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Abstract—Object recognition is an essential part of any high-level computer vision system. In this paper,
several approaches for classifying two-dimensional objects which are based on the use of both invariant
boundary transformations and artificial neural networks (ANNs) were implemented and compared.
Specifically, the centroidal profile, the cumulative angular and the curvature representations were used.
Two different ANN learning approaches were considered. The first involved supervised learning while
the second involved unsupervised. In particular, the multilayer ANN trained with the predict back-
propagation rule and the Kohonen ANN were utilized. Implementation issues, simulation results and
comparisons show the strengths and weakness of each approach, especially when noisy and distorted

objects were used for recognition.
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1. INTRODUCTION
Computer vision systems are cyrrently being intro-

machines with the capability to “see”, the intel-
ligence to “understand” the surrounding environ-
ment and the ability t0 identify various objects.®
Most of the current object recognition systems are
model-based systems,® in which recognition
involves matching the input image with a set of
predefined models of objects. In such a system the
known objects are precompiled, creating a mode}
database, and this database is used to recognize
objectsin an image scene. Under these circumstances
object recognition entails the assignment of an
unknown object to one of several classes of objects
based on a finite set of object features. However,
certain applications require. objects to be recognized
regardless of their location, size or orientation and
these objects could also be overlapped or partially
occluded. In addition, problems concerning dis-
tortion and noise must be resolved since seg-
mentation errors always exist due to the position of
lights, surface material, quantization, reflection and
shadows.

In many industrial applications the objects to be
recognized can be described by their.object bound-
aries. A careful examination of the boundary of
an object reveals that similar objects have similar
boundaries. For a large number of object images,
use of the object boundary to provide information is
attractive because of the reduction in quantity of

Cumulative angular function
Artificial neural networks

information, compared to that of the original 2D
object images. The process of boundary extraction

. usually starts by applying an edge detector to the
duced in various environments in order to provide /

/ original gray scale image and then applying a
7 thresholding technique. There are many techniques
i available to describe objects based on their bound-

") aries. Among them are the chain codes® and the

polygonal approximations.® Once the boundary has
been established, it is often desirable to express it in
terms of 1D functions using boundary transfor-
mations. Such transformations include the centroidal
profile functions, the slope density function,® the
cumulative angular function”? and the curvature
function based on the parametric equations of the
boundary.® ,

- Present object recognition methods can be cat-
egorized as either global or local in nature. Global
methods are based on global features of the boundary
or of an equivalent representation. Such techniques
are the Fourier Descriptors,” the Moments® and
methods based on Autoregressive Models.'? Local
methods use local features such as critical points®
or holes and corners. They perform extremely well in
the presence of noise, distortion or partial occlusion
since such effects on an isolated region of the contour
alter only the local features associated with that
region, leaving all the other local features unaffected.
However, the choice of representative local features
is not trivial and the recognition process based on
local features is more computationally intensive and
time consuming. On the other hand, global methods
have the disadvantage that a small distortion in a
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section of a boundary of an object will result in
changes to all global features.

After feature extraction has been established, a
classification scheme must be used for the recognition
stage. Although several robust techniques have been
developed, an improvement can be made in the
computation time and the degree of noise that a
classifier can tolerate. In this paper, the classification
of 2D objects is attempted using artificial neural
networks (ANNs). The approach is essentially model
based, since it is assumed that the objects to be
recognized are known in advance, forming a set of
models. Most of the existing ANN classifiers require
a 2D object to be presented in a fixed position,
orientation and size. Thus, a preprocessing stage is
required to normalize it. In this study, we present and
compare three different 2D object representations
which seem to be quite effective for the preprocessing
stage. These representations are based on the use of
invariant boundary transformations. Specificaily, the
centroidal profile,”®) the cumulative angular ) and
the curvature® boundary transformations are used.
Objects to be recognized can be corrupted with noise
and distortion. We restrict our study in cases where
the objects can be described by their boundaries
which are closed and they do not cross themselves.
ANNSs can perform different tasks, one of which is
in the context of a supervised classifier. Utilizing all
the information supplied by the invariant contour
transformations, the feature extraction and the
actual classification is accomplished using ANN.
Over the past few years, a veritable explosion of
interest in ANN models and their applications has
occurred. 13 ANNs possess a number of properties
which make them particularly suited to complex
classification problems.(*'®) Unlike the traditional
classifiers, ANN models are able to examine
numerous competing hypotheses simultaneously
through the use of massive interconnections among
many simple processing elements. In addition, ANNs
perform extremely well under noise and distortion
conditions. :

Inamodel-based object recognition system, object
models are represented into a model database, using
‘a proper knowledge representation scheme. Gen-
erally, increasing the number of object models in the
model database has the effect that the computational
complexity and the time requirements of the system
are greatly increased. However, implementation of a
model-based object recognition scheme using ANNs
seems to be very attractive. First of all, ANNs pro-
vide their own way to represent the knowledge that
they store.("7 In addition, the complexity and the
computational burden increases very slowly as the
number of data models increases. Although ANNs’
performance is excellent, many researchers still criti-
cize ANNs because they require a lot of training time
before they become able to perform a specific task.
However, in our case, the recognition phase is of the
most importance and it must be implemented as

. from

quickly and accurately as possible. Obviously the
trainigg phase can be performed off-line.

