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Abstract

This paper addresses the problem of recognizing real flat objects from two-dimensional images. In particular, a new
object recognition technique which performs under occlusion and geometric transformations is presented. The method
has mainly been designed to handle complex objects and incorporates two main ideas. First, matching operates
hierarchically, guided by a curvature scale space segmentation scheme, and takes advantage of important object features,
that is, features which distinguish an object from other objects. This is different from many classical approaches which
employ a rather large number of very local features. Second, the model database is built by using artificial neural
networks (ANNGs). This is also different from traditional approaches where classical indexing schemes, such as hashing,
are utilized to organize and search the model database. Important object features are obtained in two steps: first, by
segmenting the object boundary at multiple scales using its resampled curvature scale space (RCSS) and second, by
concentrating at each scale separately, searching for groups of segments which distinguish an object from other objects.
These groups of segments are then used to build a model database which stores associations between segments and
models. The model database is implemented using a set of ANNs which provide the essential mechanism not only for
establishing correct associations between groups of segments and models but also for enabling efficient searching and
robust retrieval. The method has been tested using both artificial and real data illustrating good performance.
© 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction been a variety of approaches to tackle the problem of
object recognition. The most successful approach is

Object recognition is an essential part of any high-level probably in the context of model-based object recognition
robotic system. During the last two decades, there has [1,2], where the environment is rather constrained and

recognition relies upon the existence of a set of predefined

object models. A successful model-based object recogni-
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cluttered environments assuming noise and occlusion
and determining their position and orientation. The ma-
jority of model-based object recognition systems have
two separate phases of operation: training and recogni-
tion. During the training phase, a model database is built
by establishing proper associations between features and
models. During the recognition phase, scene features
are used to retrieve appropriate associations stored in the
model database. Usually, there are two steps in the
matching process: the hypothesis generation step and
the hypothesis verification step. In the hypothesis genera-
tion step, the identities of one or more objects present in
the scene are hypothesized. In the hypothesis verification
step, tests are performed to check whether a given
hypothesis is acceptable or not, by seeking further sup-
porting evidence.

Two major approaches have emerged in order to deal
with the issue of efficiently generating hypotheses during
matching: search-based and indexing-based. Search-based
approaches proceed by first extracting a collection of
image features. Then, a correspondence between these
features and a set of model features is hypothesized. The
position and orientation of the model object are deter-
mined by this hypothesis. Two well known paradigms
from this category are the alignment technique [3] and
the interpretation tree [4]. Indexing is an alternative
paradigm which tries to speedup searching by trading
space. In the training phase, features which remain un-
changed under geometric transformations (invariants) are
extracted from each model. Then, information related to
the models from which the invariants were extracted is
stored into an index table, using the invariants as indexes.
Efficient indexing schemes, such as hashing or k-d trees,
are utilized in this stage [ 5-12]. In the recognition phase,
groups of features are chosen from the scene and invari-
ants based on these features are computed and used as
indexes to the same index table. As a result, only these
groups of model features that might feasible match the
scene features whose invariants used to access the table
are considered for verification.

During the last few years, much of the interest in
indexing-based object recognition has been triggered by
the development of a technique known as geometric
hashing [ 5], although the fundamental ideas behind geo-
metric hashing were known earlier [6-8]. Specifically,
geometric hashing uses invariants based on points or
lines. The idea is to describe the object in a new coordi-
nate system which is invariant to geometric transforma-
tions. Point or line features, represented in this system,
are used as indexes to a hash table where information
about the new coordinate system and the models is
stored. In [6], invariants based on boundary segments
are used. First, the boundary of the object is decomposed
into subsections and then, the footprints of these subsec-
tions (i.e., the first few coefficients of the Fourier expan-
sion of a function denoting the angular direction of the

boundary subsection) are computed and used as indexes
to a hash table where information about the models is
stored. In [7], invariants based on fixed length boundary
segments which are common to several model objects are
used along with information about the location and
orientation of the segments. In another approach [9],
consecutive segments are grouped together to form more
powerful features, called super-segments. Each super-
segment is encoded using information about the angles
formed by the individual segments in the super-segment
as well as information about the eccentricity of the super-
segment. The encoded super-segments are then used as
an index to a hash table where information about the
super-segment’s location, length and orientation is
stored.

In this paper, a new indexing-based object recognition
method is proposed. Some of its key characteristics are
the following: First, emphasis is given on the detection
and utilization of important object features, that is, fea-
tures which can distinguish a model object from other
model objects. These features are rich in information and
small in number. This is opposed to many classical tech-
niques where a large number of very local features is
employed. Our approach for obtaining these features is
by using a multi-scale segmentation scheme based on the
resampled curvature scale space (RCSS) of the object
contour [13]. Second, matching operates hierarchically,
guided by the multi-scale segmentation scheme, and
takes advantage of important object differences first. As
a result, matching can be established faster and more
accurately. This is different from classical approaches
where a significant amount of time is spent on matching
features with very little discriminative power. Very local
features generate a large number of false hypotheses,
which must be rejected by applying the time consuming
verification step. Taking advantage of important object
features that might be present in the scene yields less
hypotheses and passes the discriminating power of the
algorithm from the expensive verification step to the
hypothesis generation step. Finally, the organization of
the model database is based on artificial neural networks
(ANNSs) [14], which provide the essential mechanism not
only for implementing the appropriate associations be-
tween features and models but also for enabling fast
searching and robust retrieval, especially when noisy or
distorted data is considered. This is also opposed to
many classical approaches which use sensitive to noise
and distortions indexing schemes.

The proposed method has been mainly designed to
handle complex objects. It is assumed that the object are
described by their boundaries which do not cross over
themselves and have a number of inflection points. This
means that it is not appropriate for objects whose con-
tour can be described by a small number of parameters
such as circles or rectangles. Objects appearing in the
scene may have undergone similarity transformations,
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that is, rotation, translation and scaling. This is the case
where the viewing angle of the camera is the same both
for the model and scene objects. Similarity invariants are
used for storing and retrieving information to and from
the model database. Extending the method to more gen-
eral transformations such as affine transformations
(weak perspective) is straightforward assuming that af-
fine invariants are used.

The organization of the paper is as follows: Section 2
discusses the motivations for developing the proposed
approach and Section 3 presents a brief overview. The
curvature scale space approach and a description of the
hierarchic segmentation scheme are given in Section 4.
The implementation of the model database using ANNs
is presented in Section 5. The recognition phase and the
verification procedure are presented in Section 6. Experi-
ments and system’s performance are presented in Section
7. Finally, our conclusions are provided in Section 8.

2. Motivations

An important issue in the implementation of a model-
based object recognition system is how to extract impor-
tant object features and how to utilize them efficiently
during matching. A common approach is to split the
object contour into a number of segments and then use
them for matching [7-12]. However, because a large
number of segments is usually obtained and because
individual segments are usually too local to be appropri-
ate for matching, recognition can become quite slow.
Several methods [9-12] try to alleviate this problem by
grouping together a number of adjacent segments in
order to create more descriptive segments. This ap-
proach, however, requires the a priori choice of a para-
meter which determines the number of segments to be
grouped together, a parameter which is rather data de-
pendent. Our approach for obtaining descriptive seg-
ments is based on the use of a multi-scale segmentation
scheme and does not require such a parameter. The
multi-scale segmentation scheme yields segments extrac-
ted from various scale levels, localized down to the orig-
inal scale. In this way, the descriptive power of each
segment is very naturally related to the scale it is located.

