents it observes.

Humans are continuously exposed to sensory information that reflects their
actions and interactions with the world while performing certain activities. We
propose using this experience to infer the intent of others, by taking their perspec-
tive and observing their interactions with the world. When matched with own past
experiences, these sensory observations become indicative of what our intentions
would be in the same situation. We propose modeling the interactions with the
world using a novel formulation of hidden Markov models (HMMs), adapted to suit
our needs. The distinguishing feature of our HMMs is that they model not only
transitions between discrete states, but also the way in which parameters encoding
the goals of an activity change during its performance. The goals are represented
as abstracted environmental states, such as distance-to-object or angle-to-goal. This
novel formulation of the HMM representation allows for recognition of the agents’
intent well before the underlying actions are finalized. In our models, the goals’
changes represent the visible, observable states, while the hidden states encode the
intentional goals of the observable agents.

Our approach has two main stages: activity modeling and intent recognition.
During the first stage the robot learns corresponding HMMs for each activity which
it should later recognize, from its own experiences of performing these activities. For
example [Fig. 1(a)], the agent observes that during a meeting activity the distance
and angle between its heading and the direction of a person decrease as the two
agents are approaching.

During the intent recognition phase [Fig. 1(b)], the robot, now an observer, is
equipped with the trained HMMs and monitors the other agent’s/agents’ perfor-
mance by evaluating the changes of the same goal parameters, from the perspective
of the observed agent(s).

A significant advantage of our work is that unlike typical approaches to HMMs,
which are restricted to be used in the same (training) environment, our models are
general and can be transferred to different domains. Even if trained in different
environments, our HMMs encode features of the activities that are identical irre-
spective of the domain. For example, a meeting between two agents will always be
characterized by the agents approaching each other, irrespective of the place, the
agents or the specifics of their goals.

The remainder of this paper is structured as follows. Section 2 summarizes
related work in activity modeling and recognition, and inferring intent. Section 3
presents our novel architecture for understanding intent using HMMs and Sec. 4
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(a) Activity modelling from experience (as HMM)

(b) Intent recognition from own learned experience and perspective taking

Fig. 1. The two stages of the architecture.

describes the visual capabilities we developed for this work. Section 5 describes our
results, and Sec. 6 gives a discussion on the approach and directions for future work.
Section 7 summarizes our paper.

2. Related Work

HMMs are a powerful tool for modeling processes that involve temporal sequences,
and have been successfully used in applications involving speech and sound.
Recently, they have been used for activity understanding, showing a significant
potential for use in activity modeling and intent inference. In particular, the HMM
approach has been used mostly in manipulation tasks, which lend themselves nat-
urally to segmentation in relevant task stages, with clear discrete end-states (e.g.
object-on-table, object-in-hand). Representative examples include learning to use a
spatula and a pan,5 learning peg-in-the-hole assembly tasks,6 learning the trajectory
of a 7DOF robotic arm,7 and sequences of trajectories.8 In such training scenar-
ios, the robot learns the transition probabilities between these states by observ-
ing the demonstration of the task performed by a human. The discrete states are
linked to robot actions (e.g. grasp, drop), which combined with the learned HMM
allow the robot to reproduce the demonstrated task. While some of the existing
approaches allude to the potential of using HMMs to learn the user’s intentions,
these systems fall short of this goal: the approach allows detecting that some goal
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has been achieved only after observing its occurrence. However, for tight collabora-
tive scenarios or for detection of potentially threatening situations, it is of particular
importance to detect the intentions before the goals of the actions have actually been
achieved. In the context of using HMMs for activity recognition, several approaches
have addressed the problem of gesture recognition,9 with the purpose of easily
controlling the actions of a mobile robot, and robot behavior recognition,10 with
application to the robot soccer domain. However, these systems require that an
entire sequence of actions be completed before the activity can be recognized.

An application of HMMs that is closer to our work is that of detecting abnormal
activity. The methods used to achieve this goal typically rely on detecting inconsis-
tencies between the observed activity and a set of pre-existing activity models.11–13

While this approach is useful in detecting deviations from expected activity pat-
terns, it does not provide information regarding the intent of the observed actions.

Intent recognition has also been addressed from the perspective of intent infer-
ence and plan recognition for collaborative dialog,14 but these methods use explicit
information such as natural language in order to infer intentional goals. Our robotic
domain relies entirely on implicit cues that come from a robot’s sensory capabilities,
and thus requires different mechanisms for detecting intent.

