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Abstract Most methods for foreground region detection in
videos are challenged by the presence of quasi-stationary
backgrounds—flickering monitors, waving tree branches,
moving water surfaces or rain. Additional difficulties are cau-
sed by camera shake or by the presence of moving objects in
every image. The contribution of this paper is to propose a
scene-independent and non-parametric modeling technique
which covers most of the above scenarios. First, an adaptive
statistical method, called adaptive kernel density estimation
(AKDE), is proposed as a base-line system that addresses
the scene dependence issue. After investigating its perfor-
mance we introduce a novel general statistical technique,
called recursive modeling (RM). The RM overcomes the
weaknesses of the AKDE in modeling slow changes in the
background. The performance of the RM is evaluated asymp-
totically and compared with the base-line system (AKDE).
A wide range of quantitative and qualitative experiments is
performed to compare the proposed RM with the base-line
system and existing algorithms. Finally, a comparison of
various background modeling systems is presented as well as
a discussion on the suitability of each technique for different
scenarios.
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1 Introduction

Typically, in most visual surveillance systems static came-
ras are used. However, because of inherent changes in the
background, such as fluctuations in monitors and fluores-
cent lights, waving flags and trees, water surfaces, etc. the
background may not be completely stationary. Furthermore,
the background may not appear completely empty in any
image across the video sequence, thus making the back-
ground modeling even more problematic. These difficult
situations are illustrated in Fig. 1. We refer to these back-
grounds as quasi-stationary.

1.1 Related work

In the presence of quasi-stationary backgrounds a single
background frame is not enough to accurately detect fore-
ground regions. Pless et al. [21] evaluated different models
for dynamic backgrounds. Depending on the complexity of
the problem the background models employ expected pixel
features (i.e. colors) [3-5,23], consistent motion [20,33],
or fusion of color/contrast and motion [1]. They also may
employ pixel-wise information [32] or regional models of
features [31,7,15]. To improve robustness to noise, spatial
[19] or spatio-temporal [14] features may be used.

In [32] a single 3-D Gaussian model for each pixel is built
and the mean and covariance of the model are learned in each
frame. This system models the noise and uses a background
subtraction technique to detect those pixels whose proba-
bilities are smaller than a heuristically selected threshold.
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Fig. 1 Examples of challenges
in quasi-stationary backgrounds:
a Fluctuating monitors.

b Rain/snow. ¢ Waving tree
branches. d Non-empty
background

However, the system failed to label a pixel as foreground
or background when it has more than one modality due to
fluctuations in its values, such as in a fluctuating monitor.

Kalman filtering [12,9, 10] is also used to update the model
and linear prediction using Wiener filtering is presented in
[31]. These background models were also unable to represent
multi-modal situations.

Indupalli et al. in [8] applied a histogram based method
and a clustering technique to segment the background of the
video. They also used the HSV color space in their pixel-wise
system. However, their system requires that its parameters be
selected manually. Also, this method fails if the scene does
not have an empty background or is crowded.

In [30], Totozafiny et al. proposed a background segmen-
tation system for road surveillance applications. Their tech-
nique generates the background model using a background
reference frame and a mixture of Gaussians. This method is
not adaptive to gradual and local changes in the illumination
of the scene since it generates the model only once. The sys-
tem is not scene independent and its parameters should be
updated from application to application.

A mixture of Gaussians modeling technique was proposed
in [25,24,6] to address the multi-modality of the underlying
background. In this technique background pixels are modeled
by a mixture of Gaussians. During the training stage, para-
meters and weights of the Gaussians are trained and used
in the background subtraction where the probability of each
pixel is generated using the mixture of Gaussians. The pixel
is labeled as foreground or background based on its proba-
bility.

There are several shortcomings for mixture learning
methods. First, the number of Gaussians needs to be spe-
cified. Second, this method does not explicitly handle spatial
dependencies. Even with the use of incremental expectation
maximization, the parameter estimation and its convergence
is noticeably slow where the Gaussians adapt to a new clus-
ter. The convergence speed can be improved by sacrificing
memory as proposed in [16] and [17], limiting its applica-
tions when mixture modeling is pixel-based and over long
temporal windows.

A recursive filter formulation is proposed by Lee in [13]
to speed up the convergence. However, the problem of spe-
cifying the number of Gaussians as well as the adaptation
in later stages still exists. This model does not account for
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situations in which the number of Gaussians changes due to
occlusion or uncovered parts of the background.

In [5], El Gammal et al. proposed a non-parametric ker-
nel density estimation method (KDE) for pixel-wise back-
ground modeling without making any assumption about its
probability distribution. Therefore, this method can easily
deal with multi-modality in background pixel distributions
without specifying the number of modes in the background.
However, there are several issues to be addressed using non-
parametric kernel density estimation.

These methods are memory and time consuming since for
each pixel in each frame the system has to compute the ave-
rage of all kernels centered at each training sample. The size
of temporal window used as the background model needs
to be specified. Too small a window increases speed, while
it does not incorporate enough history for the pixel, resul-
ting in a less accurate model. The adaptation will be proble-
matic by using small window sizes. Increasing the window
size improves the model accuracy but at the cost of higher
memory requirements and slower convergence. In order to
adapt the model a sliding window is used in [18]. However,
the model convergence is problematic in situations where the
illumination suddenly changes.