Two different learning ANN approaches are com-
pared in this work. The first approach utilizes super-
vised learning while the second approach utilizes
unsupervised. Specifically, a multilayer ANN®
trained with the “‘predict back-propagation” learning
rule™ and the Kohonen ANN@) are considered.
The paper has been organized as follows: in Sections
2-4 we describe the boundary transformations that
are utilized, and in Section 5 we present a brief
overview of the multilayer ANNs and the predict
back-propagation rule. Section 6 contains a short
description of the Kohonen ANN. In Section 7 the
experiments, the simulation results and certain com-
parisons among the different approaches are
presented. Section 8 provides a comparison among
certain traditional methods and the best ANN
approaches. Finally, Section 9 follows with con-
clusions and remarks.

2. CENTROIDAL PROFILE REPRESENTATION

The centroidal profile is a 1D representation of
the boundary of an object. It is characterized by an
ordered sequence that represents the distance from
the digitized boundary of the object to its centroid
as a function of distance along the boundary. A
simple object it shown in Fig. 1(a) and its cor-
responding centroidal profile is illustrated in Fig.
1(b). The length of the sequence is determined by
the number of points along the boundary. Freeman®®
describes a method for obtaining the centroidal pro-
file from a chain-coded boundary. Our technique is
based on the Cartesian coordinates of the boundary.
The centroid (X,, Y,) is estimated using the following
formulae: :

2 2 f(x, y)x > 2 f(x, vy

P G A . S —

22y XXk
x Yy x oy

where f(x, y) is set to 1 for object points and set to
0 elsewhere. Since the centroid’s coordinates are
determined by the ratio of first-order moments to
enclosed area, they are relatively insensitive to noise
and therefore the centroid tends to be a stable point
of reference for the object.

Next, defining N as the number of points along
the boundary, the distances d(i), i=1,2,... , N,
the centroid to the boundary  points
{x(0),y(®),i=1,2,...,N}, are computed starting
from an arbitrary position of the boundary and track-
ing the boundary in a counterclockwise direction.
Using as distance measure the Euclidean norm we
have:

i) =V{x, = X2 + (; = Yo)?, i=1,2,...,N.

The centroidal profile is similar to other boundary
representations such as Peli’s shape signature®




Object recognition

2-x-45

45-y-7
(2)

Fig. 1. A simple object and its boundary representations: (a) a square; (b) centroidal profile repre-
sentation; (c) cumulative angular representation; (d) curvature representation.

27



G. N. BeBIis and G. M. PAPADOURAKIS

ks

0-x-1

0.7 -y-1
(b)
Fig. 1. (Continued.)
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Fig. 1. (Continued.)
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0-x-1

0-y-6

Fig. 1. (Continued.)

that instead of taking sample points at equal distances
on the boundary, the sampled points are taken at
equal angular steps. The angular step size should
satisfy the sampling theorem for the contour
waveform. The representation obtained by sampling
the contour at equal angles from the centroid can be
used for the reconstruction of the original boundary.
Furthermore, it has a fixed duration and this is a
very convenient representation for techniques that
require a fixed number of observations. However,
the shape variation profile has some serious dis-
advantages. Equi-angular sampling of the boundary
does not lead to uniform spacing among the selected
points along the boundary. In addition, problems
may occur if the boundary includes highly convex
and concave regions. This has the impact that the
resulting representation can be a multivalued func-
tion. There have been proposed® some solutions
to the above problems but they require additional
processing cost and further approximations. The cen-
troidal profile function overcomes the above dis-
advantages. The boundary can be sampled at equal

distances and the resulting representation is always
a single valued function.

A boundary sampled at equal distances provides
a centroidal profile that can be used for the recon-
struction of the original boundary. Specifically, if we
know the starting boundary point, the normalization
scale factor and the distance between boundary
points, the centroidal profile generation process is
reversible. This suggests that two objects can be
compared by comparing their centroidal profiles. In
other words, the similarity between two objects can
be determined by the degree of similarity between
their centroidal profiles.

3. CUMULATIVE ANGULAR REPRESENTATION

The cumulative angular representation is a 1D
description of an object’s boundary which has been
proposed by Zahn and Roskies,” as an alternative
way of defining the Fourier descriptors of the object’s
boundary. The boundary of an object can be
described by the parametric equations {x(7), y(¥)},
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x(0),y(0)

00y

(b)

Fig. 2. Changes in angular direction: (a) the 6(r) and ¢(r) functions; (b) description of simple closed
polygon in terms of A/, and Adg;.

where t is a linear function of arc length with
O0=rt=L, and L denotes the total length of the
boundary. Representing the angular direction of the
boundary at point ¢ by the function 6(z), then the
cumulative angular function ¢(f) can be defined as
the net amount of angular bend between starting
point =0 and point ¢. Assuming that a boundary
does not cross itself, the cumulative angular function
can be defined as:

o(1) = 6(t) — 6(0).

Figure 2(a) illustrates graphically both 6(f) and
¢(f). The cumulative angular representation of the
object shown in Fig. 1(a) is presented in Fig. 1(c).

An alternative way to compute the cumulative
angular representation utilizes changes in angular
direction A¢;s of its successive vertices. Figure 2(b)
illustrates the vertex bends A¢;s of a simple polygon
contour. Assuming that the length of vertex i is Al;

and the change in its angular direction is A¢;, then:

k+1

k k
(1) = 2 Ap;for 2 Al st = 2 Al
i=1 i=1

i=1

Zahn and Roskies have shown that the boundary
of an object can be reconstructed by its cumulative
angular function ¢(¢). It is obvious that object bound-
aries having different cumulative angular rep-
resentations are distinct. This suggests that this
representation can be utilized for object classifi-
cation.