In robotics, the only existing approach to intent recognition that we are aware
of has been proposed by Gray et al.15 Their solution, which is also based on per-
spective taking, uses models of a robot’s tasks to infer the goals and intentions of
human users. The robot monitors the actions performed by the human from his/her
perspective and matches them with high-level goals of its own tasks in order to infer
what goals the human is trying to achieve. If the human encounters a problem, the
robot is able to help the person finish the task. Thus, the method allows detection
of the intentional meanings of a human’s high-level task goals (goal sequences or
hierarchies). The difference in our work is that we aim at inferring intentions for
lower granularity goals, such as the individual goals from Ref. 15, before the person
finishes the actions meant to achieve them. Our models look at how an activity’s
goals are changing as the human executes it, rather than modeling a long task
activity sequence.

3. General Architecture for Intent Understanding

3.1. Novel HMM formulation

HMMs have found the greatest use in problems that have inherent temporality,
to represent processes that have a time-extended evolution. In this framework, a
system is represented as a set of N discrete states {si}. At each time step the system
can be in any of these states and can transition to another state with probability
P (sj(t + 1)|si(t)) = aij . Thus, aij is the probability of being in state sj at time
t + 1, given that the system was in state si at time t.

However, the state of the system at time t is not directly observable. Instead, a
set of visible variables (states) {vi}, dependent upon the hidden states, is available.
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For each state sj , we have a probability of observing a particular visible state vk,
given by P (vk(t)|sj(t)) = bjk. In the classical HMM learning approach, a structure
of the model is given (i.e. number of hidden and visible states, and topology of
transitions between states), along with a training data set of observations of the
visible symbols. From these, the transition probabilities aij and bjk are computed.

The main contribution of our approach consists in choosing a different method
for constructing the model. This new HMM formulation models an agent’s interac-
tion with the world while performing an activity, through the way in which param-
eters that encode the goals of the task are changing (e.g. increase, decrease, stay
constant, or unknown). This is in contrast with the traditional approaches that
solely model transitions between static states. With this representation, the visible
states encode the changes in task goal parameters and the hidden states represent
the hidden underlying intent of the performed actions.

The reason for choosing the activity goals as the parameters that are moni-
tored by the HMM is that goals carry intentional meanings, and thus tracking their
evolution is essential for detecting and understanding an agent’s intent.

3.1.1. Activity modeling

During this stage, the robot uses its experience of performing various activities to
train corresponding HMMs, whose structure is currently designed by hand. The
robot is equipped with a basis set of behaviors and controllers33 that allow it to
execute these tasks. We use a schema-based representation of behaviors, similar to
that described in Refs. 16, 34 and 35. Examples of activities that we used in this
work are Following, Meeting and Passing By. While executing these activities, the
robot monitors the changes in the corresponding behaviors’ goals. For example,
for a meeting activity (Fig. 2), the angle and distance to the other person are
parameters relevant to the goal, which could be {angle = 0 and distance = 1m}
(i.e. “face the other person directly at 1m away). The robot’s observable symbol
alphabet models all possible combinations of changes that can occur: increasing
(++), decreasing (−), constant (==), or unknown (∗). For example, a visible symbol

Fig. 2. Activity modeling stage: observable symbols are changes in activity goals.
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could be vk = {distance : −, angle : + + }. The underlying intent of the actions is
encoded in the HMMs’ hidden states.

Repeated execution of a given activity provides the data used to estimate the
model transition probabilities aij and bjk using the Baum–Welch algorithm.17 As
a result of training, the robot has a set of HMMs, one for each activity.

During the training stage, the observed, visible states are computed by the
observer from its own perspective. The detection and tracking of other agents or
relevant targets use the robot’s on-board sensing capabilities, such as the camera
and the laser rangefinder, as described in Sec. 4.