Segments located at relatively high scales are usually
very descriptive and distinct. This makes them quite
attractive for matching. Moreover, these segments are
usually very long, which makes them more effective for
localizing the objects in the scene more accurate. Unfor-
tunately, their main drawback is that they are very sensi-
tive to occlusions. On the other hand, segments detected
at lower scales are less descriptive and distinct, but they
are more resistant to occlusions since they are usually
shorter. Thus, there is a tradeoff between high and low
scale segments. The approach taken in this paper is to
consider both kinds of segments by using an efficient

hierarchic matching procedure, driven by the multi-scale
segmentation scheme. The main idea is that when high
scale segments are present in the scene, it is advantageous
to detect and use them for matching because both recog-
nition and localization can become faster and more accu-
rately. However, if high scale segments are not available
because of occlusions, lower scale segments must be
considered. In general, the proposed matching procedure
attempts first to match segments detected at higher
scales; if this is not possible, matching gradually utilizes
segments detected at lower scales.

Another important issue in the design of a model based
object recognition system is the issue of organizing and
searching the model database. Most of the current ap-
proaches use efficient indexing schemes in order to store
and retrieve information to and from the model database.
Hashing is a popular indexing scheme. In various ap-
plications, it is important for the hash function to distrib-
ute the data randomly over the hash table. In object
recognition, however, it is important for the hash func-
tion to be proximity preserving, that is, to map similar
data to close by locations in the hash table. Choosing an
appropriate hash function is not easy and is data depen-
dent. Also, hashing is quite effective in noise-free environ-
ments but its performance deteriorates in the presence of
noise. In other words, it is very unlikely that the correct
item will be retrieved in the presence of noisy keys, unless
a noise tolerant scheme is incorporated in the retrieval
procedure. Thus, it is desirable to consider alternative
schemes which are not data dependent and demonstrate
robustness to noise.

The multi-layer ANN poses a number of properties
which make them an attractive alternative choice.
A multi-layer ANN implements a nonlinear mapping of
the from u = G(x). The mapping function G is established
during a training phase where the network learns to
correctly associate input patterns x to output patterns u.
The powerful capabilities of multi-layer ANNs to imple-
ment complex mappings are supported by some very
significant theoretical results. The most important of
these results states that single hidden layer feed-forward
network with arbitrary sigmoid hidden layer activation
functions can approximate arbitrarily well an arbitrary
mapping from one finite-dimensional space to another
[15]. This implies that feed-forward networks can ap-
proximate virtually any function of interest to any de-
sired degree of accuracy, provided sufficiently many
hidden units are available. In the context of indexing,
G represents the hash function, x represents the informa-
tion used to search the database, and u represents the
retrieved information.

Implementing the model database using multi-layer
ANNSs requires the establishment of appropriate associa-
tions between features and models first. Then, the mapping
(hash function) required to implement these associations
can be found by training an ANN. Since the choice
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of an appropriate hash function is problem dependent,
a scheme which finds the hash function through learning
is highly desirable. In addition, assuming that the hash
keys are unique, the computed hash function will be
collision free. ANNs offer fast information retrieval
because they are able to examine multiple competing
hypothesis simultancously. Increasing the number of
feature-model associations might increase training time
but it will not have a serious impact on the retrieval time.
It should be emphasized that ANNs are not to be con-
sidered as simple lookup tables. Actually, the most
important property of ANNs is their ability to generalize:
given noisy and distorted inputs, it is possible that the
correct feature-model associations can still be retrieved.
Proximity can be enforced by choosing a proximity-
preserving representation scheme for the outputs of the
ANNE.

3. An overview of the proposed method

Following the well defined framework of model-based
object recognition, the proposed method operates in two
different phases: training and recognition. During the
training phase, the model database is built by training
a number of properly structured ANNs to learn associ-
ations between important groups of segments and mod-
els. By important groups of segments we mean groups
which characterize model objects uniquely. These groups
are extracted during preprocessing, using the RCSS of
the model contours [13]. In particular, the curvature of
each object contour is computed at multiple scales and
the curvature zero-crossing points at each scale are de-
tected. Then, a hierarchy of contour segmentations is
obtained by concentrating at each scale separately and
breaking the original contour at points which correspond
to the curvature zero-crossings detected at this scale
(localized, however, down to the original scale). Each
segment from the hierarchy is normalized in order to
become invariant to similarity transformations. This is
performed by computing the centroidal profile of each
segment [16,17]. Then, we represent each segment by
using four moments of its centroidal profile [18,197]. This
representation is invariant to the starting point selection
in the computation of the centroidal profile and is also
economical and tolerant to noise [19]. Segments repre-
sented by the moments of their centroidal profile will be
referred to as encoded segments.

The model database has been partitioned into two
parts. The first part is implemented using a single ANN
called, segment classifier. The goal of the segment classi-
fier is to assign segments to appropriate segment classes.
For reasons to be explained shortly, the outputs of the
segment classifier (i.e., segment classes) have been en-
coded using the Gray code scheme [27]. The encoded
representation of a segment class will be referred to as

encoded segment classification. The second part of the
model database is implemented using a number of hier-
archically structured ANNs called, object recognizers.
The object recognizers use the outputs of the segment
classifier (i.e., encoded segment classifications) to recog-
nize the model objects. The reason we have used gray
coding to represent the outputs of the segment classifier
is to increase the noise tolerance of the object recognizers.
Each object recognizer uses combinations of encoded
segment classifications to perform its task. These combi-
nations correspond to groups of segments which charac-
terize the model objects uniquely. Important groups of
segments vary in the number of segments they contain
and different object recognizers perform recognition us-
ing groups of different sizes. Specifically, there exists an
object recognizer in the top of the hierarchy which per-
forms recognition using groups of size one. At the next
level, there exists another recognizer which considers
groups of size two, and so on.

The important groups of segments are extracted from
the hierarchies of contour segmentations using a selective
search procedure. This procedure returns important
groups of segments, detected at various levels of the
hierarchy, starting from a very high scale level and pro-
ceeding to the lower ones. The importance of a group of
segments is related to the degree it can distinguish a
model from other models. An important group of segments
might consist of one, two, or more adjacent segments
which may not be important by themselves, however,
their identity along with their order in the group provide
sufficient information for distinguishing a model from
other models.

The recognition phase operates in a hypothesis genera-
tion-verification manner. Initially, a closed, maybe
composite, contour is extracted from the scene and a
hierarchy of segmentations is obtained using the multi-
scale segmentation scheme. Then, segments are extracted
from different scales and are encoded. Matching is per-
formed from higher to lower scales and in a local to
a global basis, that is, from matching one segment to
matching groups of segments. Segments obtained at
a specific level of the hierarchy of segmentations are
forwarded first, one at a time, to the segment classifier.
The output segment classifications are then forwarded to
the object recognizers. Initially, the top level object rec-
ognizer attempts to perform recognition using groups of
size one. If recognition cannot be established, pairs of
segment classifications, corresponding to adjacent seg-
ments, are formed and forwarded to the object recognizer
located at the next level. This process is repeated until
either a correct recognition is performed or the lowest
level in the hierarchy of contour segmentations is reach-
ed, without having recognized all the objects present in
the scene successfully. In case of a possible match at some
step of the matching procedure, verification takes place
to evaluate it.
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4. The preprocessing step

The role of the preprocessing step is twofold: to com-
pute the hierarchy of segmentations for each model con-
tour and to encode the obtained contour segments. The
multi-scale segmentation scheme requires the computa-
tion of the RCSS for each model contour. Fig. 1 illus-
trates the various steps in the preprocessing step. Before
we describe each step in detail, we review the curvature
scale space approach.

4.1. Curvature scale space

The curvature scale space (CSS) approach was intro-
duced in [20] as a shape representation for planar curves.
Object boundaries are usually represented as planar
curves that do not cross over themselves. Specifically, this
method is based on finding points of inflection (i.e, curva-
ture zero-crossings) on the curve at varying levels of
detail. The curvature k of a planar curve, at a point on the
curve, is defined as the instantaneous rate of change of
the slope of the tangent at that point with respect to arc
length, and it can be expressed as follows:

_ 5030 5050
O o W

(:::E§§55E§£:::> PREPROCESSING

STEP

edge detection and
countour extraction

computation of the RCSS

construction of the hierarchy
of segmentations

segment normalization

l

encoded segments

Fig. 1. The steps involved during preprocessing.

where X(t), X(t), y(t), and y(t) are the first and second
derivatives of x(t) and y(t), respectively, and (x(t), y(t)) is
the parametric representation of the curve.