In order to update the background for scene changes such
as moved objects, parked vehicles or opened/closed doors,
Kim et al. in [11] proposed a layered modeling technique.
This technique needs an additional model called cache and
assumes that the background modeling is performed over
a long period of time. It should also be used as a post-
processing stage after the background is modeled.

Another approach to model variations in the background
is to represent these changes as different states corresponding
to different environments—such as lights on/off, night/day,
sunny/cloudy. For this purpose hidden Markov models
(HMM) have been used in [22] and [26]. However, these
techniques suffer from slow model training speed and are
sensitive to model selection and initialization.

1.2 Motivation and contributions

Because of the aforementioned issues in detecting foreground
regions in videos with quasi-stationary backgrounds existing
systems addresses some of these problems in a specific or a
combination of scenarios. Our focus here is to find a common
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ground that would cover a general scenario for background
modeling. Contributions of this study can be summarized as
follows:

— Finding an appropriate approach to the problem of
detecting foreground regions in videos with quasi-
stationary background. This approach should address
the multi-modality of the background as well as scene-
independence. Our proposed solution is based on a non-
parametric framework that addresses the issues in the
literature. This base-line system, called adaptive ker-
nel density estimation (AKDE), outperforms the existing
methods in the literature [27,28].

— Investigating the efficiency of the base-line system and
deriving a more universal framework upon this system.
The proposed general method is called recursive mode-
ling (RM). This technique addresses the issue of robust
background training in slowly changing backgrounds,
non-empty backgrounds, and backgrounds with steady,
irregular global motion (hand-held camera).

The AKDE. The theory behind the AKDE algorithm is
to estimate the probability of each pixel being background
based on a number of samples in its history. One advantage
of the AKDE method over existing kernel density estimation
modeling is in using a different threshold for each pixel,
instead of a single threshold for all pixels in the scene. These
thresholds are independently trained over a number of video
frames.

By training the thresholds the system becomes scene inde-
pendent and there is no need to heuristically select and tune
threshold values in different scenes. By employing these
localized thresholds the system works efficiently on different
video scenes and is more robust to local changes in the same
scene. The proposed AKDE method exploits the dependency
between pixel color components as well, thus leading to a
more accurate background model.

The RM. The RM method is a recursive counterpart for
the AKDE technique which uses pixel intensity/color values
in new frames to update the background model at that pixel
location. Since the update process is performed continuously,
the background model converges to the actual one as more
frames emerge and are processed. This gives the RM its
ability to detect foreground regions when the background
changes occur slowly and do not fit in a small temporal win-
dow. In videos without a set of empty background frames the
proposed RM technique has the ability to generate a clear
background model because pixels belonging to the actual
background provide more support for the background model.

In order to make the background model converge to the
actual one and recover from the expired model faster the
proposed RM method uses a schedule for learning. It should

be noticed that a non-parametric recursive modeling scheme
has not been investigated in the literature.

The rest of the paper is structured as follows. Section 2
presents the base-line AKDE method and evaluates its per-
formance and efficiency. This system and a benchmark data
provide a standard set of comparison tests. Section 3 present
the proposed RM technique and an evaluation of its perfor-
mance with regard to the standard assessment presented for
the base-line system. In Sect. 5, a comprehensive comparison
between these two methods and other techniques is conduc-
ted and the situations in which each of the proposed methods
is superior are presented. Finally, Sect. 6 concludes the paper
and gives future directions of the research.

2 Adaptive kernel density estimation (AKDE)

In this section we present a novel technique for background
modeling based on adaptive non-parametric kernel density
estimation (AKDE) [28].

2.1 The algorithm

Figure 2 shows the pseudo-code for the AKDE algorithm,
consisting of three major stages: training, classification and
update. In the training stage the background model is gene-
rated, and for each pixel its model values are used to estimate
the probability of that pixel to be background in new frames.
The proposed method detects foreground regions by solving
a classification problem. However, it should be noted that
we only have samples of the background class before any
foreground object appears in the scene.

The only parameter in kernel density estimation is the ker-
nel bandwidth. In theory, as the number of training samples
grows without a bound the estimated density converges to the
actual underlying density regardless of the kernel bandwidth
value [2].

2.2 Non-parametric density estimation

In the proposed AKDE method a non-parametric model for
each pixel is generated and its classifier is trained. It uses the
history of pixel values as training samples and estimates the
probability of each pixel being background in new frames
as the classification criterion. In the classification stage each
pixel is classified as foreground or background based on its
estimated probability, computed by:

P — L o [ T ) |
1 (Xt) = e Ze ey
i=1

where X, is the pixel feature vector at time ¢ and x; are
its values in the training sequence. X is a positive definite
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Fig. 2 The proposed AKDE N

modeling algorithm For each frame at time t

1. Training stage
for each pixel (u,v)

2. Classification stage
for each pixel (u,v)

3. Update stage

then

else

: size of training buffer

- Calculate kernel covariance XY(u,v) and threshold th(u,v).