3.1.2. Intent recognition

The recognition problem consists in inferring, for each observed agent, the intent
of the actions it is most likely to perform, from the previously trained HMMs.
Toward this end, the robot observer monitors the behavior of all the agents of
interest with respect to other agents or locations. The robot also evaluates the
observable symbols for all applicable HMMs. During the recognition phase, the
system computes these visible symbols in a different manner than during training.
Since the observer is now external to the scene, the features need to be computed
from the observed agents’ perspective rather than from the observer’s own point of
view. These observations consist in monitoring the same goal parameters that have
been used in training the HMM (e.g. change for distance to target, angle, etc.).
For example, in Fig. 3, in order to detect the intentions of the woman, the robot

Fig. 3. Intent recognition stage: the robot takes the perspective of the monitored agent. d{m,w,wm}
represents distances, x{m,w,m′} and y{m,w,m′} represent 2D coordinates, and α{rm,rw,wm} rep-
resents the angle displacements w.r.t. the robot and the woman.
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takes the following steps: (i) obtains agents’ positions with respect to itself (values
in black), (ii) transfers the coordinate system to the monitored agent (the woman),
(iii) computes agents’ positions from the woman’s point of view (values in red), and
(iv) computes observable symbols in the woman’s coordinate system. The woman’s
heading is computed by integrating her previous positions, which helps determine
the orientation of the coordinate system in step (ii).

For each agent and for all HMMs, the robot computes the likelihood that the
sequence of observations has been produced by each model, using the forward
algorithm.18 To detect the most probable state that represents the intent of an
agent, we consider the intentional state produced only by the model with the high-
est probability. For that model, we then use the Viterbi algorithm19 to detect the
most probable sequence of hidden (intentional) states.

The standard approach to recognition using an HMM relies on a clear segmenta-
tion of the observed activities and on a precise synchronization between the observed
sequence and the recognizing process. In our work, it cannot be assumed that this
segmentation is provided, as agents’ underlying behaviors are not known, and can
start or change at any time. A related challenge is that the observations come as a
continuous stream of measurements, rather than a fixed sequence. In this situation
the probability of a particular model decreases to zero as the length of the sequence
grows. To address this problem, we chunk the observation sequences to the most
recent k observations, similar to Ref. 9. In our work, k = 30 has been empirically
determined to give good results, and corresponds to a few seconds of video. For
more complicated scenarios, a larger chunk size may be necessary.

4. Vision-Based Perceptual Capabilities

We provide a set of vision-based perceptual capabilities for our robotic system
that facilitate the modeling and recognition of actions carried out by other agents.
Specifically, we are interested in: detection and tracking of relevant entities, and
estimation of 3D positions for the detected entities, with respect to the observer.

As the appearance of these agents is generally not known a priori, the only
visual cue that can be used for attracting the robot’s attention toward them is image
motion. Although it is possible to perform segmentation from an image sequence
that contains general motion (both the camera and the objects in the scene may
be moving), such approaches — typically based on optical flow estimation20,36 —
are not very robust and quite time-consuming. Therefore, our approach makes sig-
nificant use of more efficient and reliable techniques traditionally used in real-time
surveillance applications, based on background–foreground modeling and segmen-
tation, structured as follows:

• During the activity modeling stage, the robot is moving while performing vari-
ous activities. The appearance models of the other mobile agents, necessary for
tracking, are built in a separate, prior process where the static robot observes
each agent that will be used for action learning. During this process, the agents
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are detected through a foreground–background segmentation technique. Once
the agent model is learned, the robot starts performing the designated scenarios
in order to learn different actions/intentions parameters. When the robot starts
moving, the background subtraction stage of the process is stopped and the robot
uses an enhanced mean-shift tracking method to track the foreground object.

• During the intent recognition stage, we assume that the camera is static while the
robot observes the actions carried out by the other agents. This allows the use of
a foreground–background segmentation technique, in order to build appearance
models online, and to improve the speed and robustness of the tracker. The
stationary assumption is simply used for efficiency reasons. If the robot is moving
during the intent recognition stage, we can use the approach from the modeling
stage.

4.1. Detection and tracking

For tracking we use a standard kernel-based approach,21 where the appearance
model for each detected region is represented by a histogram-based color distri-
bution. The rest of this section describes our proposed method for background
modeling and foreground segmentation, extensively used for the detection of these
regions of interest.

The detection is achieved by building a representation of the scene background
and comparing the new image frames with this representation. Motivated by the
requirements of our application, we focus on building a statistical representation of
the scene background that supports reliable and real-time detection of foreground
objects in the scene, while adapting automatically to each scene, and being robust
to natural scene variations (quasi-stationary backgrounds).

