
Why network size is so important 

0 ne critical aspect neural 
network designers face 
today is choosing an 
appropriate network size 

for a given application. Network size 
involves in the case of layered neural 
network architectures, the number of 
layers in a network, the number of 
nodes per layer, and the number of 
connections. Roughly speaking, a 
neural network implements a nonlinear 
mapping of u=G(x). The mapping 
function G is established during a 
training phase where the network 
learns to correctly associate input pat- 
terns x to output patterns U. Given a set 
of training examples (x, U), there is 
probably an infinite number of differ- 
ent size networks that can learn to map 
input patterns x into output patterns U. 

The question is, which network 
size is more appropriate for a given 
problem? Unfortunately, the answer 
to this question is not always obvious. 
Many researchers agree that the quali- 
ty of a solution found by a neural net- 
work depends strongly on the 
network size used. In general, net- 
work size affects network complexity, 
and learning time. It also affects the 
generalization capabilities of the net- 
work; that is, its ability to produce 
accurate results on patterns outside its 
training set. 

Here is a very illustrative analogy 
between neural network learning and 
curve fitting that highlights the impor- 
tance of network size. There are two 
problems in curve fitting: 1) finding 
out the order of the polynomial, and 
2 )  finding out the coefficients of the 
polynomial. Thus, given a set of data 
points, first we decide on the order of 
the polynomial we will use and then 
we compute the coefficients of the 
polynomial. This way we minimize 
the sum of the squared differences 
between required and predicted val- 
ues. Once the coefficients have been 
computed, we can evaluate any value 

of the polynomial given a data point, 
even for data points that were not in 
the initial data set. 

If the order of the polynomial cho- 
sen is very low, the approximations 
obtained are not good, even for points 
contained in the initial data set. On the 
other hand, if the order of the polyno- 
mial chosen is very high, very bad val- 
ues may be computed for points not 
included in the initial data set. Fig. 1 
illustrates these concepts. Similarly, a 
network having a structure simpler 
than necessary cannot give good 
approximations even for patterns 
included in its training set. A more 

complicated than necessary structure, 
“ovefits” the training data, that is, it 
performs nicely on patterns included 
in the training set but performs very 
poorly on unknown patterns. 

What does 
the theory say? 

Generally, the number of nodes in 
the input and output layers can be 
determined by the dimensionality of 
the problem. However, determining 
the number of hidden nodes is not 
straightforward. It requires first the 
determination of the number of hid- 

den lavers. There is a 

good /$ fit bad fit 0 

Fig. 1 Good and bad fits 

numbe-r of theoretical 
results concerning the 
number of hidden lay- 
ers  in a network. 
Specifically,  Nielsen 
has shown that a net- 
work with two hidden 
layers can approximate 
any arbitrary nonlinear 
function and generate 
any complex decision 
region for classification 
problems. 

Later Cybenko 

OCTOBERINOVEMBER 1994 0278-6648/94/$4.00 0 1994 IEEE 27 



showed that a single layer is enough to 
form a close approximation to any non- 
linear decision boundary. (Furthermore, 
it was shown that one hidden layer is 
enough to approximate any continuous 
function with arbitrary accuracy-when 
the accuracy is determined by the num- 
ber of nodes in the hidden layer; also, 
one hidden layer is enough to represent 
any Boolean function). 

Recently, Hornik and Stinchombe 
have come up with a more general theo- 
retical result. They have shown that a 
single hidden layer feedforward net- 
work, with arbitrary sigmoid hidden 
layer activation functions, can approxi- 
mate an arbitrary mapping from one 
finite dimensional space to another. 
This tells us that feed-forward networks 
can approximate virtually any function 
of interest to any desired degree of 
accuracy, provided enough hidden units 
are available. 

Although the above theoretical  
results are of great importance, they 
don’t give us an indication of how to 
choose the number of hidden units 
needed per hidden layer. Also, even if 
one hidden layer may be enough theo- 
retically, in practice more than one 
hidden layer should be utilized for 
faster, more efficient problem solving. 
For example, we mentioned that one 
hidden layer is enough to approximate 
any continuous function. However, in 
some problems, a large number of hid- 
den nodes may be required to achieve 
the desired accuracy. Thus, a network 
with two hidden layers and much 
fewer nodes should solve the same 
problem more efficiently.  Hence ,  
choosing an appropriate network size 
for a given problem is still something 
of an art. 

very beneficial  in 

Why are small and simple 
networks better? 

In determining network size, one is 
only guided by intuition and some spe- 
cific knowledge about the problem. For 
example, when the input is an image, it 
is more reasonable to define local 
receptive fields (that is, to use local 
connections), instead of full connectivi- 
ty. This is because nearby pixels in the 
image are probably more correlated 
than pixels located far away from each 
other. 