- Compute median of estimated probability in its neighborhood: Med(u,v)
- if Med(u,v) < th(u,v)

then FG(u,v) =1 % (Foreground)

else FG(u,v) =0 % (Backgrounds)

- if size(FG) > 0.5 Image_Size

for each pixel (u,v)
OF (u,v) — I(u,v)

for each pixel (u,v)
OF (u, v| FG¢(u,v) = 0) < I;(u,v|FG¢(u,v) =0) % with those in current frame

Global sudden change detected
Replace oldest frame (OF)

with current frame

Gradual change

Replace background pixels in OF

R e e

symmetric matrix which is the kernel bandwidth matrix and
N is the number of frames used to train the background
model. In order to capture dependencies between features
for each pixel, X has to be a full (non-diagonal) matrix.

Since in the AKDE method no assumptions are made on
the covariance matrix X, any features for each pixel can be
used. Because color is the easiest and most reliable feature
to extract we use chrominance values for each pixel. That is,
given color values in RG B space we determine red (c;) and
green (cg) chrominance values by:

R

" R+G+B
G

Cg = —————

£ T R+G+8B

Cr

@)

Therefore the feature vector for each pixel at a given time ¢
is defined by:

X = [cr (1), cg() 1" 3)

Due to limited memory and computational power, we need
to store a rather short term memory of the background frames
as training samples. This makes the non-parametric kernel
density estimation dependent on the choice of its kernel band-
width. In order to achieve an accurate and automatic back-
ground model, which is adaptive to the spatial information in
the scene, the kernel bandwidth matrix needs to be trained.

The effect of using a full covariance matrix can be obser-
ved in Fig. 3. By using a full covariance matrix (X) in Eq.
(1) we do not impose an assumption of feature independence
on our estimation. If we assumed that features for each pixel
are independent then a simplified version of Eq. (1) could
be used, where the covariance matrix is diagonal. However,
as it can be seen from Fig. 3 by using chrominance features,
the independence assumption is not valid and the full cova-
riance matrix results in a more accurate density estimation,
as opposed to the diagonal covariance matrix proposed in [5].
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2.3 Training stage

For each pixel the training samples are vectors Xy = {x, X2,
..., Xy}, where N is the number of training frames. In our
experiments we chose N = 300 for most of the scenes. The
successive deviation of the above vectors is a matrix Ay
whose columns are:

[xi —x;i_1]" withi=2,3,...,N )

For each pixel, the kernel bandwidth matrix is defined such
that it represents the temporal scatter of training samples.
Thus the kernel bandwidth is:

XY =cov(Ayx) (5)

From Eqgs. (4) and (5) it can be seen that for pixels with
more feature changes through time, such as flickering pixels,
the kernel bandwidth matrix has larger elements, while for
pixels that do not change much its elements are smaller. Also
notice that the kernel bandwidth is drawn from the training
samples without any assumption on features and their under-
lying probability density function. The estimated probability
density function by using this adaptive kernel bandwidth is
accurate, even with a small number of background training
frames. Finally, since the kernel bandwidth matrix is com-
puted using successive deviations in Eq. (4) it accounts for
temporal dependencies in pixel feature vectors.

In the traditional foreground detection techniques, usually
the foreground regions are detected by comparing the value
or model of each pixel with its value or model in the back-
ground. If this deviation is larger than a heuristically selec-
ted threshold it is labeled as a foreground region. If we
estimate the probability of each pixel in all of the background
frames, given that all pixels are background, their probabi-
lities should have large values, close to 1. But because of
noise and inherent background changes, pixels do not take a
single value and their probabilities become smaller. The
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probability of a pixel to be background is related to the
amount of change that its features undergo in time. The-
refore a single global threshold does not work well because
pixels in different locations undergo different amounts of
change.

These threshold values need to be trained for each pixel
during the training stage to build an accurate and automatic
classifier. For each pixel its threshold value (¢4) is selected
such that its classifier results in 5% false reject rate. That is,
95% of the time the pixel is correctly classified as belonging
to background:

N N
D, P(Bglx) <0.05> P(Bglx) ©)
i=1 i=1
P(Bglx;) < th

This can be seen in Fig. 4, where (a) shows an arbitrary
frame of a sequence containing a water surface and (b) shows
the trained threshold map for this frame. Darker pixels in
Fig. 4b represent smaller threshold values and lighter pixels
correspond to larger threshold values. The thresholds in areas
that tend to change more, such as the water surface, are lower
than those in areas with less amount of change, such as the
sky. Since the probability density function is normalized, for
pixels which undergo more changes the estimated probability
density function is wider. As a result, in order to keep 5%
false reject rate, smaller threshold values are needed. Note

Fig. 4 Adaptive threshold map: a an arbitrary frame. b Threshold map

that the threshold map is noisy, since for efficiency purposes
only 150 frames are used.

2.4 Classification stage

In the training stage, for each pixel its kernel bandwidth
matrix X and its classification decision criterion th were
determined. The probability of each pixel in the new frame
is then estimated using Eq. (1). If we directly apply the trai-
ned threshold of each pixel to its estimated probability, due
to impulse noise isolated pixels may still be erroneously
classified.

One of the properties of this type of noise is that, if strong
noise affects a pixel, it is less likely to affect its neighbors
with the same strength. If a pixel in a region belonging to the
background produces a fairly small probability because of
noise, its neighboring pixels are expected to produce larger
probabilities.
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Fig. 5 Enforcing spatial
consistency: a original frame
b Detected foreground regions
by applying thresholds directly
on the estimated probability.