The most commonly used feature in foreground object detection is pixel inten-
sity or color. In video sequences with a stationary background, deviations of pixel
intensity or color values over time can be modeled by a Gaussian distribution func-
tion. A simplistic approach is to compute the average of intensity at each pixel
position, find the difference of pixel intensities at each frame with this average, and
simply threshold the results. Using adaptive filters for modeling gradual changes in
the scene illumination is the approach employed in Ref. 22, while Kalman filtering is
used in Ref. 23, and a linear prediction using a Wiener filter is proposed in Ref. 24.
Other features, such as block features25 and edge features,26 are also used to model
the background.

However, because of inherent changes in the background, such as fluctuations
in monitors and fluorescent lights, waving flags and trees, or water surfaces, the
background may not be completely stationary. In the presence of these types of
backgrounds, referred to as quasi-stationary, more complex background modeling
techniques are required.

In parametric background modeling methods, the model is assumed to follow a
specific distribution whose parameters must be determined. Mixtures of Gaussians
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are used in Ref. 27; in order to find the parameters that characterize the mixtures
of Gaussians, an expectation maximization (EM) algorithm is employed, while the
adaptation of parameters can be achieved using an incremental version of the EM
algorithm. A Bayesian framework that incorporates spectral, spatial, and temporal
features to characterize the background appearance is proposed in Ref. 28. In order
to model the variations of the background as different states for distinct situations
(e.g. sunlight versus shadow), HMMs are used in Refs. 29 and 30.

As opposed to this trend, one of the most successful approaches in background
modeling31 proposes a nonparametric model. The background representation is
drawn by estimating the probability density function of each pixel, by using a kernel
density estimation technique.

The background model. In this work, we use the more general nonparametric mod-
eling, which estimates the density directly from the data, without any assumptions
about the underlying distribution. This avoids having to choose a specific model
(which may be incorrect or too restrictive) and estimating its distribution parame-
ters. It also addresses the problem of background multimodality, leading to signifi-
cant robustness in the presence of quasi-stationary backgrounds. At the same time,
it allows enough generality for handling a wide variety of scenarios without the need
to manually fine-tune various parameters for each scene type, as all thresholds used
in detection are estimated during model acquisition.

However, the method described in Ref. 31 is still dependent on the number of
image frames used as samples for estimating the background model. Choosing a
small number of frames for the model increases speed, while it does not incorporate
enough history for the pixel, resulting in a less accurate model. Increasing the
number of frames improves the model accuracy but at the cost of higher memory
requirements and slower convergence. This becomes apparent especially in the case
of slowly changing backgrounds, where a large number of samples would be needed
for accurate modeling. In general, the nonparametric kernel density estimation tends
to be memory- and time-consuming, as for each pixel in each frame the system has
to compute the average of all kernels centered at each training sample.

In order to preserve the benefits of nonparametric modeling while addressing its
limitations, we propose a recursive modeling scheme. Our approach to background
modeling employs a recursive formulation, where the background model θt(x) is
continuously updated according to Eq. (1):

θ̃t(x) = (1 − βt) · θt−1(x) + αt · H∆(x − xt), (1)

∑

x

θt(x) = 1. (2)

The model θt(x) corresponds to a probability density function (distinct for each
pixel), defined over the range of possible intensity (or color) values x. After being
updated, the model is normalized according to Eq. (2), so that the function takes
values in [0, 1], representing the probability for a value x at that pixel to be the
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background. This recursive process takes into consideration the model at the previ-
ous image frame, and updates it by using a kernel function (e.g. a Gaussian) H∆(x)
centered at the new pixel value, xt.

In order to allow an effective adaptation to changes in the background, we use a
scheduled learning approach by introducing the learning rate αt and forgetting the
rate βt as weights for the two components in Eq. (1). The learning and forgetting
rates are adjusted online, depending on the variance observed in the past model
values. This schedule makes the adaptive learning process converge faster, without
compromising the stability and memory requirements of the system, while success-
fully handling both gradual and sudden changes in the background, independently
at each pixel.

Results. Figure 4 shows the updating process using our proposed recursive modeling
technique. It can be seen that the trained model (solid line) converges to the actual
one (dashed line) as new samples are introduced. The actual model is the probability
density function of a randomly generated sample population, and the trained model
is generated by using the recursive formula presented in Eq. (1).

Figure 5 illustrates the convergence speed of our approach with scheduled learn-
ing, compared to constant learning and kernel density estimation with constant
window size. Figure 6 compares the same three approaches in terms of recovery

Fig. 4. Model evolution after 10 frames (left) and 100 frames (right).

Fig. 5. Convergence speed.
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Fig. 6. Recovery speed from sudden global changes.