4. CURVATURE REPRESENTATION

Since Attneave’s famous observation® that infor-
mation on the shape of a curve is concentrated at
dominant points having high curvature, the curvature
function of a curve plays an important role in image
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analysis. There have been many approaches for a
precise definition of discrete curvature. The cur-
vature k of a planar curve at a point P on the curve
is defined as the instantaneous rate of change of the
slope angle  of the tangent at point P with respect
to arc length s:

dy(s)
k(s) = P

The curvature inverse equals the radius of a circle
(the osculating circle) whose curvature agrees with
that of the contour at point P. Assuming that the
curve C is expressed by the parametric equations
{x(®), y(t)}, where 1 is a linear function of the path
length ranging over the closed interval [0, 1], then
the curvature k can be computed as follows:

"

}J
= 4.1
T+ 0 -y
where y’ and y” are defined as:
dy d?y
== Y = 4.2
Y T4 Y T e (4.2)
. Furthermore, if we define:
dx d?x dy d?y
i=—, i=—, y=-— jJ=—2 (4.3
Ta fTae Yoo Ve 4
then we can express y' and y” as:
y Xy — yx
=5, Y E 44
y=5 0y e (4.4)

Substituting Equation (4.4) into (4.1) the resulting
expression for the curvature k is given by:

Xy — yx
- (Xz + );2)3/2‘ (4'5)
The curvature function of the object shown in Fig.
1(a) is illustrated in Fig. 1(d).

Discrete curvature computation depends on a
neighborhood which is calied region of support,
whose size must be chosen. Discrete curvature may
be defined by simply replacing the derivatives in
Equation (4.1) by first differences. However, this

leads to the problem that small changes in slope

are impossible, since successive slope angles on the
digital curve can differ only by a multiple of 45°.
Furthermore, curvature depends on higher order
derivatives making it sensitive to noise. In order to
select the region of support and to provide adequate
noise insensitivity, a smoother version of the cur-
vature is utilized, which is obtained by convolving
the parametric functions x(¢) and y(f) of the curve
with a 1D Gaussian® kernel g(z, 0):

—12)202

1
89 =55m¢

JT

The conygplution of the x(¢) with the Gaussian kernel
is defined as:

X(t, 0) = x(1)"g(t, 0)
____j X(u) ’__e ~(t—u)?/20? du

and Y(z, 0) is defined similarly. The smooth cur-
vature &, is similar to Equation (4.5) and is given by:
 Xv-vx
o (XE + Y2)3/2>
where

= x(r)r 289 dg(z a) ¥ = x(ryr 2889

.0 g(t 0)
and Y, Y are defined in a similar manner.

It should be mentioned that, using elementary
techniques of differential geometry,®® a curve may
be reconstructed from its curvature function given a
starting point and tangent specifications. Thus,
object contours having similar curvatures are similar.

5. MULTILAYER ANNs AND THE PREDICT BACK-
PROPAGATION RULE

Artificial neural networks are specified by the top-
ology of the network, the characteristics of the nodes
(i.e. nerves) and the processing algorithm. The intel-
ligent information properties of an ANN arise from
the above specifics. The topology of a multilayer
ANN is a structured hierarchical layered network as
shown in Fig. 3. It consists of several distinct layers
of nodes including an input layer and an output layer.
Between the input and the output layer we have one
or more layers of nodes which are called hidden.
Hidden nodes, the nodes in the hidden layers, are
used to represent domain knowledge useful for solv-
ing recognition tasks.!”) Generally, each node in one
layer is interconnected with all the nodes in adjacent
layers with connections, known as synapses. Each
connection is associated with a weight which meas-
ures the degree of interaction between the cor-
responding nodes. Nodes are relatively simple

OUTPUT DATA

P -»z—./<

r ""\.——'- =S .

A '*._*.;.'4‘
O

; O
| T o !
INPUT DATA

Fig. 3. A multilayer Artificial Neural Network.
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processing elements and the capabilities of multilayer
ANNs stem from the nonlinearities used within
them.

The algorithms for multilayer ANN processing can
be divided into two phases: retrieving and learning.
In the retrieving phase of the algorithm, information
flows from the input layer through the hidden layers
to the output layer. Basically in this phase the nodes
update their own activation values based on the
system dynamics. In the learning phase, an adap-
tation of the weights corresponding to the connection
nodes takes place. In this paper the predict back-
propagation!” learning algorithm is used which is
an improvement of the popular back-propagation
rule.!® This algorithm performs supervised learning
and in each step adjusts the connection weights in the
network, minimizing the mean-square error between
the target value (the desired) and the output value
(the actual) of the network.

A general L-layered feed-forward artificial neural
net consists of N input nodes and N; output nodes.
The number of nodes in the hidden layers is N, for
1=[=L - 1. In our notation the input layer is not
counted as a layer. So an L-layer feed-forward arti-
ficial neural net has L — 1 hidden layers and the Lth
layer is the output layer. During the retrieving phase,
we present continuous valued input data x,,
X,...,xy, called exemplar patterns and the cor-
responding desired output datafy, f5,. . ., ty, , called
target patterns. Input data are propagated forward
through the network, which computes the activation
value for each node, until the output layer is reached.
The learning phase involves a backward pass
through the network during which the error signals
produced at the output layer are passed to each node
in the network and appropriate weight changes are
made. For each weight the gradient of the output
error with respect to that weight is computed. Then,
the weight is changed in the direction that reduces
error.

In the original back-propagation algorithm the
exemplars are presented to the network continu-
ously, in a generally random way. The predict
back-propagation algorithm determines a dynamic
order in which exemplar patterns are loaded to the
network, depending on the “learning difficulty” of
each exemplar pattern. Specifically, when an exemp-
lar is loaded to the network, the error signals pro-
duced at the output layer yield a measure of its
learning “difficulty”.

Predict back-propagation algorithm

Step 1. Initially, the weights wy and the internal
thresholds take some small random values.