In order to compute the curvature of the curve at
varying levels of detail, x(t) and y(t) are convolved with
a Gaussian function ¢(t, ). Defining X (t, 6) and Y (¢, o)
as the convolution of x(t) and y(¢) respectively with the
Gaussian function, the smoothed curve curvature k(t, o)
can be expressed as follows:

_ Xz([r O-) Yn([: O-) - Xtt(ts J) Yz([’ O-)

K = Xor + Yoy @
where X,(t, 0) and X, (t, o) are defined as

_ dg(t, 0)
Xt(t9 O-) - X(t)* 6t ’ (3)
Xu(t, 0) = x(1) = 62%(;2’ 7 : ()

Y,(t,0) and Y, (t, ) are defined in a similar manner. The
function defined implicitly by k(t, ¢) = 0 is the CSS image
of the curve.

To demonstrate the CSS approach, the object contour
shown in Fig. 2a was convolved with a Gaussian filter,
using successively doubled values of . Fig. 3a-h show
some of the convolved curves and their corresponding
curvature functions. The object’s contour was divided
into 256 equally sized subintervals for this task. The
locations at which k = 0 are marked on each curve. The
CSS representation of the object contour is shown in
Fig. 4a.

The RCSS representation was introduced in [13], and
was shown to be suitable when there is a high-intensity
non-uniform noise or local shape differences exist. Also, it
can be computed for open curves. In general, as a planar
curve is convolved according to the process described
earlier, the parameterization of its coordinate functions
x(t) and y(t) does not change. In other words, the func-
tion which maps values of the parameter ¢ of the original
coordinate functions x(t) and y(t) to values of the para-
meter ¢t of the smoothed coordinate functions X (¢, ¢) and
Y (t, o) is the identity function. Assuming that the map-
ping function is different from the identity function, the
RCSS of the curve is the function defined implicitly by
k(T,o) =0, where T = T(t, 0), is a monotonic function
of t. A simple way to compute the RCSS is given in [13].
First, a Gaussian filter based on a small value of the
standard deviation is computed. Next, the curve is para-
meterized by the normalized arc length parameter and it
is convolved with the filter. The resulting curve is then
convolved again with the same filter. This process is
repeated until the curve is convex and no longer has any
curvature zero-crossing points. The curvature zero-cross-
ings of each curve are marked in the RCSS image. It is
important to note, however, that after the original curve
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Fig. 2. A model object and the same object corrupted by noise. The procedure used to corrupt the object with noise is given in Section 7.4.

has been convolved with the Gaussian filter, the resulting
curve is no longer parameterized by the normalized arc
length parameter. Thus, the resulting curve must first be
re-parameterized by the normalized arc length parameter
before it is convolved again. Fig. 4b shows the RCSS of
the object shown in Fig. 2a. To demonstrate the tolerance
of the RCSS in presence of noise, we have considered the
noisy object shown in Fig. 2b (see Section 7.4 for a de-
scription of the procedure used to generate the noisy
object). Fig. 5a shows its CSS image while Fig. 5b shows
its RCSS image. Comparing Figs. 4 and 5 we can clearly
see the extra curvature zero-crossing that were introduc-
ed in Fig. 5 due to noise. Obviously, the RCSS image is
less noisy than the CSS image.

4.2. The hierarchy of contour segmentations

The first step in the construction of the hierarchy of
contour segmentations involves the computation of the
RCSS image. Then, the hierarchy of segmentations is
obtained by concentrating at each scale separately and
breaking the original contour at points which correspond
to the curvature zero-crossing points detected at this
scale. It should be mentioned that curvature extrema can
also be used in the segmentation of the object contours
since the number of zero-crossings is usually small which
limits the kind of objects that can be handled by our
system. However, our decision to use curvature zero-
crossings only has been based on the assumption that the
model database consists of rather complex objects as
discussed in the introduction. Segmenting the object
contour using curvature zero-crossing points only, keeps
the number of segments relatively small. Also, curvature
zero-crossings are robust over different viewpoints [21],
which implies that the proposed method can be extended
to more general cases where the viewpoint is arbitrary
(e.g., affine transformations).

Segmentation of the original contour using curvature
zero-crossing points detected at high scales, requires the

projection of zero-crossings down to the original scale
(localization). This is because convolving a curve with
an averaging filter such as the Gaussian has the effect of
shrinking the size of the contour [13]. The amount of
shrinking is directly related to the curvature of the con-
tour and the degree of smoothing. As a result, it alters the
location of curvature zero-crossing points, as we move
from one scale to the other. In order to determine the
location of a zero-crossing point detected at a higher
scale down to a lower scale, scale space tracking is re-
quired. During scale space tracking, the location of high-
er scale curvature zero-crossing points is projected down
to a lower scale. This is performed by following the
location of the curvature zero-crossing points, from scale
to scale, until the desired lower scale is reached [22].
Fig. 6 illustrates the hierarchical contour segmentation of
the object contour shown in Fig. 2a. In this example, the
contour has been segmented into 2, 4, and 6 segments.
The segmentation procedure can now be described as
follows: Initially, the RCSS of the object contour is com-
puted by convolving the object contour repeatedly, until
no curvature zero-crossing points exist any more. Then,
the coarsest apex points in the RCSS are detected. An
apex point is the location where a pair of curvature
zero-crossing point disappears, as we move from lower to
higher scales. In other words, apex points represent the
maxima of the RCSS contours. Each apex point intro-
duces a new pair of zero-crossing points which can be
used to further sub-split the object contour. To ensure
that the endpoints of the segments are determined accu-
rately, the zero-crossings are localized down to the orig-
inal scale. Fig. 6a shows the segmentation of the object
contour into two segments using the zero-crossings cor-
responding to the coarsest apex point. Fig. 6b shows the
projected zero-crossing locations, down to the original
scale. Fig. 6¢ shows the segmentation of the object con-
tour into four segments, using the next coarsest apex
point and Fig. 6d shows the localized segments. Finally,
Fig. 6e shows the segmentation of the object contour into
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six segments, using the next apex point, and Fig. 6f shows

the segmentation at the original scale.

A few practical issues need to be discussed at this point.
First of all, the hierarchy of segmentations is built in
a top-down fashion, that is, breaking the contour at the

highest scale first, then breaking the contour at a lower
scale, until the original scale is reached. In our implemen-
tation, however, we do not start from the highest possible
scale and we do not reach the original scale either. This
is because segments located at high scales are not very
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Fig. 4. (a) The curvature scale space, (b) the resampled curvature scale space.

reasonable (see Fig. 6b) while segments located at very
low scales are large in number and have low descriptive
power. Specifically, we start splitting the contour at
a scale where no less than 4 zero-crossing points exist and
we stop splitting at a scale where no more than 8 zero-
crossing points exist. This means that the minimum num-
ber of segments we allow at a particular segmentation
level is 4 while the maximum number is 8. Second, the
localization of the zero-crossings is not performed at the

original scale but a slight higher scale to provide noise
tolerance. Finally, it should be expected that the segmen-
tation of a contour remains unchanged over a range of
scales. This is because no new curvature zero-crossing
points are introduced in every scale. This means that
there is no need to consider segmentations at these scales
because they will be essentially the same given that zero-
crossings are localized down to the same scale. Thus, the
hierarchy of contour segmentations we compute includes
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only segmentations corresponding to scales where new
zero-crossing points are introduced.
4.3. Encoding the contour segments

The first step in the encoding of the segments is the
computation of the centroidal profile of each segment.