¢ Detected foreground regions
by applying threshold on
median of probabilities in a

(c)

2
[5d

L%

neighborhood
Fig. 6 Our proposed RM 1
algorithm 2. For each frame at time t

For each pixel

. Initialization: A, ag, 0, k and th

2.1. Training stage

- Update oy = lhg(t“)l+0z0 and A

- Update 0F(z) = (1—-3)08 (2) +a;- Ha(x — x)

- If 0P <th then update 0F ()= (1— 840 (x) + i Ha(z — ;)
2.2. Classification stage

- If In(med(#f)/med(f{)) < r then label pixel as foreground.
2.3. Update stage

- Update &k and th

Notice that this impulsive noise is introduced to the system
as a byproduct of the probability density estimation. As
known, median filtering is a suitable tool to remove this type
of noise. Applying the median filtering directly to the images
suppresses the impulsive noise in the frames but does not
significantly affect the noise introduced by the process. In
order to remove the process noise we apply the median of esti-
mated probabilities in a region around a pixel. After estima-
ting the probability of each pixel in the new frame, the median
of probabilities in its 8-connected neighborhood is compared
with its threshold to make the classification decision:

Foreground  if median (Prob;) < th
Background otherwise

Label; = [ @)

Figure 5 shows the effect of enforcing spatial consistency
using the median of probabilities in foreground region detec-
tion. As it can be seen, by applying the threshold on the
median of estimated probabilities of pixels in a neighbo-
rhood, most of the noise can be suppressed, while maintai-
ning the image quality.

2.5 Update stage

In the proposed AKDE method we use two different types of
adaptation. To make the system adaptive to gradual changes
in illumination, we replace the pixels in the oldest back-
ground frame with those belonging to the current background
mask. In order to detect sudden changes in the illumination,
the area of the foreground objects are checked. Once a sudden
change is detected (detected foreground region is very large),
the classification stage of the algorithm is suspended and new
frames replace all frames in the background training buffer.
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Because the training stage of the algorithm is time
consuming, the updating stage is actually performed every
few frames, depending on the rate of changes and the proces-
sing power. In the current implementation the updating stage
is performed every 100—150 frames.

3 Recursive modeling (RM)

In this section, we describe our novel recursive method. The
formulation is discussed in one dimension and its extension to
higher dimensions is straightforward. We explain how depen-
dencies between pixel features in higher dimensions can be
captured, resulting in more accurate models.

3.1 The algorithm

The proposed method, in pseudo-code, is shown in Fig. 6. 0,3
is the background model and 6f is the foreground model for
each pixel. Let x; be the the intensity value of a pixel at time
t. The non-parametric estimation of the background model
that accurately follows its multi-modal distribution can be
reformulated in terms of recursive filtering [29]:

OB (x) =[1—B1- 62 | (x) + o - Ha (x — x) 8)
255
D> ofm =1 ©
x=0

where x € [0,255] and 62 is the background pixel model
at time ¢, normalized according to (9). étB is updated by the
local kernel H (-) with bandwidth A centered at x;. Para-
meters o, and f; are the learning rate and forgetting



Non-parametric statistical background modeling 401
Fig. 7 Recursive modeling: (a) ! ' ' - - (b) 1 ]
model after a 10 frames. b 200 09 I— g [ Adelmesd
frames 08 b 08
07t 07
06 | _ 08
g 05+ g 05
04+ 04
03 03
02 02
01t 0.1
%20 3 40 50 8 70 80 %0 % % 0 50 &0 70 80 %0

Pixel value

rate schedules, respectively. The kernel H should satisfy the
following conditions:

ZHA(x) =1

Zx x Ha(x) =0 (10)

These conditions should be satisfied to ensure that the
kernel is normalized, symmetric and positive definite in case
of multivariate kernels. In our implementation of the RM
method we use a Gaussian kernel which satisfies the above
conditions. Note that in this context there is no need to specify
the number of modalities of the background representation
at each pixel.

Figure 7 shows the updating process using our proposed
recursive modeling technique. It can be seen that the trai-
ned model (solid line) converges to the actual one (dashed
line) as new samples are introduced. The actual model is the
probability density function of a randomly generated sample
population and the trained model is generated by using the
recursive formula presented in (8).

In existing non-parametric kernel density estimation
methods the learning rate « is selected to be constant and
has small values. This makes the pixel model convergence
slow and keeps its history in the recent temporal window of
size L = 1/a. The window size in non-parametric models
is important as the system has to cover possible fluctuations
in the background model. That is, pixel intensity changes
may not be periodic or regular and consequently may not fit
in a small temporal window. In such cases larger windows
are needed, resulting in higher memory and computational
requirements. Another issue in non-parametric density esti-
mation techniques is that the window size is fixed and the
same for all pixels in the scene. However, some pixels may
have fewer fluctuations and therefore need smaller windows
to be accurately modeled, while others may need a much
longer history to cover their changes.

Pixel value

3.2 Scheduled learning

In order to speed up the modeling convergence and recovery
we use a schedule for learning the background model at each
pixel based on its history. This schedule makes the adaptive
learning process converge faster, without compromising the
stability and memory requirements of the system. The lear-
ning rate changes according to the schedule:

1-— (7))
oy =
h(t)

where «; is the learning rate at time ¢ and « is a small target
rate which is:

+ ag (1)

ao = 1/256 x oy (12)

where oy is the model variance. The function A(z) is a
monotonically increasing function:

hit)y=t—1+1 (13)

where f( is the time at which a sudden global change is
detected. At early stages the learning occurs faster (o; = 1)
and monotonically decreases to converge to the target rate
(oy = ap). When a global change is detected & (¢) resets to
1. Later in Sect. 5 we discuss the effect of this schedule on
improving the convergence and recovery speed.