Unfortunately, when no a-priori 
knowledge about the problem is avail- 
able, one has to determine the network 

Modify error function Sensitivitycalculation 

size by trial and error. Usually, one has 
to train different size networks and if 
they don’t yield an acceptable solution, 
then they are discarded. This procedure 
is repeated until an appropriate network 
is found. 

Experience has shown that using the 
smallest network which can learn the 
task, is better for both practical and the- 
oretical reasons. Smaller networks 
require less memory to store the con- 
nection weights and can be implement- 
ed  in hardware more easily and 
economically. Training a smaller net- 
work usually requires less computations 
because each iteration is less computa- 
tionally expensive. Smaller networks 
have also very short propagation delays 
from their inputs to their outputs. This is 
very important during the testing phase 
of the network, where fast responses are 
usually required. 

Bigger networks generally need larg- 
er numbers of training examples to 
achieve good generalization perfor- 
mance. It has been shown that the train- 
ing examples needed grows almost 
linearly with the number of hidden 
units. However, in many practical cases 
we have only a limited number of train- 
ing data. This may lead to a very poor 
generalization. Finally, although bigger 
networks can perform more complicat- 
ed mappings, when trained with limited 
training data they exhibit poor general- 
ization. 

Modifying the 
network architecture 

W e  can see that solving a given 
problem using the smallest possible net- 
work provides a lot of advantages. 
However, choosing a smaller network 
over a larger one means that we actually 
restrict the number of free parameters in 
the network. Consequently, the error 
surface of a smaller network is more 
complicated and con- 
tains more local rnini- 
ma compared with the 
error surface of a larg- 
er network. Local min- 
ima in the error surface 
can seriously prevent a 
network from reaching 
a good solution. Thus, 
although smaller net- 
works can prove to be 

require a lot of effort. 
A number of techniques attempt to 

improve the generalization capabilities 
of a network by modifying not only the 
connection weights but also the archi- 
tecture as training proceeds. These tech- 
niques can be divided into two 
categories. The first category includes 
methods that start with a big network 
and gradually eliminate the unnecessary 
nodes or connections. These methods 
are called pruning methods. 

The second category includes meth- 
ods that start with a small network and 
gradually add nodes or connections as 
needed. These methods are called con- 
structive methods. Fig. 2 illustrates the 
classification of these methods. 

Pruning methods 
These methods attempt to find a 

quick solution by starting with a large 
network and reducing it. Considering 
the curve fitting problem, this approach 
implies that we start with a high order 
polynomial and gradually eliminate the 
higher order terms which do not con- 
tribute significantly to the fit. There are 
two main subcategories of pruning 
methods: (i) pruning based on modify- 
ing the error function and (ii) pruning 
based on sensitivity measures. 

Modifying the error function 
The basic idea is to modify the error 

function of the network in such a way 
that the unnecessary connections will 
have zero weight (or near zero) after 
training. Then, these connections can be 
removed without degrading the perfor- 
mance of the network. These approach- 
es, which are also called weight decay 
approaches, actually encourage the 
learning algorithm to find solutions that 
use as few weights as possible. The 
simplest function can be formed by 
adding to the original error function a 
term proportional to the sum of squares 
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of weights: 
E = E,, + y c c w,,2 

( J  

where E, is the original error function 
(sum of the squared differences 
between actual and desired output val- 
ues), y is a small positive constant 
which is used to control the contribution 
of the second term, and w,, is the weight 
of the connection between node j of a 
layer, and node i of the immediately 
higher indexed layer. The above error 
function penalizes the use of more w,’s 
than necessary. To show this, lets see 
how the weight updating rule is  
changed. Assuming that we apply the 
gradient descent procedure to minimize 
the error, the modified weight update 
rule is given by: 

where t denotes the t-th iteration and a 
denotes the learning rate. This expres- 
sion can be written as: 

We can show that the magnitude of 
the weights decreases exponentially 
towards zero by computing the weight 
values after r weight adaptations: 

(assuming 11-2yal < 1). This approach 
has the disadvantage that all the weights 
of the network decrease at the same 
rate. However, it is more desirable to 
allow large weights to persist while 
small weights tend toward zero. This 
can be achieved by modifying the error 
function so that small weights are 
affected more significantly than large 
weights. This can be done, for example, 
by choosing the following modified 
function: 

The weight updating rule then 
becomes: 

In this case, small weights decrease 
more rapidly than large ones. 

Sensitivity based methods 
The general idea is to train a net- 

work in performing a given task and 
then compute how important the exis- 

tence is of a connection or node. The 
least important connections or nodes 
are removed and the remaining net- 
work is retrained. In general, the sensi- 
tivity measurement does not interfere 
with training; however, it does require 
an extra  amount of computational 
effort. 