Then, each segment is represented by four moments of its
centroidal profile. The centroidal profile is a well known
1-D representation of the object contour [16], which has
been extensively used in the past and has also been
successfully utilized in object recognition using ANNs
[17]. It is characterized by an ordered sequence which
represents the Euclidean distance from the digitized con-
tour of the object to its centroid as a function of distance
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Fig. 6. Segmentation at a coarse scale (left column) and localization of the segments down to the original scale (right column).

along the contour. In a similar fashion, a segment’s
centroidal profile represents the distance between each
contour point in the segment and the centroid of the
region formed by connecting the end points of the seg-
ment by a straight line. Fig. 7 illustrates a simple contour
segment and its centroidal profile.

Gupta and Srinath [18] have proposed the use
of statistical moment functions, derived from the
centroidal profile of the object contour, to represent
the shape of the object. Here, we use statistical moment
functions to represent the centroidal profile of segment.
The low order-moments used in our study are the

following:

(a) normalized amplitude variation:

a

INYY | Td(i) — my 1212

b
my

(b) coefficient of skewness:

A/N)Y N [di) — my T3]

a

INYIY (i) —my P72
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(¢) coefficient of kurtosis:
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(d) Fifth-order moment:
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where

my; =

M =

3 X do

1

and d(i) is the centroidal profile representation of a
segment with N points, i = 1,2, ... ,N. The first three
moments are the same used in [18]. Here, we use an
additional moment to increase discrimination. The ad-
vantages of using moments to represent the centroidal
profile of a segment are: (i) they are invariant to the
starting point used to compute the centroidal profile, (ii)
they represent the centroidal profile economically, and
(i) they are quite robust to noise and distortions (see

[18]).

5. The training phase

During the training phase, the model database is built
using appropriate segment-model associations. Building
the model database involves training the segment and
object recognizers. In the next subsection, we briefly
review the multilayer neural network architecture used to
implement the segment classifier and the object recog-
nizers.

5.1. The multilayer neural network architecture

ANNSs are specified by the topology of the network, the
characteristics of the nodes and the training algorithm

[14,23,247]. The topology of a multilayer ANN is a struc-
tured hierarchical layered network as shown in Fig. 8. Tt
consists of several distinct layers of nodes including
an input layer and an output layer. Between the input
and the output layer we have one or more layers of
nodes which are called hidden. Generally, each node
in one layer is interconnected with all the nodes in
adjacent layers with connections. Each connection is
associated with a weight which measures the degree of
interaction between the corresponding nodes. Nodes are
relatively simple processing elements and the capabilities
of multilayer ANNs stem from the nonlinearities used
within them and the dense interconnectivity amongst
them.

The algorithms for multilayer ANN processing can be
divided in two phases: performance and training. In the
performance phase of the algorithm, information flows
from the input layer through the hidden layers to the
output layer. In this phase, the nodes update their own
activation values based on the system dynamics. In the
training phase, an adaptation of the weights correspond-
ing to the connection nodes takes place. One of the
well-known training algorithms is the back-propagation
rule [14]. It is an iterative algorithm which in each step
adjusts the connection weights in the network, minimiz-
ing an error function. This is achieved using a gradient
search which corresponds to a steepest descent on an
error surface representing the weight space. In this study,
the back-propagation with momentum algorithm has
been used [14].

5.2. The segment classifier

The purpose of the segment classifier is to assign en-
coded segments to appropriate segment classes. The way
segment classes are determined is by applying a cluster-
ing procedure to the entire set of encoded segments.
The clustering algorithm used is a variation of a simple
cluster seeking algorithm [26]. The segment classifier is
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implemented by a multilayer ANN. The inputs to the
ANN are the moments of the segment’s centroidal pro-
file, while the output represents the segment class to
which the input segment belongs to. The steps involved
in the training of the segment classifier are illustrated
through a block diagram in Fig. 9. The next subsection
describes the procedure for obtaining the segment classes.

5.2.1. Clustering the encoded segments

Let {Si, S, ..., Su} represent M segments to be clus-
tered. Each segment is represented using four moments of
its centroidal profile {m;;, m;,, m;z, my, }, for 1 <i < M.
Before clustering, it is necessary to define a measure of
similarity which will establish a rule for assigning pat-
terns (encoded segments), to the domain of a particular
cluster center (segment class). The Euclidean distance
measure [26] has been used for computing the similarity
between two clusters.

The steps of the clustering algorithm can now be
summarized as follows: Initially, a segment S; is chosen to
represent the first segment class Z;. Without loss of
generality, Z; = S has been chosen. Next, a nonnegative
threshold T is specified. The distance e,, between the
second segment S, and Z; is computed next. If this
distance exceeds T, a new segment class Z, = S,, is
created, otherwise, S, is assigned to the domain of seg-
ment class Z,. Suppose that e;, > T, so that Z, is estab-
lished. In the next step, the S; pattern is presented and
the distances e;3 and e,3 are computed. The smaller of
them is compared to T. If it is less than T, then S; is
assigned to the corresponding class, otherwise, a new class
Z3 =83, is created. In a similar manner, the distances
from each new encoded segment to every established seg-
ment class are computed. A new segment class is created if
all of these distances exceed T. Otherwise, the segment is
assigned to the domain of the segment class to which it is
closest. Obviously, the number of classes formed depen-
dent on the choice of the threshold parameter T.

5.2.2. Training the segment classifier

The training of the segment classifier is performed
using training examples of the form (segment, segment
class). Before training, however, we must decide how to
represent the segment classes at the outputs of the net-
work. The inputs of the network are simply the four
moments of the segment’s centroidal profile. The outputs
of the network must be an appropriate representation of
the segment class. Choosing a proper encoding scheme
for representing the outputs of the segment classifier is
very important for our approach. Such a scheme must
satisfy two requirements: First, it must be economical
and second, it must be proximate. Non-economical rep-
resentation schemes are not desirable because they will
increase the size of the networks. The proximity con-
straint assures that elements from this scheme, represent-
ing similar classes, will be similar. Proximity is very

desirable for increasing the robustness of the object rec-
ognizers. Recalling our discussion in Section 3, the inputs
of the object recognizers are provided by the segment
classifier. A proximity-preserving scheme will reduce the
possibility that the object recognizers make incorrect
decisions, although some of the segment classifier’s deci-
sions might be incorrect.

In order to represent the segment classes in a way that
satisfies both of the above requirements, first we order
the classes in a list, based on their similarity, and then we
encode them using an encoding scheme which preserves
proximity. Two classes are considered similar if their
cluster centers are similar. The Euclidean distance
measure is used as a measure of similarity. The segment
classes are ordered in a list as follows: Initially, a segment
class is randomly chosen and is placed first in the list.
Next, its distance from all other classes is computed and
the most similar segment class is placed second in the list.
Following the same procedure, the distances between the
second-ordered segment class and the remaining unor-
dered classes are computed and the most similar segment
class is placed third in the list. This process is repeated,
until all the segment classes have been ordered. Obvious-
ly, there are many different ordered sequences which can
be obtained by following the above methodology, since
the class placed first in the list is chosen randomly.
However, all of them have the desired property that
adjacent segment classes in the list are similar.

Next, the ordered classes are encoded in an economical
and proximity-preserving way. This encoding must also
be appropriate for the output nodes of the segment
classifier. One of the most commonly used encoding
schemes in ANN classification tasks is the local scheme.
According to this scheme, each class is assigned to a dis-
tinct output node. Although this scheme satisfies the
requirement of proximity, it is not economical since it
requires M output nodes to express M different classes.
Another possibility is to use binary coding. This scheme
is more economical since it requires log, (M + 1) output
nodes to express M different classes but, despite the
economy in the number of digits used, this scheme does
not satisfy the proximity requirement. An appropriate
scheme, satisfying both of the requirements, is the Gray
code scheme [27]. Successive elements of the Gray code
scheme differ by only one bit and it is equally economical
as the binary code scheme. Thus, segment classes have
been represented using gray coding. It should be men-
tioned that the performance of the segment classifier itself
does not seem to depend on the particular output encod-
ing used. For example, we performed experiments using
a different encoding scheme (binary scheme) and the
classification results were very similar to those using gray
coding.