The forgetting rate schedule is used to account for remo-
ving the values that have occurred a long time ago and no
longer exist in the background. In the current implementation
we assume that the forgetting rate is a portion of the learning
rate By = [ - a;, where [ = 0.5.

3.3 Training stage

Before new objects appear in the scene, at each pixel all
the intensity values have the same probability of being fore-
ground. However, in each new frame the background models
are updated according to Eq. (8), resulting in larger model
values (98) at the pixel intensity value x;. In essence the value
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of background pixel model at each intensity x is:
QlB(x) = P(Bglx) x €][0,255] (14)

In order to achieve better detection accuracy, we introduce
the foreground model. Later in the classification stage the
foreground model is compared to the background model. For
all x € [0, 255], the foreground model is defined by:

0f () =11 —BF1-0F () +af - Ha(x — x1) (15)
255
Zef(x) =1 (16)
x=0

Once the background model is updated for each pixel, it
is compared to the threshold 4. If its value is less than this
threshold the foreground model for that pixel value is updated
according to (15) and (16).

3.4 Classification stage

For each pixel at time ¢ we use a function 62 for the back-
ground model and 6f for the foreground. The domain of these
functions is [0, 255]", where N is the dimensionality of the
pixel feature vector. For simplicity assume the one dimen-
sional case again, where 6; is the background/foreground
model whose domain is [0, 255]. From Eq. (15), each model
ranges between 0 and 1 and its value shows the amount of
evidence accumulated in the updating process (i.e., the esti-
mated probability). For each new intensity value x; we have
the evidence of each model as BtB (x;) and QtF (x¢). The clas-
sification uses a maximum a posteriori criterion to label the
pixel as foreground:

QB
In (GLF) <k (17)
t

3.5 Updating stage

In many applications with dynamic or quasi-stationary back-
grounds, we need adaptive classification criteria. Because not
all pixels in the scene follow the same changes, the decision
threshold « should be adaptive and independent for each pixel
and has to be driven from the history of that pixel. Figure 4
explains this issue. The argument is similar to issue the of
adaptive, localized threshold map discussed in Sect. 2.2.

From the algorithm shown in Fig. 6 it can be observed that
there are two set of thresholds ¢k and «. Thresholds ¢/ for
each pixel should adapt to a value where:

> 6P(x) =095 (18)
X
0B(x) > th

For the other set of thresholds «, we similarly use a mea-
sure of changes in the intensity at each pixel position.
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Therefore the threshold « is inversely proportional to the
background model variance:

-1

255
c~In [Z (P - mean[eB<x>])2] (19)

x=0

This ensures that for pixels with more changes, smaller
threshold values are chosen for classification, while for those
pixels with fewer changes larger thresholds are employed. It
should be mentioned that in the current implementation of
the algorithm, the thresholds are updated every 30 frames.

3.6 Incorporating color information

In the above section, we described the recursive learning
scheme in 1-D where the background and foreground models
are updated using the intensity value of pixels at each frame.
To extend the modeling in higher dimensions and incorpo-
rate color information, one may consider each pixel as a 3-D
feature vector in [0, 255]3. The kernel H in this space is
a multivariate kernel Hy. In this case, instead of using a
diagonal matrix Hy a full multivariate kernel can be used.
The kernel bandwidth matrix X is a symmetric positive defi-
nite 3 x 3 matrix. Given N pixels, X1, X2, ..., Xy, labeled
as background, their successive deviation matrix is a matrix
Ax whose columns are:

[xi —xi_1]" withi=2,3,...,N (20)
The bandwidth matrix is defined such that it represents the
temporal scatter of training samples:

¥ =cov(Ay) 21

However, in the current implementation only red and green
chrominance values are used. Also in order to decrease the
memory requirements of the system we assumed that the two
chrominance values are independent. Making this assump-
tion results in a significant decrease in memory requirements
while the accuracy of the model does not decay drastically.
The red/green chrominance values are quantized into 256
discrete values.

4 Performance evaluation

In this section, we evaluate the performance of each of the
proposed methods separately. The evaluation is conducted in
terms of the number of system parameters, their impact on
the output of the system, memory requirements and accuracy
of the results.
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Fig. 8 Effect of the number of training samples on the estimated den-
sity function

4.1 Adaptive kernel density estimation method (AKDE)

In this section, we present the system details and analyze its
performance.

Parameters. One important parameter in this method is
the number of training samples used to estimate the proba-
bility density. Other parameters such as the threshold and
the kernel bandwidth matrix are trained during the training
stage. In Fig. 8, the actual probability function of a randomly
distributed population is shown by the solid line. The esti-
mated probability density function converges to the under-
lying density by increasing the number of training samples.
However, there is a trade-off between the number of training
samples, memory requirements and convergence speed of the
algorithm.