Step 2. The total errors &™), for m=
1,2,...,M — 1, are calculated by presenting to the
network all the training exemplar patterns. If the

patterns havesbeen learned (that is, the total errors
are less than a threshold), then the training stops.

Step 3. The exemplar pattern having the maximum
total error is chosen and presented to the network.

Step 4. Retrieving phase. The output results per
layer are calculated:

No
(1) &5 0) €8}
o (=2 wy (o, (6 + 6;
=1

(0

ol =f(a{")(r), 1=i=N,

Ny
(2) ), M (2)
() = 2wy (Do) (1) + 6;
j=1

o =) t), 1=i=N,

Ny

(L~

L) (LY, 1) (L)
=2 w0 + 6
j=1

o =1(a") (0, 1=i=N,,

where f is a nonlinear output function, {o,w(t), l=
1,2,..., L, is the output result of node i, of layer /
at time #}, {o; '(¢) = x;, that is, the current exemplar
; ay - -
input}, {a; 1@ is the activation value of node i in
layer [}, {6',( islthe internal threshold of node i in
layer [}, and {wfj) (¢) is the weight coefficient between
the node j of layer / — 1 and node i of layer [}.

Step 5. Learning phase. The weights between two
successive layers (/ and [ — 1) are adjusted, starting
from the output layer until the input layer is reached
(thatis, /= L,L —1,...,1), as follows:

0 0 () (=D
wi (t+ 1) = wy () + 16, (Do, (1),

. . (PN
where 1 is the learning rate and 61(»)(t) is the error
signal, which is determined as follows:

57w = 7 = 0" o (01 — 0" (1)
(+1)

870 =0 (01— 0" ) Z 8/ w0,
/ (5.2)

where ¢ is the desired output value of node i in
layer L, when the m exemplar pattern is presented
to the network.

(5.1)

Step 6. The total error for the current exemplar
pattern is updated. If the current exemplar pattern
has been learned (that is, its total is less than a
threshold) then continue to Step 2, otherwise, con-
tinue to Step 3.

The selection of the output function f has a critical
role to the performance of the algorithm. Generally,
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this function is the sigmoid function
o ® 1
(1) = f(a; (1) = o a0

Internal node thresholds 9§[> should be learned
just like any other weight. We simply imagine that
6,-) is the weight from a node that always has con-
stant-vajued inputs. It is easy to show that the
internal thresholds can be adjusted according to the
following rule:

6()(1? +1)= (l)(t) + né(')(t)

The learning “difficulty” of each exemplar pattern
is computed by calculating the total errors, which
depend on the output signal errors. Let efm denote
the error associated with the ith output node, when
the m exemplar pattern is presented to the network.
This error is defined as follows:

esm) - m) (L) ([)

The total error e('") can be calculated by choosing
the max-norm of ;" over all the output nodes, as
follows:

e = max, 1" - o (1),

foreachm=1,2,..., M — 1, where M is the total
number of training exemplar patterns. Calculating
the total errors e and finding the maximum of them
has the effect that the exemplar pattern having the
maximum error signals (described by Equation (5.1),
which indirectly depends on Equation (5.2)) is
chosen. Thus, at each iteration of the algorithm, the
exemplar pattern having the maximum total error is
chosen and presented to the network.

It should be noted that each time the learning
phase takes place, the total errors associated with
the training patterns are changed, since the weight
coefficients are adjusted. In order for our algorithm
to be strictly enforced, an update of the total errors
e form=1,...,M — 1, must be performed each
time we are loading an exemplar pattern to the
network. However, the computation cost of such
an action is very high and it affects negatively the

OUTPUT.
NODES

Fig. 4. The Kohonen Artificial Neural Network.

performgnce of the algorithm, although it results in
a decreased number of learning steps. Thus, the total
errors are not computed in each iteration of the
algorithm but only when some specific assumptions
are held. Specifically, each exemplar pattern is
loaded to the network repeatedly, until the learning
for this pattern has been accomplished (however, its
learning may not have been completed). Next, all
the exemplar patterns are presented to the network
(only the retrieving phase takes place) and their
associated errors are recalculated. The exemplar pat-
tern having the total associated error is chosen and
loaded to the network. The same process is repeated
until all the exemplar patterns have been learned.

6. THE KOHONEN ANN

Kohonen® has proposed this ANN algorithm in
order to produce self-organizing feature maps similar
to those occurring in the brain. In this study,
Kohonen’s ANN is used as a clustering algorithm,
which is similar to the K-Means traditional classi-
fier.® This ANN is one-layered, and its output units
form a 1D or 2D array, as shown in Fig. 4. Each
input node is connected to each output node. The
number of input nodes is determined by the dimen-
sion of the exemplar patterns. For a pattern classifi-
cation task, the required classes are represented by
the output nodes.

The training of the algorithm is unsupervised.
Continuous valued input vectors are presented ran-
domly in time without specifying the desired output.
The mapping from the external input patterns to the
network’s activity patterns is realized by correlating
the input patterns with the connection weights. After
enough input patterns have been presented, weights
will specify cluster centers that sample the input
space. In other words, the representative exemplar
pattern of each class is stored in the input to output
node connection weights.

This ANN operates in two phases: the similarity
matching phase and the weight adaptation phase.
Initially, the weights are set to small random values
and a pattern is presented to the input nodes of the
network. During the similarity matching phase, the
distances d; between the input and output nodes are
computed using the Euclidean distance;

N-1
= % (xi(6) = wy ()%,

where x,(7) is the input to node i at time ¢ and w;(r)
is the weight from input node i to output node j at
time ¢. Next, the output node j* having the minimum
distance d;- is chosen. The next step in this phase is
the definition of a topological neighborhood N of
this node j*.