The training of the segment classifier is performed by
presenting to the input nodes of the network the mo-
ments of the centroidal profile of the segments while and
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Fig. 9. The steps involved in the training of the segment classifier. First, the segments are clustered into clusters. Then, the segment
clusters are ordered based on the similarity of their cluster centers and finally encoded using gray coding. The moments of the segments
and the gray-coded segment clusters are then used to train the segment classifier.

the gray-coded segment classes at the output nodes.
Training continues until the segment classifier is able to
classify all segments correctly.

5.3. The object recognizers
The purpose of the object recognizers is to perform

recognition based on segment classifications made by the
segment classifier. Each object recognizer is trained to

learn associations between important groups of segments
and models. For each model, important groups of
segments are extracted by applying a selective search
procedure on the hierarchy of contour segmentations
associated with the model. The segments obtained are
classified by the segment classifier and the obtained seg-
ment classifications are used to form the inputs of the
object recognizers. Each object recognizer has different
capabilities which mainly depend on the size of important
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groups utilized by the recognizer for recognition. Fig. 10
shows a block diagram of the steps involved in the
training of the object recognizers. Next, we describe in
detail the selective search procedure.

5.3.1. Finding important groups of segments

The objective of the selective search procedure is to
identify groups of segments with high discrimination
power, that is, groups of segments which can be used to
distinguish a model from other models. These groups are
referred to as important groups. First, the selective pro-
cedure looks for important groups of size one, that is,
single segments which characterize models uniquely.
Such segments are usually found at the high levels of the
segmentation hierarchies. More specifically, the selective
search procedure works as follows: initially, one of the
hierarchies of contour segmentations is randomly chosen
and designated as the “reference hierarchy”. Then, we
concentrate at each level of the reference hierarchy, start-
ing from the highest possible level, comparing segments
at this level with segments coming from any level of the
other hierarchies. The reason we compare segments from
one level of the reference hierarchy with segments from
every level of the other hierarchies is because although
some objects might have common segments, these
segments might appear at different scales. If a segment
from the highest level of the reference hierarchy does not
match with any segment from the other hierarchies, it is
considered to be an important segment. After important
segments have been identified at the highest level of the
reference hierarchy, the procedure continues at the next
lower level of the reference hierarchy, until all the levels of
the reference hierarchy have been considered. Then, one
of the remaining hierarchies is randomly chosen to be-
come a new reference hierarchy and the same procedure
is repeated until all the hierarchies have been considered
as reference hierarchies.

Obviously, non-important segments have no discrimi-
natory power by themselves. This does not mean,
however, that they are completely useless. For example,
consider objects which consist of exactly the same seg-
ments, but the order in which the segments appear is
different from one object to another. Using the identity of
the segments only in order to distinguish them is imposs-
ible in this case. However, if the order of the segments is
also taken into consideration, then we might be able to
distinguish them. Following this idea, the selective search
procedure described above extracts not only important
segments, but also important groups of segments. An im-
portant group of segments consists of a number of adjac-
ent segments which may not be important by themselves,
however, their identity along with their order in the
group makes possible the discrimination of one object
from another. Initially, the search procedure looks for
groups with a minimum number of elements (i.e., two).
Then, it looks for larger size groups. In our implementa-

tion, we use groups of size one, two, three, and four. It
should be mentioned that the maximum size of groups
we consider at a particular segmentation level depends
on the maximum number of segments available at this
segmentation level and the maximum group size we
allow (i.e., it is the minimum of the two).

As we move from higher to lower segmentation levels,
certain segments remain unchanged unless new zero-
crossings are introduced which further sub-split them.
This implies that some of the comparisons that take place
at higher levels, do not necessarily have to take place at
lower levels. Also, it should be mentioned that the num-
ber of important groups is not very big since we do not
consider every group of segments but only groups of
adjacent segments which keeps the number of combina-
tions small.

5.3.2. Training the object recognizers

The important groups of segments obtained by ap-
plying the selective search procedure are used to train the
object recognizers. During training, the object recog-
nizers learn to associate important groups of segments
with the models uniquely characterized by these groups.
The object recognizers have been structured hierarchi-
cally, according to the size of the groups they utilize in
order to perform their recognition task. The object recog-
nizer located at the top of the hierarchy is trained to
recognize model objects using important groups of size
one. The object recognizer located at the next level is
trained to recognize model objects using important
groups of size two. In a similar fashion, the object recog-
nizer located at the bottom the hierarchy is trained to
recognize model objects using important groups of a
maximum size. In the context of indexing, each object
recognizer implements a different hash function. Since
important groups of segments characterize model objects
uniquely (i.e., it is a one to one mapping), the computed
hash functions will be collision free.

To train the object recognizers, we must first determine
an appropriate representation for the outputs of the
networks. The inputs to the object recognizers are simply
the encoded segment classifications associated with the
important groups. For each important group, we find
the encoded segment classification of the segments in
the group and we concatenate them to form the input to
the object recognizers. The output of the object recog-
nizers is an appropriate representation of the model
characterized by the important group of segments. The
local coding scheme, mentioned earlier in Section 5.2.2,
has been used to represent model objects. According to
this scheme, the number of output nodes is equal to the
number of model objects, with each node representing
a different model. Although this scheme is not economi-
cal, it is very suitable for our task because it allows us to
distinguish between ambiguous and unambiguous recogni-
tion. In the case of an unambiguous recognition, the
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Fig. 10. The steps involved in the training of the object recognizers. Each recognizer is trained using groups of segment classifications

(i.e., outputs of the segment classifier).

output of an object recognizer contains only one 1 at
a certain location and 0’s everywhere else. Outputs with
more than one 1’s are considered to be ambiguous because
they do not correspond to a particular model object rep-
resentation. Ambiguous recognition results are rejected
immediately while unambiguous recognition results are
considered for verification.

The training sets of the object recognizers include two
kinds of training examples: positive and negative. Positive
training examples are of the type (important group,
model), where we assume that the important group char-
acterizes the model uniquely. Negative training examples
correspond to classifications of non-important groups of
segments, that is, groups that do not characterize a model
uniquely. The need to augment the training set with
negative examples will become more obvious in the next
subsection where a simple example is presented. The
basicidea is that negative training examples will force the
network to respond in a predictable way when non-
important groups are presented to its inputs. Non-impor-
tant groups are extracted at the same time that we search
for important groups. When a non-important group is
presented to the inputs of an object recognizer, we re-
quire that the object recognizer responds in a predictable
way. Specifically, we require that the output consists of 0’s
only (i.e., none of the nodes is allowed to respond with
a high value). To be consistent with our notation, we call
this special output the representation of the “null” model.
Thus, all negative training examples are of the type (non-
important group, null-model).

5.4. An example

In this subsection, a simple example is presented to
demonstrate the training step. Let us assume that the model
database contains two different models, shown in Fig. 11a
and b. Initially, the hierarchical segmentation takes place
which partitions the models into two (Fig. 11c and d), four
(Fig. 11e and f), and six (Fig. 11g and h) segments. Note that
in practice, we do not consider segmentations with 2 seg-
ments as we have already discussed in Section 4.2. Here,
we use them just for illustration purposes. The total
number of segments is 24. Let us assume that the resulted
segments have been normalized and clustered into 10
classes Sy, S1, ... ,So, by applying the clustering scheme
described in Section 5.2.1. Fig. 11 shows the segment
class assigned to each segment. The training set of the
segment classifier will include examples of the form:

(mn mis mi3mi4) - Sj,

where i=0,1,...,23 and j=0,1,...,9, and
(m;ymy; mizmy, ) are the moments of the centroidal profile
associated with the i segment.

Denoting by O, the jth model contour, partitioned in
k segments, then each object contour can be represented

in terms of its segment classifications as follows:
01(2) = (SoS1)s 02(2) = (S052).
01(4) = (SOSSS4S3) 02(4) = (SOSSS7S6)9

O16) = (S05354595453),  Oz6) = (S08657595756).
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These are actually the hierarchies of segmentations of the
model objects. It should be noted that S, and Sy are
common in both models.