(a) Handshake sequence (b) Water sequence

(c) Campus sequence (d) Rain sequence

(e) Water fountain sequence (f) Non-empty background
(model at 50 frames)

Fig. 7. Background modeling and foreground detection in the presence of quasi-stationary back-
grounds.

speed after sudden global illumination changes (three different lights switched off
in sequence).

Results on several challenging sequences are illustrated in Fig. 7, showing that
the proposed methodology is robust to noise, gradual illumination changes or natu-
ral scene variations, such as local fluctuating intensity values dues to monitor flicker
(a), waves (b), moving tree branches (c), rain (d) or water motion (e). The ability
to correctly model the background even when there are moving objects in every
frame is illustrated in Fig. 7(f).
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Table 1. Quantitative evaluation and comparison with different methods. The video sequences
are Meeting Room, Lobby, Campus, Side walk, Water Surface and Fountain.

Video Sequence MR LB CAM SW WS FT Avg

Proposed approach 0.92 0.87 0.75 0.72 0.89 0.87 0.84
Statistical modeling28 0.91 0.71 0.69 0.57 0.85 0.67 0.74
Mixture of Gaussians27 0.44 0.42 0.48 0.36 0.54 0.66 0.49

Quantitative estimation. The performance of our method is evaluated quantitatively
on randomly selected samples from different video sequences, taken from Ref. 28.
The metric used is the similarity measure between two regions A and B, defined as
S = [A ∩ B]/[A ∪ B], where region A corresponds to the detected foreground, and
region B to the true foreground. This measure is monotonically increasing with the
similarity of the two foreground masks, with values between 0 and 1.

Table 1 shows the similarity measure for several video sequences where ground
truth was available, as analyzed by our method, the mixture of Gaussians described
in Ref. 27 and the statistical modeling proposed in Ref. 28. It can be seen that
the proposed approach clearly outperforms the others, while also producing more
consistent results over a wide range of environments. We also emphasize that in the
proposed method the thresholds are estimated automatically (and independently
at each pixel), and there is no prior assumption needed on the background model.

The proposed approach to background–foreground segmentation has the follow-
ing benefits:

• The recursive formulation allows reliable convergence to the actual background
model, without the need to specify a temporal sliding window, while being suit-
able for slow changes because of its low (and constant) memory and processing
time requirements.

• The scheduled learning scheme achieves a high convergence speed, and a fast
recovery from expired models, allowing successful modeling even for nonempty
backgrounds (when there are moving objects in every frame); its adaptive local-
ized classification leads to automatic training for different scene types and for
different locations within the same scene.

4.2. Estimation of 3D position and orientation

We employ the robot-mounted laser rangefinder for estimating the 3D positions of
detected agents with respect to the observing robot. For each such agent, its position
is obtained by examining the distance profile from the rangefinder in the direction
where the foreground object has been detected by the camera. It is assumed that
agents face the direction of travel. This allows orientation to be estimated using
observed changes in position. If the agent maintains a static position, the last-
known orientation will be preserved until motion resumes.

For the intent recognition stage, once the 3D position and orientation of each
agent are known with respect to the camera, a simple change of coordinates allows
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the observing robot to take the perspective of any participating agent, in order to
map its current observations to those acquired during the action learning stage.

5. Experimental Results

To validate our approach we performed experiments with a Pioneer 2DX mobile
robot, with an on-board computer, a laser rangefinder and a PTZ Sony camera.
While we experimented with a mobile robot and not a humanoid, our approach is
independent of the platform as it provides cognitive capabilities that are necessary
for and that translate directly to a humanoid robot. The experiments consisted of
two stages: the activity modeling phase and the intent recognition phase. The frame
rate of the system in both phases is about 15 frames per second.

During activity modeling, the robot equipped with controllers for following,
meeting and passing by a person performed several runs of each of the three activ-
ities. Figure 8 shows sample frames from the robot’s perspective during this stage
together with the tracking results. The observations gathered from these trials were
used to train the HMMs represented in Fig. 9, as explained in Subsec. 3.1.1. The
goal parameters monitored in order to compute the observable symbols are the
distance and angle to the human, from the robot’s perspective.

During intent recognition, the robot acted as an observer of activities performed
by two people in five different scenarios, which included following, meeting, passing
by, and two additional scenarios in which the users switched repeatedly between
these three activities. We performed each of the first three scenarios twice, to expose
the robot to different viewpoints of the activities and thus to show the robustness
of the intent recognition mechanism under varying environmental conditions. The

(a) Follow (b) Meet (c) Pass

Fig. 8. Activity modeling stage.