In the second phase, the weights connecting the
input nodes to the selected output node j* takes
place. In addition, the weights from the input nodes
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which are contained in the neighborhood N of node
J* are also adapted. The weight changes are based
on the rule:

wii = wy(t) + n(x; () = wy(0),

for j€ Ny and 0 =i=< N — 1. The parameter 7 is
the learning rate of the algorithm. This process is
repeated until weight convergence is accomplished.

Generally, the parameters N and 17 do not remain
constant over time. As Kohonen points out after
extensive computer simulations, the performance of
the algorithm improves if N;» and 7 decrease slowly
with time. Thus N = N () and n = n(t). However,
the way that these parameters are adjusted is deter-
mined by experience, as indicated by Kohonen. "

7. IMPLEMENTATION ISSUES AND SIMULATION RESULTS

Given an arbitrary boundary representation, sev-
eral successive steps can normalize it so that it can
be matched to a test set of boundary representations
regardless of the original object’s size, position or
orientation. In the following subsections, the nor-
malization steps required by each boundary rep-
resentation to become invariant under translation,
rotation and scaling are described.

7.1. Centroidal profile normalization

The centroidal profile representation consists of a
circular sequence which can be easily shown to be
invariant to translation and rotation, provided that
the same starting contour point i$ used. A change in
starting point results in a circular shift of the cen-
troidal profile representation. A way to select a good
starting point is to choose the contour point closer
to the major principal axis and located further away
from the centroid. However, noise and distortion
effects can easily affect this starting point selection
scheme, which results in the selection of another
starting point. It should be mentioned that the ANNs
in general do not recognize circular shifted patterns,
although it is possible to recognize noise and dis-
torted inputs. This suggests that a more powerful
way must be devised to guarantee, as much as poss-
ible, the selection of a unique starting point. This
problem is anticipated by choosing the starting point
at a higher resolution. First, the boundary is con-
volved with a Gaussian filter of large variance o
which in our application was set to 6\/2. While this
operation smooths the boundary it still preserves its
major characteristics. Selecting the contour point
closer to the major principal axis and further away
from the centroid but at higher resolution and then
corresponding it to the original resolution, the start-

-ing point is chosen in an optimal manner. Scale
dependence can be removed by dividing all profile
values by their maximum value.

7.2. Cumulagive angular normalization

Since the cumulative angular function is defined
over [0, 1], it simply contains absolute size infor-
mation. Furthermore, it can be shown that ¢(L) =
—2 since all smooth closed curves with clockwise
orientation have a next angular bend of —27. Thus,
¢(L) does not convey any boundary information.
Zahn and Roskies”) have proposed a normalized
version of ¢(f), denoted by ¢*(r), which is invariant
under translation, rotation and scaling. The domain
definition of ¢*(r) is normalized to the interval
[0, 2]. The normalized cumulative angular function
¢*(r) is defined as follows:

0=0(x)

where ¢*(0) = ¢*(2m) = 0.

As an intuitive justification for the definition of ¢*
it is noted that ¢* = 0 for a circle which is in some
sense the most shapeless closed contour. Thus, the
function ¢*(r) measures the way in which a boundary
differs from a circular contour. Starting point selec-
tion is accomplished using exactly the same meth-
odology described in Section 7.1.

7.3. Curvature normalization

Curvature computation is performed by con-
volving the parametric equations of a curve with a
Gaussian kernel which is defined over an infinite
range, but it can be safely truncated at a distance of
30 from its center. The kernel size is chosen to be
50, which is the size that can still provide a good
approximation for the second derivative of the Gaus-
sian function. Thus, the region of support for the
computation of the curvature function is chosen to
be 50. In our experiments, o was set to V2. Since
curvature computation is based on the use of first
and second order derivatives, it is very sensitive to
noise. The above value of o preserves most of the fine
detail in the object’s contour and provides adequate
noise suppression.

Curvature computation of a path-based par-
ameterized object boundary yields translation and
rotation invariance properties provided that the same
starting boundary point is used (i.e. the point at 1 =
0). A change of starting point leads to a circular
shift of the curvature function. The starting point
is selected by using the methodology described in
Section 7.1. Scale invariance can be accomplished
by dividing all the curvature values by the maximum
curvature value.®

7.4. Simulations

In order to evaluate the performance of the pre-
viously described invariant contour representations,
two object sets were used. Specifically, the first set
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Fig. 5. Raw image daia.
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consists of the images of eight different knives, while
the second set consists of the images of eight different
tools. The objects were positioned on a light table
and as a result high contrast images were obtained.
A Laplacian edge detector separated the objects
from the background and a boundary-following
routine extracted their boundaries (Fig. 5). Object
contours were then smoothed using a Gaussian func-
tion of 0 = 1.0. The filter’s masksize was equal to 5.
The 16 closed contour boundaries are shown in Figs
6(a) and (b). The first set includes dissimilar objects
and the discrimination task seems to be easy. On the
other hand, the second set contains very similar
objects, making their discrimination very difficult.
All the boundaries were approximated by 256 con-
tour pixels along the boundary. Inner boundary
information was not utilized in this study. The length
of each boundary representation determines the
number of input nodes (256) for all the ANNs. The
number of output nodes in each ANN was set to 8,
indicating the number of distinct objects in each set.
The correct recognition of an object is indicated by
the value of one in the corresponding output node,
while the remaining output nodes take the value of
Ze10.
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7.4.1. Implementation of the multilayer ANN. The
multilayer ANN architecture used in this study con-
sists of three layers (two of them are hidden). With-
out any a priori knowledge, we have set the number
of nodes per hidden layer equal to 50. The value of
learning rate was set to 0.2 and it.remained constant.
As we have mentioned earlier, at each time step
of the algorithm, the exemplar pattern having the
maximum associated total error is chosen to be pre-
sented to the network. The updating of the errors
associated to each exemplar pattern is done in
relation to the termination condition of the algor-
ithm. Our termination condition determines that one
task is considered solved when the total error associ-
ated with each exemplar pattern is less than a given
threshold. Each time that the termination condition
was true for some exemplar, the rest of exemplars
were presented to the network, one after the other,
until for some exemplar the termination condition
was false. At the same time, the total error associated
to each exemplar pattern is updated. This strategy
decreases by a large amount the number of steps
required for the updating without seriously increas-
ing the number of learning steps. In these simula-
tions, the threshold parameter was set to 0.2.

