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Abstract

In this paper we present a new procedure which increases the rate of convergence
of the back-propagation algorithm without increasing its complexity. The Predict
back-propagation algorithm takes into account the learning “difficulty” that each
exemplar pattern imposes to the network in order to determine the proper sequence
that the exemplar patterns must be presented to the network. Simulated results,
from representative class problems, illustrate the efficiency and superiority of this
procedure over the traditional back-propagation algorithm.

1 Introduction

Artificial Neural Networks, were inspired by the structure of the human brain-
its nerve cells, the large number of interconnections and interactions among them-
and by envy of what the brain can do. As their original model is in biological
nervous systems so their main purpose is to make an artificial system to operate in
the same way as the biological organisms operate. The idea of simulating the brain
formed the foundation for much of the early work in Artificial Intelligence.

Especially in our days a great resurgence of interest on Artificial Neural Net-
works is a consequence of recent hardware advances in the construction of massively
parallel machines ([1],[2]). A number of Artificial Neural Networks have recently
received widespread attention as potential new architectures for computing systems.
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These models appear to have the greatest application in the area of pattern recog-
nition ([3],[4]), in speech ([5],[6],[7]) and in image processing ( [8],19],[10]), where
high computational rates are necessary and many hypotheses can be explored in
parallel. Furthermore, many attempts have been made to solve complex problems
([11],[12],[14]) with promising results.

Much of the current research in the field of Artificial Neural Networks is focused
on the design of efficient learning algorithms to train an Artificial Neural Network to
perform a specific task ([13],[18],[19]). One of the most popular learning algorithms
is the “back-propagation” rule, developed by Rumelhart et. al ([13]). This rule
has been applied to a great number of cases ([13],[15],[16]) and has been found to
find good solutions to the corresponding problems. Although its performance can
be excellent, many researchers still criticize the convergence rate of this algorithm.
Many attempts have been made in the hope of achieving faster rates of convergence.
S. Kung et. al. [17] have performed experiments to find the optimal number of
hidden nodes per layer and the optimal number of synaptic weights between two
adjacent layers but their conjectures do not hold in every application.

In this paper we propose a new method which we call the Predict back- propaga-
tion algorithm and it relates the convergence rate of the back- propagation algorithm
with the sequence in which we must present the exemplar patterns to the network.
We have tested our method on a representative class of problems. Our method
decreases in all cases the number of learning sweeps without increasing the overall
complexity of the algorithm. Thus, the timing requirements of the learning phase
are greatly reduced, without sacrificing the precision of the retrieving phase. In the
second section of the paper we present a special class of Artificial Neural Networks,
the multilayer feed-forward Artificial Neural Networks. In the third section we
make a brief overview of the back-propagation algorithm and in the fourth section
we present the proposed new method. In the fifth section we test our algorithm on
a representative class of problems. Finally, we present certain comparisons of our
algorithm with other methods.

2 Multi-Layered Feed-Forward Artificial Neural Networks

Artificial Neural Networks are specified by the topology of the network, the
characteristics of the nodes(i.e., neurons) and the processing algorithm. The pow-
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erful information processing properties of an Artificial Neural Network arise from
the above network specifics.

We are interested in the special class of Artificial Neural Networks, the multi-
layer feed-forward Artificial Neural Networks, which is illustrated in Figure 1. The
topology of a multilayer feed-forward Artificial Neural Network is a structured hi-
erarchical layered network. It consists of several distinct layers of nodes. Two of
these layers play the role of the input layer and the output layer. Between the
input and the output layer we may have one or more layers of nodes which are
called hidden layers. Hidden nodes, the nodes in the hidden layers, are used to
represent domain knowledge useful for the problem solving. Generally, each node
in one layer is interconnected with all the nodes in adjacent layers with connections,
known as synapses, as illustrated in Figure 1. Each connection is associated with a
weight which measures the degree of interaction between the corresponding nodes.
Nodes are retatively simple processing elements and the capabilities of multilayer

feed-forward Artificial Neural Networks stem from the nonlinearities used within
them.

The algorithms for multilayer Neural Net processing can be divided into two
phases: retrieving and learning. In the retrieving phase of the algorithm, infor-
mation flows from the input layer through the hidden layers to the output layer.
Basically, in this phase the nodes update their own activation values based on the

system equations. In the learning phase, an adaptation of the weights corresponding
to the connection nodes takes place.

The actual task we want to perform is to teach the network to associate specific
output states, called target states, to each of several input exemplar patterns by
calculating the appropriate connection weights. The retrieving and learning phases
act one after the other until the weights take their proper values needed by the
network to perform the desired task.

3 An overview of the Back-Propagation Rule

The back-propagation rule is a powerful general learning algorithm employing
a gradient-or “steepest”- descent method that enables a network to adapt in a way
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that improves its performance over time. Specifically, it is an iterative algorithm
which in each step adjusts the connection weights in the network, minimizing the
mean-square error between the target value (the desired) and the output value (the
actual) of the network. This error function is a surface in the weight space and is

defined as follows:
E=271% (t; — 0;)} (1)
J

where the summation is performed over all output nodes indexed by j. We denote
by t; the target values and by o; the output values.