Following

wander

back

approach

tracking stop

Meeting

wander break

approach

stop

done

Passing By

wander approach 2 forward

Following

wander

back

approach

tracking stopwander

back

approach

tracking stop

Meeting

wander break

approach

stop

donewander break

approach

stop

done

Passing By

wander approach 2 forwardwander approach 2 forward

Fig. 9. HMM structure for the three activities.
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goal of the two complex scenarios is to demonstrate the ability of the system to
infer a change in intent as soon as the agents switch from one activity to another.

During each scenario, we recorded the probability that the models produced
the observations, for each of the three HMMs. Figure 10 shows snapshots of the
detection and intent recognition for the two runs of each scenario from different
viewpoints. Under each detection box we show the computed distance from the
robot. The blue and red bars correspond respectively to the blue- and red-tracked
agent. The length of the red and blue bars represents the cumulative likelihood
of the models up to that point in time, and the text inside the bars indicates the
intentional hidden state of the highest likelihood model.

Figures 11–13 show the likelihoods of each model at each time step over the
course of one video sequence. One time step corresponds to one frame of the
sequence. The figures show that the robot is able to infer the correct activity and
intent for the following, meeting and passing by scenarios: the probability for the
correct model rapidly exceeds those for the other models, which have very low like-
lihoods. Videos available online also show the detected hidden states of the most
probable model.

(a) Follow

(b) Meet

(c) Pass

Fig. 10. Intent recognition for different activities. Color figures are only available in electronic
version.
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Fig. 11. Model probabilities during the two following scenarios.

(a) Viewpoint 1

(b) Viewpoint 2

Fig. 12. Model probabilities for the two people during the two meeting scenarios.

(a) Viewpoint 1

(b) Viewpoint 2

Fig. 13. Model probabilities for the two people during the two passing by scenarios.
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For the following scenarios (Fig. 11), we present only the intent of the person
who is performing the following. For the other scenarios (Figs. 12 and 13), we show
the intent of both people involved in the activities: the robot is able to detect that
the two have similar intentions, related to either meeting or passing by.

In the complex scenarios, the two subjects performed the following sequence of
activities (agent 0 is tracked in red, agent 1 in blue):

• Scenario 1: pass by, meet, red follows blue, blue follows red
• Scenario 2: pass by, pass by, blue follows red, red follows blue

During these runs, the system was able to quickly adapt to changes in people’s
activities and detect the correct intentional state of the agents, as shown in Fig. 14.
Although the activities follow each other continuously, the system does not require
an explicit indication of when these start or end. The model with the highest current
probability is that for which the graph bar has a label indicating the hidden state
(such as tracking or approach).

To provide a quantitative evaluation of our method, we analyze the following
three measures, typically used in evaluating HMMs: accuracy rate, early detection
and correct duration32:

• Accuracy rate = the ratio of the number of observation sequences, for which
the winning intentional state or activity matches the ground truth to the total
number of test sequences.

• Early detection = t∗/T , where T is the length of the observation sequence and
t∗= min{t|Pr(winning intentional activity) is highest from time t to T }.

• Correct duration = C/T , where C is the total time during which the intentional
state or activity with the highest probability matches the ground truth.

(a) Red and blue pass by (b) Red and blue pass by again

(c) Red follows blue (d) Blue follows red

Fig. 14. Results from complex scenario 2. Color figures are only available in electronic version.
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Table 2. Quantitative evaluation of results.

Scenario Early Detection (%) Correct Duration (%)

Follow 1 1.23 98.771
Follow 2 3.70 96.30
Meeting 1 — agent 1 0 100
Meeting 1 — agent 2 47.25 86.09
Meeting 2 — agent 1 8.24 91.76
Meeting 2 — agent 2 52.45 47.55
Passing by 1 — agent 1 0 100
Passing by 1 — agent 2 0 100
Passing by 2 — agent 1 0 100
Passing by 2 — agent 2 0 100