Z

T

%é
~
7~

{

T

I
0-x-8

0-y-10

(a)

Fig. 6. (a) The set of different tools; (b) the set of similar
knives.
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Fig. 6. (Continued.)

7.4.2. Implementation of the Kohonen ANN. In
this ANN we must determine simultaneously two
parameters, the radius of neighborhood and the
learning rate, as mentioned earlier in Section 6.
Specifically, we must find the ways in which to
decrease the radius of neighborhood and to change
the learning rate n(f). This task is extremely difficult
and proper values for these parameters can best be
determined experimentally®® using the error and
trial method. It should be mentioned that the adjust-
ment of these parameters is more complex since they
contain other subparameters, which in turn must be
fine tuned. Our choices are based on the ideas given
by Kohonen et al.®® An initial task is to divide the
whole problem into two parts. Assuming that the
whole process contains ¢, steps, we must determine
the number of steps ¢y, in the first part. Choosing the
initial radius of neighborhood, it decreases linearly
to zero after ¢; steps. Then, in the remaining t; — 1;
steps the adaptation of the weights take place only
for the weights connecting the input nodes with the
selected output node. In our simulations the neigh-
borhood is 1D (1 X 8) and the initial value of the
radius of neighborhood was set to 1 X 2. Defining k;
and k, as two constants, a simple practical choice

for n(t) is: for 0 =t =<t;, n(t) = k(1 — ¢/1), and for
t =t =1y, n(f) = ky(1 — t/1,). In our simulations, we
have set t; = t,/2, k; = 0.2 and k, = 0.8.

7.4.3. Experiments. All the experiments were
implemented on a Sun 4/110 Workstation using C.
For each object, test data sets were formed by chang-
ing the size of the object in various translational and
rotational positions. In addition, these samples were
corrupted with noise and distortion. Specifically, the
objects were rotated over the range from 0 to 2z
radians and translated in random positions within
the image boundaries. The size of each object image
was varied from 0.5 to 1.5 times the size of the
original object. Noise and distortion effects were
introduced by adding random noise to the boundary
points according to the approach used by You and
Jain.@") Specifically, if the coordinates of the kth
boundary point are (x(k), y(k)) then the coordinates
of the corresponding point on the noisy boundary
(x,(k), y,(k)) are given by:

% (k) = x(Kk) + drc cos(6(k))

ya(k) = y(k) + drcsin(6(k))
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Fig. 7. Objects corrupted by noise.

where d is the distance of boundary point & to point
k+1, ris a sample from the Gaussian distribution
N(0, 1), cis a parameter which controls the amount
of distortion set to 0.9, and 6(k) is the angle from
the x-axis to the normal direction of the boundary at
point k. The points that caused crossover on the
boundary were omitted. The measure of noise in an
object contour is determined by the percentage of
contour points corrupted with noise, and it is called
noise percentage. Some noisy objects in various
locations, orientations and sizes are shown in Fig. 7.

7.4.4. Results. Initially, each ANN was trained
with the centroidal representation of each object
shown in Fig. 5. After training, each object rep-
resentation was assigned to a distinct output class.
Next, the ANNs were trained with the cumulative
angular and curvature representations of the objects
belonging to the same set. The same process was
then repeated for the objects shown in Fig. 6. During
the training phase the most troublesome algorithm
was the Kohonen ANN because it did not classify
each character to a distinct class. This algorithm
contains a large number of parameters which were

PR 25:1-D

determined after extensive experimentation. Table
1 shows the number of steps (¢,) required for weight
convergence, after these parameters were estab-
lished. Each step is defined as a pass of all the
exemplar patterns through the network. On the other
hand, during the training phase of the predict back-
propagation algorithm, no such difficult parameter
determination was needed. However, its conver-
gence rate was slower in most cases. The number of
steps required during the training phase for each task
are presented in Table 2.

After the training phase was completed, the ability
of the above ANNS to recognize noiseless objects as
well as objects corrupted with noise was evaluated.
The recognition phase was very simple for both
ANNs and it consisted of only a feed-forward pass
of the information presented to the input layer. In
terms of accuracy, the simulation results are illus-
trated in Table 3. These results show the percentage
of recognition accuracy when input objects are cor-
rupted with a noise percentage. Our simulations
indicate that recognition of pure objects from both
data sets, regardless of the representation used, was
perfect for both ANNs. Comparing different rep-
resentations for both data sets in the presence of
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Table 1. Number of steps for the different objects

Different objects

Multilayer Kohonen
Centroidal 1953 46
Cumulative 144 46
Curvature 504 20

Table 2. Number of steps for the similar objects

Different objects

Multilayer Kohonen
Centroidal 22,550 52
Cumulative 258 34
Curvature 568 36

Table 3(a). Centroidal profile representation using the
multilayer ANN

Tabled(d). Cumulative angular representation using the
Kohonen ANN

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 1000 160 100 100 100 100 90 100
20 100 100 100 100 100 97 87 93
30 100 100 97 97 100 93 83 87
40 00 93 93 90 100 8 67 &3