The object recognizer located at the top of the hier-
archy is trained to recognize a model using important
groups of size one, that is, important segments only. In
this example, its training set includes the following train-
ing examples:

S, =04, S, — 0, (Istsegmentation level, Fig. 11¢,d)
Ss > 04, Sg— 0, (2nd segmentation level, Fig. 11e¢,f)
Ss— 04, S;— 0, (2nd segmentation level, Fig. 11e,f)
S; = 0;, S¢— 0, (2nd segmentation level, Fig. 11e,f)

where S; — O;indicates that S; characterizes O; uniquely.
The reason that S, and Sy have not been included in the
training set is because they correspond to non-important
segments, that is, they cannot be used to distinguish
between the two models. However, it is important for the
object recognizer to learn to produce an ambiguous
recognition when any of these two segment classifications
is presented to its inputs. These segment classifications
will actually give rise to the negative training examples
discussed in the previous section. To illustrate the neces-
sity of the negative examples, let us suppose that S, is
represented by 0000, S; by 0001, S, by 0010 and Sg by
0100 (gray codes). Also, suppose that S, has not been
used in the training of the object classifier and that after
training has been completed, we present Sy to its inputs.
The question is how the network is going to respond.
Ideally, we would like the network to yield an ambiguous
recognition. However, given that ANNs are tolerant to
noise and distortions, it is very likely that the recognizer
will perceive the representation of S as a noisy version of
one of the representations associated with the positive
training examples (for example, note that S,’s representa-
tion is very close to the representations of S;, S,4, and
Sg — they differ only by one bit). As a result, it might yield
an unambiguous recognition. To prevent situations like
these, it is important to augment the training set of the
object recognizer by including the following two negative
examples:

So = OnuLL, S9 = OnvuLL-

Oy denotes the null object and can be represented at
the output nodes of the object recognizer as a sequence of
zeros (ambiguous representation). The same methodo-
logy is followed during the training of the rest of the
object recognizers: whenever a combination of segment
classifications does not characterize a model unambigu-
ously, it is added to the training set of the appropriate
object recognizer as negative training example.

The training set of the object recognizer located below
the next level, contains training examples corresponding

to important groups of size two. These are formed by
concatenating the encoded segment classifications cor-
responding to the segments of the important groups. In
our example, the training set of the object recognizer will
include the following training examples:

SoS1 — 04, SoS, — 0, (Istsegmentation level, Fig. 11¢,d)
S0Ss— 01, SoSg— 0, (2nd segmentation level, Fig. 11e,f)
S58,— 04, SgS,—0, (2nd segmentation level, Fig. 11e,f)
S4S3—01,878¢—0, (2nd segmentation level, Fig, 11e,f)
S3S0—01,86So—0, (2nd segmentation level, Fig. 11e,f)
S4So—01,878¢—0, (3rd segmentation level, Fig. 11g,h)
SoS4—01, 84S, >0, (3rd segmentation level, Fig. 11g,h)

No negative examples exist for this training set. It
should be noted, that although S, and S are not useful
by themselves for distinguishing between the two models,
their combination with other segments provides groups
of segments which can be used for discrimination pur-
poses.

In a similar way, the training sets of the other object
recognizers can be constructed. The training set of the
bottom level object recognizer will include training
examples based on six segment classifications.

6. The recognition phase and the verification procedure

The major characteristic of the recognition phase is
that it operates hierarchically. In particular, recognition
starts by selecting segments located at high levels of the
hierarchy of segmentations of the scene contour. This is
because segments located at high levels are rich in in-
formation and small in number. If recognition cannot be
established using information from these levels, probably
because the segments present at these levels have been
affected by occlusion, segments located at lower levels are
considered. Concentrating at lower scales yields more
segments, which might be less descriptive, however, it is
more likely that most of them will be unaffected by
occlusions. The general strategy of the matching proced-
ure is that, when high level segments are present in the
scene, it is worth using them for matching because
recognition can become faster and verification more ac-
curate. However, when high level segments are partially
visible, due to occlusions, segments from lower levels
must be considered.

Let us now describe the recognition procedure in more
detail. Initially, a closed, possibly, composite contour is
extracted from the scene and its RCSS image is com-
puted. Then, a hierarchy of segmentations is obtained
and the centroidal profiles of the segments are computed.
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Fig. 11. An illustration of the hierarchical segmentation and
representation of object contours using their segment classifica-
tions. At the higher levels of the hierarchy, each object is repre-
sented by a small number of segment classifications. As we move
down to a lower level, more segment classifications are used to
represent objects.

Next, each segment is represented by four moments of its
centroidal profile. Matching is performed from higher to
lower scales and in a local to global basis. First, recogni-
tion is attempted using segments located at a high scale.
Each segment is classified by the segment classifier and
the obtained encoded segment classifications are fed, one
at a time, to the top level object recognizer. If the object
recognizer fails to yield an unambiguous recognition,
pairs of encoded segment classifications, corresponding
to adjacent segments, are fed, one at a time, to the next

level object recognizer. If this object recognizer is also
unable to perform an unambiguous recognition, encoded
segment classifications corresponding to triplets of adjac-
ent segments are chosen and fed to the object recognizer
located at the next lower level. The same procedure is
repeated for all other groups at this level of the hierarchy.
It should be reminded that the size of a group can be
between one and four as we discussed in Section 5.3.1. If
recognition is still impossible, the immediately lower
level of the hierarchy of segmentations is chosen and the
same procedure is repeated. The procedure continues
until all the levels of the hierarchy of segmentations have
been considered or all the objects present in the scene
have been recognized. Fig. 12 shows the major steps of
the recognition procedure.

In case of an unambiguous recognition at some step of
the recognition procedure, verification follows to evalu-
ate its validity. During verification, we need to find which
group of segments from the candidate model corresponds
to the group of segments chosen from the scene and
compute the transformation that brings them into align-
ment. Then, the same transformation is applied to all the
points of the model in order to back-project it on the
scene and compute its overlap with the scene. The only
information available to us at the time that an unambigu-
ous recognition occurs is the classification of the scene
segments and the identity of the candidate model. The
object recognizer’s decision limits the search to a specific
model only. Also, the segment classifier limits the search
to these model segments which have the same classifica-
tion with the ones chosen from the scene. To implement
this step efficiently, we keep a table with information
about the groups of segments extracted during prepro-
cessing. In particular, we store information regarding the
model object, the coordinates of the endpoints, and its
classification. To find the correct match between model
and scene segments, a number of hypotheses must be
tested. In particular, a new hypothesis is formed for every
group found in the table which belongs to the same
model and has the same segment classifications with the
group chosen from the scene. Each of the hypotheses
requires the computation of a similarity transformation.
Then, the candidate model is back-projected onto the
scene and the fraction of the model accounted for by the
scene data is computed. If this fraction is grater than
a threshold, the verification is considered to be successful
and the contour of the recognized model is removed from
the scene. Recognition continues until no more objects
have left in the scene. Fig. 13 illustrates the verification
procedure.

A number of issues should be clarified at this point.
First of all, as was the case in preprocessing, segmenta-
tion does not start at the highest possible scale level and
does not end at the lowest possible level. As we discussed
in Section 5.3.1, each segmentation level contains be-
tween 4 and 8 segments. During recognition, however, we
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Fig. 12. The steps involved in the recognition phase. First, the preprocessing step is applied. Then, the segment classifier is applied to
obtain the segment classifications. Finally, groups of segment classifications are forwarded to the object recognizers which attempt to

recognize the unknown object(s). The details are given in the text.

should take into consideration that the scene contour
might be composite. This implies that in order for us to
obtain non-composite segments, we should consider
splitting the contour into more segments. In our experi-
ments, we have considered segmentations yielding
between 6 and 12 segments. In other words, the segmen-
tation procedure does not consider segmentations at
scale levels with less than 6 and more than 12 zero-
crossings. Another issue is the redundancy that might
appear to exist during recognition. In particular, it might
appear redundant that combinations of segments are
tried. The reason is that some of these groups correspond
to segments which exist at a higher segmentation level. If
recognition is impossible at the higher level, then is seems
that there is no benefit for considering combinations of
segments from the lower levels. However, this is not
absolutely true. In fact, the redundancy involved during

recognition can be proven very beneficial in case of
occlusion or non-uniform noise. In these cases, recogni-
tion at a high segmentation level might be impossible but
recognition at a low level quite feasible. This is because
many of the segments in the group might be classified
correctly which will allow the object recognizer to reach
a correct decision.