The key issue is finding a way to 
measure how a solution reacts to 
removing a connection or a node. Early 
approaches attempt to remove a connec- 
tion by evaluating the change in the net- 
work’s output error.  If the error 
increases too much, then the weight 
must be restored. 

More sophisticated approaches eval- 
uate the change in error for all the con- 
nections and training data, and then 
remove the one connection which pro- 
duces the least error increment. Obvi- 
ously, both approaches are extremely 
time consuming, especially when large 
networks are considered. 

A more heuristic approach is the 
“skeletonization” procedure proposed 
by Mozer and Smolensky. In their 
approach, the relevance of a connection 
is computed by measuring the error 
increase when the connection is 
removed. However, the relevance of a 
connection is computed by using infor- 
mation about the error surface’s shape 
near the network’s current minimum. 

This is performed using the partial 
derivative of the error with respect to 
the connection to be removed. Connec- 
tions with relevance below a certain 
threshold are then removed. 

“Optimal brain damage” is another 
approach proposed by Le Cun and his 
co-workers. In this approach, the salien- 
cy of connections is measured using the 
second derivative of the error with 
respect to the connection. In particular, 
the saliency S,, of a connection w,, is 
given by 

where the second derivative measures 
the sensitivity of the error to small per- 
turbations in w,. Thus, connections with 
small weight values having a significant 
influence on the solution are not 
removed. 

Constructive methods 
These start with a minimal network 

and add new nodes during training. 
Small networks get easily trapped to 
local minima, so new hidden nodes are 

added to change the shape of the weight 
space and to escape the local minima. 
Considering the curve fitting problem 
again, the constructive approach implies 
that we start with a very low order poly- 
nomial and we add higher order terms 
every time the current polynomial can- 
not provide a good fit. 

There are a lot of interesting algo- 
rithms falling into this category and var- 
ious heuristics are employed during the 
network growth process. To understand 
how these algorithms operate, we will 
focus on two of them: the Upstart algo- 
rithm which appears to be very success- 
ful  for  binary mappings,  and the 
Cascade Correlation algorithm which 
appears to be very successful for real 
valued mappings. Both algorithms build 
a tree-like network by dividing the input 
space successively. 

The Upstart algorithm builds a tree- 
like network in a top-down fashion. The 
nodes of the network are linear thresh- 
old units. The output of a node is either 
0 or 1 .  The number of input-output 
nodes is determined by the nature of the 
problem. In the following description, 
we assume that the network consists of 
a single output node, that is, the net- 
work can assign an input pattern into 
two possible classes (one is represented 
by 0 and the other by I). The steps can 
be summarized as follows: 

Step 1 .  Initially, a single node is 
assumed which is connected to each 
input of the network. This node is  
trained to learn as many associations as 
possible. 

Step 2. If that node creates wrong 
classifications, two “child” nodes are 
created to correct the erroneous “0” and 
“1” classifications of their ‘parents’. 

Step 3. The weights from the inputs 
to the parent node are frozen. The child 
nodes are connected to the inputs of 
the network. Each child node is trained 
to correct the erroneous “0” classifica- 
tions and the erroneous ‘‘I” classifica- 
tions. 

Step 4. The child node which cor- 
rects erroneous “0” is connected to its 
parent node with a large positive 
weight. The child node that incorrectly 
fixes the 1’s cases is connected to its 
parent node with a large negative 
weight. 

Step 5 .  Two nodes are added for 
each child node in order to correct their 
wrong classifications. The old child 
nodes are treated as parent nodes now 
and the added nodes as new child 

OCTOBER/NOVEMBER 1994 29 



nodes. Training continues until all the 
data are classified correctly. 

The Upstart algorithm is guaranteed 
to converge because each subnode is 
guaranteed to classify at least one of its 
targets correctly. This is true because 
for binary patterns, it is always possible 
to cut off a corner of the binary hyper- 
cube with a plane. The number of nodes 
grows linearly with the number of pat- 
terns. The resulting hierarchical archi- 
tecture can be converted into an 
equivalent two layer network. This 
algorithm can easily be extended to be a 
classifier with more than one classes. 

The Cascade Correlation algorithm 
also builds a tree-like network but in a 
bottom-up fashion. The number of 
input-output nodes is determined a-pri- 
ori based on the problem‘s characteris- 
tics. The hidden units are added to the 
network one at a time and are connected 
in a cascaded way. The activation func- 
tions for the nodes may be sigmoidal 
functions or any mixture of non-linear 
activation functions. The main steps of 
the algorithm follow: 

Step 1. Connect each input node to 
each output node and train the network 
over the entire training set to learn as 
many associations as possible. 

Step 2 .  When no significant error 
reduction has occurred after a certain 
number of training iterations, run the 
network one last time over the entire 
training set to measure the error. 

Step 3. If the error is less than a 
threshold then stop, otherwise add a 
new hidden node (candidate), and con- 
nect it with every input node and every 
pre-existing hidden node. Don’t connect 
it  to the output nodes yet. 