Table 3(e). Curvature representation using the multilayer
ANN

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100

20 100 © 100 100 100 100 100 100 100
30 100 97 100 100 100 100 97 93
40 97 93 100 100 97 90 93 90

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

0 1000 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100
40 1000 100 100 100 100 100 100 100

s

Table 3(b). Centroidal profile representation using the
Kohonen ANN

Different objects

(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 100 100 100 160 100 100 100 100
40 100 100 100 100 100 100 100 100

Table 3(c). Cumulative angular representation using the
multilayer ANN

Table 3(f). Curvature representation using the Kohonen
ANN

Different objects

(% 1 2 3 4 5 & 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100

Table 3(g). Centroidal profile representation using the
multilayer ANN

Similar objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100
40 97 100 100 100 100 100 93 97

Table 3(h). Centroidal profile representation using the
Kohonen ANN

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

Similar objects
Noise
(%) 1 2 3 4 S 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 97 87 90
20 100 100 97 93 100 93 83 83
30 100 106 97 93 100 93 83 83
40 97 93 97 83 100 87 63 80

0 100 100 100 100 100 100 100 100
10 1000 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 1000 100 100. 100 100 100 100 100
40 97 100 100 100 100 100 93 97
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Table 3(i). Cumuiative angular representation using the
multilayer ANN

Similar objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100

10 97 100 95 97 100 100 97 100
20 93 100 93 95 100 100 93 97
30 77 1006 9 93 97 97 90 90
40 73 90 8 8 90 97 73 8§

Table 3(j). Cumulative angular representation using the
Kohonen ANN

Similar objects

Noise

(%) 1 2 3 4 5 6 7 8
0 100 100 100 100 100 100 100 100

10 97 100 95 100 100 100 97 100

20 93 100 93 100 100 100 93 97

30 80 100 90 100 100 100 90 90

40 76 97 83 90 97 97 85 83

Table 3(k). Curvature representation using the multilayer
ANN

Similar objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 80 100

20 97 100 100 100 97 100 77 &0
30 93 100 100 100 77 100 73 73
40 77 8 97 97 63 100 70 60

Table 3(1). Curvature representation using the Kohonen
ANN

Similar objects
Noise
% 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 93 100

20 97 100 100 100 100 100 90 100
30 93 100 100 100 100 100 87 100
40 80 100 100 100 100 106 83 87

noise corruption, the centroidal profile represen-
tation was the best for both ANNs. Specifically, the
tecognition of noisy objects was perfect even with
40% noise percentage, as indicated in Tables 3(a),
(b), (g) and (h). Comparing the other two rep-
resentations (Tables 3(c), (d), (i) and (j) vs 3(e), (f),
(k) and (1)), in most cases, the curvature rep-
resentation was better than the cumulative angular
representation.

Evaluatingghe performance of the ANNs, the
results were quite satisfactory. Comparing them in
more detail (Tables 3(a), (c), (e), (g), (i) and (k) vs
3(b), (d), (), (h), (j) and (1)), the Kohonen ANN
in general was better than the multilayer ANN,
regardiess of the representation and the object set
used. As it was expected, the ANN classifiers per-
formed better, regardless of the representation used,
when the objects to be recognized were dissimilar
(Tables 3(a)~(f) vs 3(g)—(1)). Overall, the best object
recognition approach consists of the centroidal pro-
file representation utilizing either a Kohonen or a
multilayer ANN classifier.

8. COMPARISON WITH CLASSICAL METHODS

For comparison purposes, the traditional well-
known methods of Fourier descriptors®) and
invariant moments®® utilizing the minimum distance
classifier®™ were used. Simulation results were
obtained in order to evaluate the performance of
the Fourier descriptors and the invariant moments
methods. In addition, comparisons were performed
between the classical methods and the best ANN
approach (centroidal profile with either a Kohonen
or a multilayer ANN).

8.1. Comparisons using the Fourier descriptors

Fourier analysis based on contour representations
has been used extensively in a number of
applications.?) Consider a closed contour C in
the complex plane. The x—y coordinates of each point
in the boundary become complex numbers x + jy.
Tracing the boundary in a counterclockwise direction
with uniform velocity, the complex function z(f) =
x(f) + jy(t) is obtained with parameter ¢. The velocity
is chosen such that the time required to traverse the
contour is 2. Traversing the contour more than once
yields a periodic function, which may be expanded in
a convergent Fourier series. If z(k) is a uniformly
sampled version of z(f) of dimension N, its discrete
Fourier transform is given by the following equation:

N
Z(k) = z aneﬂ’mk/N,
n=0
where a, are the N lowest frequency coefficients
defined as:
N
> z(k)e~72mnk/N
k=0
The Fourier descriptor (FD) of the boundary is
defined as the above Fourier series.