For a reliable recognition, the system should have a high accuracy rate, a small
value for early detection and high correct duration. The accuracy rate of our system
is 100%: all ten intent recognition scenarios — two for following, four for meeting
(for both agents) and four for passing by (for both agents) — have been correctly
identified. Table 2 shows the values for early detection and correct duration for these
experiments. For all except two cases, the robot inferred the correct intent of actions
before less than 10% of the activity had been executed, and in five of the cases the
correct intent was detected right from the start (early detection = 0). As expected,
the correct duration for these cases had very high values, with the majority over
90%. The only two cases that produced worse results occurred when inferring the
intent of agent 2, during the two meeting scenarios. In the first case [Fig. 12(a)], the
robot had inferred the correct intent very early on, but had a brief moment when
pass by seemed more likely at some point during the middle of the run. For most of
the scenario, however, the robot correctly inferred that the agent’s intent was for
meeting (correct duration=86.09%). In the second case [Fig. 12(b)], the robot had
mistaken the meeting activity for a pass by, but only from the perspective of the
second agent. Toward the end, however, the robot detected the correct intent as
meet became the model with the highest likelihood. From our analysis of the data
we observed that this result was due to small variations in computing the observable
symbols from agent 2’s perspective, and to the high similarity between meeting and
passing by.

6. Discussion

The above experiments demonstrate that the robot is able to reliably detect the
correct intentional meanings of people’s actions from a very early stage. By modeling
the interaction of an agent (human or robot) with the environment while performing
an activity, we are able to distinguish between intentions that are otherwise hard
to disambiguate, such as the goal of meeting somebody or simply passing them by.
The differences in activities are modeled by changes in goal parameters, such as the
angle and distance to the other person. If the goal is to meet somebody, the distance
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to that person reduces, just like the angle at which that person is in the field of
view (since meeting implies facing the other person directly). However, if the goal
is simply to pass by somebody, while the distance might be decreasing, the angle at
which that person is in the field of view is mostly increasing. These observations are
modeled as the observable symbols for our HMMs, thus encoding how the perceptual
information about the world changes while performing an action.

The models above are not necessarily a complete representation of a meeting,
following or passing by situation: additional intentional states and modalities of
change for the observable states could be added for a more refined and accurate
representation. For example, we could add hidden states that encode a slowing-
down of the two agents before meeting and we could also consider varying rates of
change for distance, angle and speed (e.g. fast increase, slow decrease). Additionally,
we are looking into ways for our system to automatically detect and use features
that are appropriate for a given intent recognition task.

Once an intentional state has been detected, the robot can use information
specific to the task to respond to that information (e.g. provide help, turn around).
It is outside the scope of this paper to address this problem, which in most cases
would be task-specific. In our future work, we will design collaborative scenarios
that take advantage of the capabilities provided by our approach.

We are currently performing experiments that involve object manipulation activ-
ities, to detect the intent of offering or being offered an object, as well as the intent
of abandoning or stealing an object (such as a bag) from someone. We are also
working on expanding the repertoire of activities for the robot to more complex
navigation scenarios involving hiding or interception.

7. Conclusion

In this paper, we proposed an approach to detecting intent with application to the
robotic domain. So far, this problem has not been sufficiently addressed, although
the ability to infer others’ intentions is essential for effective communication and
collaboration, and should be a key component of a robot’s cognitive system. The
method we proposed is based on experience acquired through the robot’s own
sensory–motor capabilities, then using this experience while taking the perspec-
tive of other agents. We proposed a novel formulation of hidden Markov models to
encode a robot’s experience and interaction with the world when performing vari-
ous actions. These models are used through perspective taking to infer the intent of
other agents and can perform this inference well before the agents’ actions are final-
ized. This is in contrast with the wide spectrum of activity recognition approaches,
which detect an activity only after most of its stages are done. To allow the robot
to observe and analyze its environment, we developed a vision-based technique
for target detection and tracking, which uses a nonparametric recursive modeling
approach. We validated this architecture with a physically embedded robot, detect-
ing the intent of several people performing multiple activities.
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33. M. N. Nicolescu and M. J. Matarić, A hierarchical architecture for behavior-based
robots, in Int. Joint Conf. Autonomous Agents and Multi-Agent Systems (2007),
pp. 227–233.

34. R. C. Arkin, Behavior-Based Robotics (MIT Press, 1998).
35. A. Olenderski and M. N. Nicolescu, Robot learning by demonstration using forward

models of schema-based behaviors, Second Int. Conf. Informatics in Control, Automa-
tion and Robotics, Barcelona, Spain (September 2005).

36. A. A. Efros, A. C. Berg, G. Mori and J. Malik, Recognizing action at a distance, in
Int. Conf. Computer Vision, Nice, France (13–16, October 2003).