Memory requirements. The system needs to store all the
training samples in order to estimate the probability of a new
sample. If only pixel intensity values are to be employed for
each pixel, n values should be stored. Given that these values
range is between 0 and 255, each intensity value is stored in
1 byte, resulting in n bytes per-pixel memory requirement.
Also the system needs to store the kernel bandwidth and the
thresholds for each pixel, which result in two floating num-
bers. Considering that each floating number can be stored in
4 bytes, 8 bytes per pixel are needed to store the kernel band-
width and the threshold. This results in n 4 8 bytes memory
requirement per pixel. Similarly, the per-pixel memory requi-
rements using chrominance values are 8n + 20.

From the above discussion we can conclude that the
asymptotic memory requirement for the system is O (n).
That is, if the number of training samples reaches infinity
the memory requirements of the system grow linearly.

Computational cost. If we only use pixel intensity values
for n training samples per pixel we need two additions and

two multiplications for each training sample. This results
in 2n addition and 2n multiplication operations. Given the
optimal implementation of the exponential function using
look-up tables, its cost is equal to a memory indexing. This
can be assimilated to a single addition operation. The per-
pixel computational cost of the AKDE method is 5 x n. If
chrominance values are used the computational cost will be
13 x n per pixel.

Given the optimal implementation of the exponential func-
tion and multiplication operations, the asymptotic per-pixel
computational cost is O(n). Note that this is the optimal
asymptotic computational cost per pixel. The actual frame
rate of the current implementation of the AKDE method is
about 5-10fps.

4.2 Recursive modeling method (RM)

In this section, we analyze the performance of our recursive
modeling method.

Parameters. In the RM method there are five parameters:
the learning and forgetting rate o and B, thresholds ¢4 and «,
and the bandwidth X. As described earlier, these parameters
are trained and estimated from the data to generate an accu-
rate and robust model. The reason that the RM technique is
robust is in using most of the information in the data set and
not being limited on the number of training samples. With
all parameters being updated, the system performance does
not depend on heuristically (and scene dependent) values for
these parameters.

Memory requirements. If pixel intensity is used in the
RM technique the model becomes a 1-D function represen-
ting the probability mass function of the pixel. The pixel
intensity values range is from 0 to 255 making the memory
requirements of the RM equal to 256 x 4 bytes per pixel.
Using chrominance values, the model is 2-D and needs
256> x 4 bytes in memory.

The current implementation of the RM method uses a
simple assumption of independence between color features
which results in 8 x 256 bytes memory requirements [29].
Color components are not independent. However, assuming
that they are independent helps decreasing memory needs
drastically while the accuracy does not decrease significantly.
In conclusion the asymptotic memory requirement of the RM
algorithm is constant O (1).

Computational cost. If we only use pixel intensity values
for pixels we need 256 addition and 2 x 256 multiplication
operations. Similarly, if we use 2-D chrominance values as
pixel features and using the independence assumption dis-
cussed earlier, the system requires only 2 x 256 addition and
4 x 256 multiplication operations to update the model.

The asymptotic computation cost for this system is
constant, O (1), since the updating process merely consists
of adding two 1-D functions. Note that this technique does
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Fig. 9 Rapidly fluctuating
background: a Handshake video
sequence. b Detected
foreground regions using
AKDE. ¢ Detected foreground
regions using RM

Fig. 10 Slowly changing
background: a Water video
sequence. Detected foreground
region using: b MoG, ¢ AKDE
and d RM

not need to compute the exponential function and it acts as an
incremental process, updating the model at each frame using
the kernel and the previous model. The algorithm is inhe-
rently fast and an efficient implementation runs in real-time
reaching frame rates of 15-30fps.

5 Comparison

In this section, we compare the performance of proposed
techniques using several real video sequences that pose signi-
ficant challenges. Also their performances are compared with
the mixture of Gaussians method [25], the spatio-temporal
modeling presented in [14] and the simple KDE method [5].
We use different scenarios to test the performance of the pro-
posed techniques and discuss where each method is more
suitable.

Rapidly fluctuating backgrounds. As described above,
for videos with rapidly changing background, the AKDE
method has a better performance in terms of memory requi-
rements and speed. Our experiments showed that for videos
where possible fluctuations in the background occur in about
10s, the AKDE technique needs less memory and works fas-
ter compared to the RM method. Figure 9 shows the detection
results of the AKDE and RM algorithms on the Handshake
video sequence. As it can be seen from this figure, captu-
ring dependencies between chrominance features results in
a more accurate foreground region (in Fig. 9b), showing that
AKDE performs better than the RM. Note that this is a low
contrast video sequence and the color of foreground objects
is close to the background in some regions. Also in both
methods fluctuations in monitors are completely modeled as
a part of background and not detected as foreground regions.

Slowly changing backgrounds. For videos with slowly
changing backgrounds or backgrounds in which changes are
not periodic, the AKDE method needs more training frames
to generate a good model for the background. This increases
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the system memory requirements and drastically decreases
its speed. In these situations the RM technique is a very good
alternative, since its performance is independent of the num-
ber of training frames. Figure 10a shows an arbitrary frame of
the Water video sequence. In this figure the detection results
of both AKDE and RM methods are presented. This example
is particularly difficult because waves do not follow a regular
motion pattern and their motion is slow. Figure 10b shows the
result of the MoG [25]. As it can be seen from Fig. 10c, using
the AKDE method without any post-processing results in
many false positives. Figure 10d shows the detection results
of the RM method, which outperforms both AKDE and MoG
in the presence of slowly changing backgrounds.