Fourier descriptor normalization under translation
can be accomplished by simply forcing a, to zero.
Size normalization is performed by dividing all 4, by
\a1|. If the contour is a simple closed figure and it is
traced in the counterclockwise direction, this coef-
ficient will be the largest. The orientation and starting
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point operations affect only the phases of the FD
coefficients. Since there are only two allowable
operations, the definition of standard position and
orientation must involve the phases of at least two
coefficients. Phase and starting point normalization
can be accomplished by requiring that the phases of
the two largest in magnitude coefficients to be zero.
The coefficient with the largest magnitude value is a;.
Let the coefficient of the second largest magnitude
be a,. Normalization begins by multiplying each coef-
ficient @; by the form:

el = R+ (1= Dol/(k = 1),

where 1 and v denotes the phases of a; and g,
respectively. However, the requirement that g, and
a; should have zero phase can be satisfied by m(k)
different orientation/starting point combinations, ¥
where m(k) = |k — 1|. Obviously, if k=2 then we
have achieved a unique standard normalization. In
general, a, will not be the second largest coefficient in
magnitude, therefore additional normalization steps
are required. A method® for solving the above
ambiguities requires the determination of a third
coefficient a,, having the largest magnitude for
1 <p=m and satisfying the following restrictions:
(a) m(p) # m(k), where m(p) = |p — 11, (b) m(p) is
not a multiple of m(k), (c) m(p) is not a factor of
m(k), and (d) m(p) is not a multiple of a factor of
m(k) less than m(k). Finally, a, replaces g, in the
normalization procedure.

In our simulations, in order to characterize each
object, a subset containing the ten lowest frequency
coefficients was utilized. The degree of similarity
between two objects was determined by calculating
the Euclidean distance between their corresponding
FDs. The classification of an unknown object was
performed using the minimum distance algorithm.®)
The experimental results for the two object sets are
presented in Tables 4(a) and (c). Compared to the
best ANN approach, the performance of the Fourier
descriptors method was almost identical for the dis-
similar objects set. However, the best ANN
approach outperformed the FD method for the simi-
lar objects set.

8.2. Comparisons using the invariant moments

Moments have been used as pattern features in
a number of applications,®?) to provide invariant
recognition of 2D image patterns. The regular
moments m,, of a digital image pattern represented
by f(x, y) are defined as:

My, = sz"yqf(x,y), p,g=0,1,2,...
x oy

Hu® first introduced moments as image rec-
ognition features. Using nonlinear combinations of
normalized central moments, he derived a set of
seven invariant moments which has the desirable

4 Table 4(a). Fourier descriptor method

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100
40 100 100 100 100 100 97 97 100

Table 4(b). Invariant moment method

Different objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100
10 100 100 100 100 100 83 100 100
20 100 100 100 100 100 57 100 100
30 100 100 100 100 100 27 100 100
40 100 100 100 100 100 13 100 100

Table 4(c). Fourier descriptor method

Similar objects
Noise
(%) 1 2 3 4 S 6 7 8

0 100 100 100 100 100 100 100 100

10 93 100 80 100 100 100 97 100
20 77 100 77 100 100 97 93 100
30 67 100 60 100 100 93 93 100
40 63 100 57 97 100 87 90 93

Table 4(d). Invariant moment method

Similar objects
Noise
(%) 1 2 3 4 5 6 7 8

0 100 100 100 100 100 100 100 100

10 45 27 43 50 100 100 83 100
20 30 17 37 43 100 97 80 100
30 27 13 13 33 100 97 77 97
40 17 10 03 23 100 83 43 93

property of being invariant under image translation,
scaling and rotation. Specifically, the central
moments that have the property of translation invari-
ance are given by:

“Pq ::ZE(XP —;E)(y‘?—-f)’ p’q=0?1727' LR
x oy
where

m
and y=—.

|
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The following moments ¢4, ¢,, . .
under translation and rotation:

@1 = Uy + Hgz

02 = (a0 — Mo2)* + 4k

03 = (30 = 3p12)?* + Bpar — Haz)?

¢s = (u30 + p12)* + (Bpar + pos)?

@5 = (30 — 3p12)(ps0 + p12)[(30 + 1)’
= 3(ua + 103)?] + (Buar — uoa) (M1 + Hos)
X [B(uso + p12)? = (o + t3)?]

b6 = (20 = to2)[(H30 + H12)? = (a1 + H03)?]
+ 4un (a0 + pa2) (B + Bos)

¢7 = (Buar — to3)(pa0 + p12) (a0 + 1)’
= 3(uar + po3)?] = (30 — 3u12)(par — tes)
X [B(uao + p12)? = (Mar + Hes)?].

The above moments can be normalized to become
invariant under a scale change by substituting the |
central moments w,, with their normalized counter-
parts 7,, in the above equations. The normalized
central moments 7, are defined as follows:

., (7, areinvariant

+
=£L—’;—q,wherey=£—2—f1~+1f0rp+q=2,3,..‘
00

Npq

In our simulations each object was characterized
using its invariant moments. Tables 4(b) and (d)
show the experimental results obtained with the
invariant moments, using the minimum distance clas-
sifier. Although its performance was at comparable
levels with the Fourier descriptors method and the
best ANN approach in the case of different objects,
its performance was much worse in the case of the
similar objects set.

9. CONCLUSIONS

In this paper, several artificial neural network
based approaches for the recognition of 2D dimen-
sional objects represented by translation, scale and
rotation invariant boundary representations were
introduced. Two different ANN approaches
employing both supervised and unsupervised learn-
ing, represented by a multilayer ANN with two hid-
den layers and the Kohonen ANN respectively, were
utilized. The predict back-propagation rule® was
used for the training of the multilayer ANN. In
addition, for comparison reasons two other tra-
ditional methods, the Fourier descriptors and the
invariant moments, were also implemented.
Through extensive experimentation with noiseless as

* Any back-propagation algorithm can be utilized, since
the predict back-propagation rule does not affect the accu-
racy of the results but only increases the training speed of
the algorithm.

well as noisy objects from. two different object sets,
the following conclusions were reached: the best
ANN approach was the centroidal profile rep-
resentation using either a multilayer or a Kohonen
ANN. Furthermore, the best ANN approach out-
performed both of the traditional methods. Finally,
the results obtained on the different objects set were
much better than the corresponding results obtained
on the similar objects set.
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