September 15, 2008 13:40 WSPC/191-IJHR 00141

A Novel Hidden Markov Formulation 263

Richard Kelley is a Masters student and research assistant
in the Department of Computer Science and Engineering at the
University of Nevada, Reno. He received his B.S. in Mathematics
from the University of Washington, Seattle in 2006. His research
interests include intent and activity recognition, social robotics,
and human-robot interaction.

Christopher King is currently working toward his Ph.D. at
the University of Nevada, Reno. He received a M.S. in com-
puter science from UNR in 2007 and a B.S. in computer sci-
ence from Arizona State University in 2003. His primary research
interest is in the area of computer vision and robotics. This
includes visual localization and mapping, human identification,
and object recognition.

Alireza Tavakkoli is a Ph.D. candidate and research assis-
tant in the Department of Computer Science and Engineering
at the University of Nevada, Reno. He received the M.Sc. degree
in Computer Science from University of Nevada, Reno in 2006.
He obtained his first M.Sc. degree in Digital Electronics and
B.Sc. degree in Electronics from Sharif University of Technol-
ogy, Iran in 2004 and 2001, respectively. His research interests
include intent/action recognition, visual surveillance, computer

vision and image processing. In 2006, he received a two year fellowship in Cognitive
Information Processing from the Nevada NSF-EPSCoR fund. He is one of the recip-
ients of the Outstanding International Graduate Student Award in the University
of Nevada, Reno in 2007. He is a student member of the IEEE Computer Society
and IEEE Circuits and Systems Society.

Mircea Nicolescu received the B.S. degree from the Polytech-
nic University Bucharest, Romania in 1995, the M.S. degree
from the University of Southern California in 1999, and the
Ph.D. degree from the University of Southern California in 2003,
all in Computer Science. He is currently an assistant profes-
sor of Computer Science at the University of Nevada, Reno,
and co-director of the Computer Vision Laboratory. His research
interests include visual motion analysis, perceptual organization,



September 15, 2008 13:40 WSPC/191-IJHR 00141

264 R. Kelley et al.

vision-based surveillance and activity recognition. In 1999 and 2003, he received the
USC Academic Achievements Award, and in 2002 the Best Student Paper Award
at the International Conference on Pattern Recognition in Quebec City, Canada.
He is a member of the IEEE Computer Society.

Monica Nicolescu is an Assistant Professor of Computer Sci-
ence with the Computer Science and Engineering Department
at the University of Nevada, Reno and is the Director of the
UNR Robotics Research Lab. Prof. Nicolescu earned her Ph.D.
degree in Computer Science at the University of Southern Cali-
fornia (2003) at the Center for Robotics and Embedded Systems.
She obtained her M.S. in Computer Science at the University of
Southern California (1999) and B.S. in Computer Science at the

Polytechnic University Bucharest (Romania, 1995). She is a recipient of the NSF
Early Development Career Award and a USC Academic Achievements Award. Her
research is currently supported by the National Science Foundation, the Department
of Defense, the Department of Energy, NASA, and Nevada Nanotech Systems. Prof.
Nicolescu’s research interests are in the areas of human-robot interaction, robot con-
trol and learning, and multi-robot systems. She is a member of AAAI and IEEE
and an editor for the Journal of Intelligent Service Robotics.

George Bebis received the B.S. degree in mathematics and M.S.
degree in computer science from the University of Crete, Greece
in 1987 and 1991, respectively, and the Ph.D. degree in elec-
trical and computer engineering from the University of Central
Florida, Orlando, in 1996. Currently, he is an Associate Profes-
sor with the Department of Computer Science and Engineering
at the University of Nevada, Reno (UNR) and Director of the
UNR Computer Vision Laboratory (CVL). His research inter-

ests include computer vision, image processing, pattern recognition, machine learn-
ing, and evolutionary computing. His research is currently funded by NSF, NASA,
ONR, and Ford Motor Company. Dr. Bebis is an associate editor of the Machine
Vision and Applications Journal, and serves on the Editorial Board of the Pattern
Recognition Journal and the International Journal on Artificial Intelligence Tools.
He has served on the program committees of various national and international
conferences, and has organized and chaired several conference sessions. In 2002, he
received the Lemelson Award for Innovation and Entrepreneurship. He is a member
of the IEEE and the IAPR Educational Committee.