Hand-held camera. In situations when the camera is not
completely stationary, such as the case of a hand-held camera,
the AKDE method is not suitable. In these situations there is
a consistent, slow and irregular global motion in the scene,
which can not be modeled by a limited size sliding window
of training frames. In such cases the RM method is highly
preferable.

Figure 11 shows the modeling error of the RM method in
the Room video sequence. In Fig. 11a an arbitrary frame of
this video is shown. Figure 11b compares the modeling error
using different techniques. As it can be seen, the modeling
error using a constant window size in the AKDE (the dotted
line) is between 20 and 40%, and it does not decrease with
time. This shows that the system using the AKDE method
with a constant sized sliding window never converges to the
actual model. The dashed line shows the modeling error using
the RM method with a constant learning rate, and the solid
line shows the modeling error of the RM with scheduled lear-
ning. We conclude that the model generated by the RM tech-
nique eventually converges to the actual background model
and its error goes to zero. Figure 11c and d show misclassi-
fied regions using the AKDE method after 2 and 247 frames
respectively and Fig. 11e and f show the false positives using
the RM method after 2 and 247 frames into the video. As it
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Fig. 11 Hand-held camera:

a Room video sequence.

b Modeling error in a hand-held
camera situation using different
methods. ¢ False positives after
two frames using the AKDE
method. d False positives after
247 frames using the AKDE
method. e False positives after
two frames using the RM
method. f False positives after
247 frames using the RM
method

(a)

Fig. 12 Non-empty
background: a Mall video
sequence. b Background model
after five frames using the RM
method. ¢ Background model
after 95 frames using the RM
method

can be seen, the amount of false positives decrease with time
as the system accumulates most changes observed in the his-
tory of the scene using the RM method, but for the AKDE it
does not converge to zero.

Non-empty backgrounds. In situations where the back-
ground of the video is not empty (there is no clear background
at any time in the video sequence), the AKDE method fails to
accurately detect the foreground regions. In these situations
the RM technique has to be used to generate an accurate
empty background model.

Figure 12 shows the background model in the Mall video
sequence in which the background is never empty. In this
situation the AKDE method fails unless a post-processing
on the detected foreground regions is performed to generate
models for uncovered parts of the background. This system
considers the foreground objects present in the background
training window as a part of background. When those objects
move their empty position is detected as a foreground region.
In the RM method however, the background model is updated
at every frame from the beginning of the video. When an
object moves the new pixel information is used to update
the background model to the new one. Figure 12b shows the
background model after five frames from the beginning of
the video and Fig. 12c shows the model after 95 frames.

In this scenario consistent background regions are tempo-
rarily occluded by transient moving objects. Therefore the
background itself contributes more consistent information to
the model. As a result, the model converges to the empty
background. This can be observed from Fig. 12.
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Fig. 13 Convergence speed

Convergence speed. An important issue in the recursive
learning is the convergence speed of the system (how fast the
model converges to the actual background). Figure 13 illus-
trates the convergence speed of our approach with scheduled
learning, compared to constant learning and kernel density
estimation with constant window size.

@ Springer



406

A. Tavakkoli et al.

Fig. 14 Sudden global changes 1

in the background: a Lobby 0.8 modeling

video sequence with lights on. i eTor

b Lights off. ¢ Recovery speed 0.6 |

comparison in lights turned off 0.4 I :

scenario. d Recovery speed KESR.
comparison in lights turned on 0.2 th -
scenario L ST PRIRSLISS

—— Scheduled learning
------ Constant learning rate -
Constant window size

frame

Fig. 15 Other difficult
examples: a original frame.

b Detected foreground region
using AKDE. ¢ Detected
foreground regions using RM

(a)

Sudden global changes in the background. In situa-
tions where the video background suddenly changes—such
as lights on/off—the proposed RM technique with schedu-
led learning recovers faster than the AKDE method. Gene-
rally, with the same speed and memory requirements, the RM
method results in faster convergence and lower model error
than existing techniques.

Figure 14 shows the comparison of the recovery speed
from an expired background model to the new one. Figure 14a
depicts an indoor scene with lights on and Fig. 14b shows
the scene with the lights off. In our example (Fig. 14c¢) lights
go from on to off through three global but sudden changes
occurring at frames 23, 31 and 47. As shown, the scheduled
learning RM method (solid curve) recovers the background
model after these changes faster than non-scheduled RM and
the AKDE with constant window size. The constant, large
learning rate recovers more slowly (dashed curve) while the
AKDE technique (dotted curve) is not able to recover even
after 150 frames. A similar situation with lights going from
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off to on through three global, sudden illumination changes
is shown in Fig. 14d. It needs to be mentioned that the mix-
ture learning algorithms are even slower in convergence and
recovery. A typical mixture learning technique proposed in
[25] needs at least 1,000 frames to converge.

Other difficult examples. Figure 15 shows three video
sequences with challenging backgrounds. In column (a) the
original frames are shown, while column (b) and (c) show
the results of the AKDE and the RM methods, respectively.
Heavy rain, waving tree branches, and the water fountain
shown in this figure (from top to bottom) pose significant
difficulties in detecting accurate foreground regions.

Quantitative evaluation. Performance of our proposed
methods, RM and AKDE, is evaluated quantitatively on ran-
domly selected samples from different video sequences, taken
from [14].