7. Implementation issues and simulation results

In this section, experimental results are presented to
illustrate the efficiency of the proposed technique. The
performance of the recognition system was tested using
a library of 20 real objects. This library contains fairly
complex objects with a large variety of features. Initially,
the objects were positioned on a light table resulting in
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Fig. 13. The steps involved during verification. The data struc-
ture used for the formulation of the hypotheses is also shown.

high contrast images. A Laplacian edge detector separ-
ated the objects from the background and a boundary
following routine extracted their boundaries. The twenty
simple closed planar shape boundaries thus obtained are
shown in Fig. 14. All boundaries were approximated by
256 contour pixels. Inner boundary information was not
used in this study.

7.1. Applying the preprocessing step

Once the boundaries of the object models were ex-
tracted, their RCSS images were computed. Thus, each
contour was convolved with a Gaussian filter for a con-
tinuous range of scales. The standard deviation ¢ of the
Gaussian was set equal to 1 and the filter’s kernel size was
chosen to be 5S¢ (this size can still provide a good approx-
imation for the second derivative of the Gaussian func-
tion). Then, we computed the hierarchy of segmentations
for each model, as described in Section 4.2. Localization
was performed at ¢ = 1. As discussed, the highest level of
each hierarchy contains no less than 4 segments while the
lowest level contains no more than 8 segments. The total
number of segments obtained was 351. Note that
segments which appear at multiple segmentation levels
were counted only once. For each segment obtained, we
computed its centroidal profile and then represented it in

terms of four moments of its centroidal profile (encoded
segments).

7.2. Training the segment classifier

The training of the segment classifier requires first the
clustering of the segments obtained from the previous
step, the ordering of the segment clusters according to
their similarity, and the gray-coding of the segment
classes. The threshold parameter T, mentioned in
Section 5.2.1, was set to 0.05. The total number of
segment clusters obtained was 159. The segment
clusters were represented using an 8-bit Gray code.
This determined also the number of output nodes
of the segment classifier (8 nodes). The network used was
a two layer network (one hidden layer and one output
layer), with 80 nodes in the hidden layer. The learning
rate and momentum term were set to 0.2 and 0.4 corre-
spondingly. The stopping criterion used was that the
mean square error of the outputs was close to 0.001.
The number of training epochs required for convergence
was 100 000.

7.3. Training of the object recognizers

The inputs to the object recognizers were appropriate
combinations of encoded segment classifications. The
object recognizers were structured in a hierarchy and
each one of them was trained with groups of encoded
segment classifications of a specific size. These segment
classifications correspond to important segments of im-
portant groups of segments which were extracted by
applying the selective search procedure described in Sec-
tion 5.3.1. Two-layer ANNs were used for implementing
the object recognizers. The object recognizer located at
the top of the hierarchy was trained to recognize model
objects using important groups of size one (i.e., important
segments). Thus, the number of input nodes for this
object recognizer was set to 8. The number of positive
training examples used to train this object recognizer,
which actually represents the number of important seg-
ments found by the selective search procedure, was equal
to 107 while the number of negative examples was equal
to 14. The ANN located at the next lower level of the
hierarchy was trained to recognize model objects using
important groups of size two. Thus, the number of its
input nodes was set to 2 x 8 = 16. Its training set consis-
ted of 150 positive training examples and 8 negative
training examples. In a similar manner, the number of
input nodes and training examples of the rest object
recognizers were determined. Table 1 shows these num-
bers as well as the number of nodes chosen in the hidden
layers. The local encoding scheme was used to represent
the identity of the model objects at the output nodes of
the object recognizers. The number of output nodes was
set to 20 (equal to the number of model objects in our



1194

G. Bebis et al. | Pattern Recognition 32 (1999) 1175-1201

250 450

250 240

‘model 1 'model2'— 'model3'— 'model4'—
400 220
200 200 200,
350 180
150 300 150 160
250 140
100 200 100 120
100
50 150 50 80
100 60
0 50 0 40
0 50 100 150 200 250 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 0 50 100 150 200 250
250 : - 240 : - 220 220 : ;
— — ; — del8’ —
'mod 220 'mod 200 del7 200 e
200 200 180 180
150 :28 :Sg 160
140 120 ::g
100 120 100
100 30 100
50 80 60 80
60 40 60
0 40 20 40
0 50 100 150 200 250 0 50 100 150 200 250 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250
\
200 modelo' —| 200 oderio—] % modeliT—] 220 model 12 —
180 180 450 200
180
160 160 400 160
140 350
140 140
120 300
120 120
100 250
100 100
80 200 80
80 60 150 60
60 40 100 40

0 50 100 150 200 250 40 60 80 100120140160180200220240 0 50 100 150 200 250300 350 400 450 40 60 80 100 120 140 160 180200 220
200 220 220 220
" 33— 0 — " A5 — B TP
%0 modell 200 del 14 200 model15 200 model16
180 180 180
o 140 140 160
140
120 120 140
120 100 100 120
100 80 80 l;)g
60 60
80 2 40 60
60 20 20 40
40 60 80 100 120 140 160 180200 220 60 80 100 120 140 160 180 200 20 40 60 80 100120140160 180200250 0 50 100 150 200 250
250 'model17' — 250 ‘model 18" — 338 ‘model19' — 200 model20'—
200 200 200 180
180 160
150 150 160
140
120 140
100 100
100 120
80
50 50 60 100
40
0 0 20 80
0 50 100 150 200 250 20 40 60 80 100120140160 180200220 40 60 80 100120140 160 180 200 220 40 80 120 160 200 240

Fig. 14. The model objects contained in the model database.

database). The same learning rate, momentum term, and
stopping criterion used to train the segment classifier
were also used to train the object recognizers. Table 1
shows the number of training epochs required for conver-
gence by each object recognizer. Note that the training
time of each object recognizer was significantly shorter
than that of the segment classifier.

7.4. Experiments and results

The performance of the proposed approach was
studied through a number of experiments. First, we per-

formed experiments to test the robustness of the method
in presence of noise and distortion. No occlusion was
allowed at this time. For each model object, 100 test
objects were generated. These test objects consisted of
samples of different sizes of the model objects in various
translational and rotational positions, with noise and
distortion. The objects were rotated over the range from
0 to 2n radians and translated to random positions. The
size of each object was varied from 0.5 to 1.5 times the
size of the original object. Noise and distortion effects
were introduced by adding random noise to the bound-
ary points using the approach of You and Jain [28].
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Table 1
Parameters used for training the object recognizers

Complex objects

Object recognizer Training examples = Negative examples  Input layer Hidden layer Output layer Epochs
First 107 14 8 64 20 391
Second 150 8 16 32 20 607
Third 158 0 24 16 20 291
Fourth 158 0 32 8 20 253
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Fig. 15. Recognition results (proposed method). The high-lighted segments which led to correct recognition are shown in the second
column. The correctly recognized model, back-projected on the original scene (dotted line) is shown in the third column.