Step 4. Freeze all the weights of the 
network. Adjust only the new hidden 
unit’s input weights by trying to maxi- 
mize the magnitude of the correlation 
between the new unit’s output and the 
network’s output error. 

Step 5.  If the new hidden unit stops 
improving ( i .e . .  the error doesn’t  
decrease), freeze its input weights and 
connect it to the output nodes. 

Step 6. Train the network adjusting 
only the connections from the new hid- 
den unit to the output nodes. Then. go 
back to step 3. 

Step 4 of the algorithm actually max- 
imize$ the magnitude of the correlation 
between the candidate node’s output 
and the network’s error. Specifically. 

the function to be maximized has the 
form 

where V,, is the candidate node output 
when the p-th training pattern is pre- 
sented to the network. The E,,,, is the 
output error of the o output node when 
the p-th training pattern is presented to 
the network. Furthermore, V and E are 
the averages of V,, and E,>,> over all the 
training patterns. Each new node added 
to the network actually learns a map- 
ping which has the best possible corre- 
lation with the errors of the previous 
network . 

The way the hidden output weights 
are modified is the following: if a hid- 
den unit correlates positively with the 
error at a given output node, it will 
develop a negative connection weight to 
that node, attempting to cancel some of 
the error. Otherwise, i t  will develop a 
positive connection weight. The main 
advantages of the Cascade Correlation 
algorithm are: (i) i t  learns fast, (ii) i t  
builds reasonably small networks, and 
(iii) it requires no back-propagation of 
error signals. 

Just a few more words ... 
So far we have discussed pruning 

and constructive approaches without 
comparing them. It is really difficult to 
say which approach performs better. 
Pruning has the disadvantage that often 
larger than the required size networks 
are chosen as starting points. Since a lot 
of time is spent training before pruning 
really starts, this may be computational- 
ly wasteful. In addition, since many 
medium-size networks can learn the 
same problem, the pruning procedure 
may not be able to find a small-size net- 
work because it may get stuck with one 
of these medium-size networks. 

Construct i ve a pp ro ac h e s tend to 
result with networks having long propa- 
gation delays from network inputs to 
network outputs. In addition, new nodes 
are usually assigned random weights 
which are likely to disrupt the approxi- 
mate solution already found. 

A probably superior approach would 
be a combination of constructive 
approaches with pruning. For example, 
the authors of the Cascade Correlation 
algorithm suggest that to keep the depth 
of the network small and to minimize the 
number of connections to the hidden and 
output nodes, simply use a weight decay 

approach by adding a penalty term to the 
error function. A general procedure for 
coupling constructive and pruning 
approaches would be the following: 
allow a small network to grow enough 
during training until a reasonable solu- 
tion is found. Prune the network in order 
to achieve a smaller and faster network 
which provides the desired solution more 
efticiently and accurately. 

Our discussion would be incomplete 
without mentioning two emerging 
approaches: weight sharing and Genetic 
algorithms. 

Weight sharing tries to reduce the 
number of weights in a network by first 
assigning a local receptive field to each 
hidden node. Then the weights of hid- 
den nodes, having receptive fields at 
different locations of their inputs, are 
given the same values. Thus. hidden 
nodes that have receptive fields with 
common weights actually try to detect 
the same kind of features but at differ- 
ent locations of their input. Weight 
sharing has been applied by Le Cun and 
his co-workers on a handwritten digit 
recognition task. 

Genetic algorithms are a class of 
optimization procedures inspired by the 
biological mechanisms of reproduction. 
A genetic algorithm operates iteratively 
on a population of structures. Each one 
represents a candidate solution to the 
problem the algorithm is trying to solve. 
On each iteration, a new population is 
produced by first applying on the old 
population three fundamental opera- 
tions: reproduction, crossover, and 
mutation. Then, each member of the 
population is evaluated through a fitness 
function. Members assigned a bad eval- 
uation are discarded, while members 
assigned a good evaluation survive in 
future populations. 

The key issue is how an architecture 
should be translated to be utilized by the 
genetic algorithm. and how much infor- 
mation about the architecture should be 
encoded into this representation. For 
example, Miller, Todd. and Hyde repre- 
sent the network architecture as a con- 
nection matrix, mapped directly into a 
bit-string. Then, a number of different 
size networks are encoded in this way in 
order to form the initial population. The 
genetic operators act on this population. 
New populations are formed. A decod- 
ing procedure is applied on each mem- 
ber of t h e  population in order to 
transform a bit-string into a legitimate 
network architecture. The fitness of 
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each network is evaluated by training it 
for a certain number of epochs, and 
recording the network’s error. There has 
been some preliminary success associat- 
ed with the problem of optimizing the 
network size but there is still a lot to be 
accomplished. 
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