The similarity measure between two regions A (detec-
ted foreground regions) and B (ground truth) is defined by
SA,B) = ﬁ% This measure increases monotonically
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Table 1 Qqantltatlve evaluation Method Videos
and comparison. The sequences
are Meeting Room, Lobby,
Campus, Side Walk, Water and MR LB CAM SW WAT FT Avg.5(A, B)
Fountain, from left to right from
[14] AKDE 0.74 0.66 0.55 0.52 0.84 0.51 0.64
RM 0.92 0.87 0.75 0.72 0.89 0.87 0.84
Spatio-Temp [14] 0.91 0.71 0.69 0.57 0.85 0.67 0.74
MoG [25] 0.44 0.42 0.48 0.36 0.54 0.66 0.49

with the similarity between detected masks and the ground
truth, ranging between O and 1. By using this measure we
report the performance of the AKDE method, the RM method,
the spatio-temporal technique presented in [14] and the mix-
ture of Gaussians (MoG) in [25]. By comparing the average
of the similarity measure over different video sequences in
Table 1, we can see that the RM method outperforms other
techniques. This shows that the RM method works consis-
tently well on a wide range of video sequences. Also, note
that both AKDE and RM are automatic, without the need for
fine-tuning a large number of parameters for each scene, as
opposed to other existing methods.

However from this table one might argue that AKDE
does not perform better than the method presented in [14].
The reason is that in [14] the authors used a morphologi-
cal post-processing stage to refine their detected foreground
regions, while the results shown for AKDE are the raw detec-
ted regions. We performed a morphological post-processing
on the results obtained by the AKDE, and the average simi-
larity measure increased to 0.74.

Computation time. In this section, we present a compa-
rison of the speed of the RM and the AKDE on the Hand-
shake video sequence. The frame size for the experiments is
120 x 160 in RGB color format. The systems are implemen-
ted on a 4.8 GHz Pentium 4 Processor. We used N = 300
frames for the initial background training process for the
AKDE. Table 2 shows the computation time of the system
for the AKDE and the RM method. As seen, the RM method
is a fast technique with frame rate of at least 15 fps.

Comparison summary. Table 3 summarizes this study
and provides a comparison between different traditional
methods for background modeling proposed in the literature
and our proposed methods. The comparison includes the
number of parameters, classification type, memory
requirements, computation cost and parameter selection.

Table 2 Computation time

Method Detection time per frame (s) Speed (fps)
AKDE 0.186 5.2
RM 0.0625 15.38

Table 4 shows different scenarios and illustrates which
method appears to be particularly suitable for foreground
region detection.

6 Conclusions and future work

In this paper, we have presented two novel techniques for
background modeling based on non-parametric density esti-
mation and recursive modeling. The advantage of our adap-
tive kernel density estimation method (AKDE) over existing
techniques is that instead of a global threshold for all pixels
in the video scene, different and adaptive thresholds are used
for each pixel. By training these thresholds the system works
robustly on different video scenes without changing or tuning
any parameter. Since each pixel is classified by using adap-
tive thresholds and exploiting its color dependency, the back-
ground model is more accurate.

Our novel recursive modeling method (RM) updates the
model on-line when a new frame becomes available, instead
of processing a set of video frames to generate the back-
ground model. Since the model is not generated by a finite
set of samples it eventually converges to the actual back-
ground model. This method is superior and more robust than
other techniques for situations in which background changes
are slow and not periodic.

In particular the RM method outperforms other non-
parametric techniques when a set of empty background
frames is not available (such as the Mall video sequence)
as well as in the case of a hand-held camera. The recovery
and convergence speed of the RM method in cases when the
global illumination suddenly changes are better than those
of other non-parametric techniques.

From studying the performance of each of the proposed
methods in terms of memory requirements and computatio-
nal costit can be observed that the AKDE method is more effi-
cient than the RM technique when background changes are
fast. On the other hand when changes occur very slowly, or
when there are no empty background frames, the RM works
better than AKDE because of its recursive nature.

A future research direction is to perform the foreground/
background segmentation without establishing a probabilistic
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Table 3 Comparison between

the proposed methods and Criteria AKDE RM KDE [5]  Spatio-Temp [14]  MoG [25]  Wallflower [31]
traditional techniques
No. of parameters 3 3 3 9 5 8
Scene-independent  Yes Yes No No No No
Post proc. No No No Yes No No
n number of training frames or Classifier Bayes MAP Bayes Bayes Bayes K-means
trammg features used per pixel Memory req.2 o) o) On) O@n) o) On)
2 Per-pixel memory requirements a
or computational cost Comp. cost O(n) o) 0O O(n) o) O(n)
Table 4 Scenarios where each -
method appears to be Scenario AKDE RM KDE [5] [14] MoG [25] Wallflower [31]
particularly suitable
Low contrast video N Nsb S NS NS NS
Close Bg/Fg colors S NS NS NS NS NS
Slowly changing background NS S NS S S
Rapidly changing background S S S S NS
Sudden global changes NS S NS S S NS
Non-empty backgrounds NS S NS S S S
4 Suitable
Hand-held camera NS S NS NS NS NS

b Not suitable

model for the background or the foreground. This new
approach would aim to establish the decision boundaries bet-
ween background and foreground classes for each pixel based
on support vector classification methods.
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