Specifically, if the coordinates of the kth boundary point where d is the distance of boundary point k to point k + 1,
are (x(k), y(k)) then the coordinates of the corresponding r is a sample from Gaussian distribution N(0,1), ¢ is a
point on the noisy boundary (x,(k), y,(k)) are given by parameter which controls the amount of distortion and

0(k)is the angle from the x-axis to the normal direction of
the boundary at point k. In our simulations, ¢ was set to
Vulk) = y(k) + drc sin(0(k)) 0.5. The points that caused crossover on the boundary

X (k) = x(k) + drc cos (0(k)),
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Fig. 16. Recognition results (variation). The high-lighted segments which led to correct recognition are shown in the second column.
The correctly recognized model (dotted line), superimposed on the original scene (solid line) is shown in the third column.

were omitted. The amount of noise in an object contour
was determined by the percentage of contour points
corrupted with noise. The accuracy of the proposed was
tested using objects corrupted with various amounts of
noise (0-50% noise corruption). Fig. 15 shows some of
the test objects (assuming 30% noise corruption) and the
recognition results (60% or more of the model points
were required to match with the scene).

For comparison purposes, we also implemented an-
other method which is actually a variation of [6]. In [6],
the segments are represented by the Fourier descriptors
of the object’s contour segments. Here, we are using
moments of the centroidal profiles of the segments, as is
the case with our approach. Also, the procedure for
extracting the contour segments in [6] is different than
the one used here. In [6], segments are obtained by
moving a window of a specific size over the object’s
contour. Each time the center of the window is moved,
the part of the object’s contour enclosed within the win-

dow represents a new segment. Obviously, the segments
obtained by this procedure have a high degree of overlap,
making the system tolerant to occlusions. In our imple-
mentation, the segments are determined by the curvature
zero-crossings of the object’s contour. A Gaussian filter
with ¢ equal to 1.0 was used for the detection of the
zero-crossings. Of course, the number of segments ob-
tained using this method is much less and the system is
less tolerant to occlusions. However, our objective here is
to demonstrate the problems that traditional indexing
schemes are facing when noise and distortion are present.
Also, we want to demonstrate the benefits of using seg-
ments coming from high scales first for better recognition
and localization. Fig. 16 shows the recognition results in
the case of the variation, using the same test objects (Fig.
15). Some very interesting comments can be made by
observing these results. First, both methods were able to
recognize the instance of the object shown in Figs. 15
and 16, however, the proposed method has localized the
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Fig. 17. The recognition accuracy of the two methods. The solid line corresponds to the proposed method while the dotted one
corresponds to the variation. The horizontal axis corresponds to the percent of noise while the vertical one corresponds to recognition
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Fig. 19. Recognition results using a real scene. The high-lighted segments represent the segments chosen by the recognition algorithm
(in that order). The last graph in this figure shows the model (dotted line) superimposed onto the scene (solid line).

object more accurately as can be seen by observing Figs.
15¢ and 16¢. The reason is that the proposed method
utilized a segment extracted from a higher scale (Fig. 15b)
which was much longer than the segment used by the
variation (Fig. 16b). In addition, our method verified only
two hypotheses while the variation verified 46. Figs. 15d
and 16d show an instance of another object. In this case,
the variation was able to hypothesize the correct model
but recognition was unsuccessful because verification
failed due to the poor alignment of the model with the
scene (Fig. 16f). On the other hand, the proposed method
recognized the model correctly and localized it quite
accurately as can be seen from Fig. 15f. In this example,
the proposed method verified only two hypotheses while
the variation verified 86 hypotheses. Finally, Fig. 16i
shows an incorrect recognition. Although the same seg-

ment chosen by our method (Fig. 15h) was also chosen by
the variation (Fig. 16h), noise did not allow the variation
to access the correct hash table location and form the
correct hypotheses. Fig. 151 shows the recognition results
of the proposed method. The number of hypotheses veri-
fied by our method in this case was 6 while the variation
verified 376 hypotheses before it reports the unsuccessful
recognition.

Fig. 17 shows the overall recognition accuracy of the
two methods, assuming various levels of noise (0-50%).
The average number of hypotheses verified by the two
methods are also shown in Fig. 18. Obviously, the pro-
posed method is more accurate and faster. This is due to
two reasons: first, due to the RCSS driven matching
approach and second, due to the ANN-based indexing
scheme which does not allow for collisions. In most
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Fig. 20. Recognition results using a different real scene. The high-lighted segments represent the segments chosen by the recognition
algorithm (in that order). The last graph in this figure shows the model (dotted line) superimposed onto the scene (solid line).

of the recognition experiments, recognition was per-
formed by the object recognizer located at the top of the
hierarchy and using segments from the two highest
segmentation levels. On the other hand, the variation
verified many hypotheses due to the fact that very local
segments were used for recognition. Also, noise affected
the indexing scheme, giving rise to many false positive
hypotheses.

Next, we tested the proposed approach using objects
corrupted by occlusion. Occlusion was introduced in a
random way. The amount of occlusion in an object
contour was determined by the percentage of absent
contour points. The test objects included in this experi-
ment were also rotated, translated, and scaled. Our re-
sults show that recognition accuracy and number of
hypotheses were not significantly affected with atmost 50
accuracy was 2-5% less in certain cases and that the

number of hypotheses was increased by 5-10% approx-
imately. With more than 50% occlusion, however, we
observed that the recognition accuracy started to deteri-
orate rather fast and the number of hypotheses to in-
crease considerably.

Finally, we tested our approach using a number of real
scenes containing overlapping objects. Figs. 19a and 20a
show two of the scenes used in our experimentation. In
each case, we show the segments chosen by the method
during recognition. In the case of scene shown in Fig. 19a,
for example, the method chose some composite segments
first (Fig. 19b—d). In most of the cases, ambiguous re-
cognition results were reported by the object classifiers. In
the rest of the cases, verification rejected the candidate
matches. Fig. 19¢ shows the segment which yielded the
successful recognition shown in Fig. 19f. Also, Fig. 19h
shows the segment which yielded the recognition of the
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model shown in Fig. 19i. The total number of hypotheses
tested for the recognition of both models was 8. In the case
of the scene shown in Fig. 20a, segments from the second
segmentation level yielded correct recognition. This is
because the zero-crossings detected at the first segmenta-
tion level did not form segments that were similar to these
formed in the preprocessing step for the models shown in
the scene. Thus, the number of hypotheses tested in this
case was higher (42 hypotheses).

8. Conclusions

A new method for the recognition of two-dimensional
objects has been presented in this paper. Recognition by
the proposed method is invariant to object size, position,
and orientation, it is insensitive to noise, and it is quite
accurate even when objects are partially occluded. The
method consists of a preprocessing step, a training phase
and a recognition phase. The preprocessing step gener-
ates the hierarchy of contour segmentations for each
model object, using the RCSSs of the object contours. In
the training phase, a selective search procedure extracts
important groups of segments from the various levels of
the hierarchies. The model database is then built.
It consists of two main components, both implemented
using multilayer ANNs. The first component, called
the segment classifier, assigns segments to an appropriate
class. The second component consists of a group
of ANNs which are structured hierarchically and
called object recognizers. Each recognizer performs
recognition using groups of segment classifications.
Recognition operates hierarchically, driven by the RCSS
based contour segmentation scheme. First, recognition is
attempted using important groups extracted from high
levels of the hierarchy of segmentations. If recognition is
not possible at these levels, information from lower levels
is utilized.

The proposed method has been tested using both arti-
ficial and real data illustrating good performance. Some
comments are the following: first, although the hierarchi
cal segmentation scheme is quite effective, it is also quite
time consuming. In the present implementation, we have
not tried to optimize it. However, faster implementations
are possible using a number of heuristics [20]. Second,
maintaining the model database is quite important. As-
suming that the model database needs to be expanded by
adding new models, our present implementation requires
retraining of all the ANNSs used. This is quite inefficient.
However, there are ANN models which have the ability
to store new knowledge without significantly destroying
previous one. This problem is known as the “stability
plasticity” problem and some architectures which have
shown to deal with this problem are the Fuzzy-
ARTMAP [30], and Cascade Correlation [29] architec-
tures.
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