Let us assume that we have an L-layered feed-forward Artificial Neural Net with
N input nodes. The number of nodes in the hidden layers is Ny for 1 << L. In
our notation, the input layer is not counted as a layer. So an L-layered feed-forward
Artificial Neural Net has L — 1 hidden layers and the Lth layer is the output layer.
Initially, we present the input data T1,%2,-..,ZN and the corresponding target
data t1,?s,...,tn,. The input is propagated forward through the network, which
computes the activation value for each output node. This the retrieving phase,
which is described by the following equations:

Ni4
ui(l) = ; wij(Da;(1 1) + 6;(1) (2)
ai(l) = flw(D)) =(1+e™N) 1<i<N, 1<I<L (3)

where a;() is the activation value of the ith node in the /th layer and it is broad-
casted to all the nodes of the above layer (I + 1). In addition, w;() corresponds to
the weight associated with the connection that originates in the jth node of layer

—1, and terminates in the ith node of layer I. Note that a;(0) =z;for 1 <j <N.
Furthermore, f denotes the nonlinear sigmoid activation function and 6:(1) is an
internal offset of the ith node in layer 1.

The learning phase involves a backward pass through the network during which
an error signal is passed to each unit in the network and appropriate weight changes
are made. For each weight the gradient of the output error with respect to that
weight is computed. Then the weight is changed in the direction that reduces the
error. Specifically, the adjustment of the weights is performed according to

wi () = w0 + ™ (a1 - 1) (4

17



where 7 is the learning rate, usually a constant, and 6§m)(l) is the error signal
generated by the exemplar pattern presented in the mth iteration. If the 7th node
is an output node (i.e., | = L) then the error signal 6§m)(L) is described as

5§(L) = o™ (L)(1 — a™(L))(H™ — o™ (L)) (5)

Otherwise the ¢th node is an internal hidden node, and the error signal is described
as

Nigs
60 = a1 - af™ W) 1 &7+ w14 1) ©)

forl=L—1,L—2,...,1. The error signals are propagated backward updating the
connection weights in all the layers.

Internal thresholds, ;, should be learned just like any other weights. We simply
imagine that §; is the weight from a node that it has always constant-valued inputs.
It is easy to show that the internal thresholds can be adjusted according to

6™ (1) = 6D (1) + ™ (1) ()

4 The Predict Back-Propagation Rule

In the original Back-propagation algorithm the exemplar patterns are presented
to the network continuously, in a generally random way until the network is able
to recognize them. Preliminary results have shown that certain exemplar patterns
can be recognized faster by the Neural network than others. We feel that instead of
having the network process all the available inputs in an equal manner it should be
forced to process more frequently those presentations which are more difficult to be
learned. Of course, in order to implement the above idea, a measure of the relative
learning difficulty each exemplar pattern causes the network must be devised.

An intuitive example serves to illustrate the basic idea of our approach. This
example presents a naive but realistic way of learning a set of unknown words. In
teaching words to humans, a common method used, is to repeatedly expose these
unknown words, one at a time, randomly or sequentially, to a person until it learns
them. Experiments have shown that after some time, before completion of the
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learning process, a person easily recognizes a subset of these words while the rest
are more “difficult” to be recognized. Instead of repeating the process involving
the whole set of words, we concentrate on the subset of the “difficult” words only.
Using such an elimination method all words are learned in a faster way. In the
above example, although all the words are learned, some of the words were exposed
to the person more frequently than others and the frequency rate was proportional
to the learning “difficulty” that each word imposed.

In order to increase the rate of convergence of the back-propagation algorithm
we will present the exemplar patterns to the network in a sequence which depends
on the learning “difficulty” that each exemplar pattern imposes to the network.

The error signals associated with each exemplar pattern yields the measure of the
~learning “difficulty”. Thus, we can predetermine the sequence to use as exemplar
patterns by choosing at each current step the exemplar for which the error signals
take their maximum values.

Let eﬁ’”) denote the error, associated with the ith output node of the mth exem-
plar pattern, which is defined as

™ = 4™ — a{™(L) (8)

The total error €™ can be calculated by choosing any vector norm of ez(-m)’s over all
the ouput nodes. For example, we can define (™ by choosing the max-norm

™ = max | t{" — a{™(L) | (9)
foreachm=1,2,..., M — 1.

The rate of convergence can be incresed by increasing the learning rate of equa-
tion (4) as indicated by Rumelhart et. al ([13]). However this could lead to os-
cillation. The effect of our algorithm is that we maximize adaptively another pa-
rameter of this equation, namely &(m)(l), which depends indirectly on equation (8).
Specifically, the proper exemplar which maximizes the error signal 6§m)(L), given

in equation (5) is chosen, and as a result Egm)(l), given in equation (6), is also
maximized.

It should be noted that the weights change every time we load a new exemplar
pattern. In order for our algorithm to function properly, an update of the error
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vector of el™)’s must be performed each time we load an exemplar pattern. However,
the computational cost of such an action is very high and it negatively affects the
performance of the algorithm, although it results in a decreased number of learning
steps. So, in order to improve performance we do not update the error vector each
time a new exemplar is loaded into the network. The update is done in relation to
the termination condition we have imposed in our algorithm, as shown in a later
section. Such a strategy decreases the number of retrieving steps required for the
updating by a large amount, without increasing seriously the number of learning
steps.

5 Implementation of the Predict Back-Propagation rule

In order to evaluate the efficiency of our proposed algorithm we have experi-
mented with three tasks which were chosen because their error surfaces possess a
wide variety of terrains. These are the same tasks that were used by Jacobs in [18]
in order to evaluate the performance of the heuristics that he has suggested. These
tasks are the learning of the exclusive-or, multiplexer and binary-to-local functions.
In order to obtain a proper comparison we also used the same network architectures
for all the experiments. Both the input to the network and the output were given
in binary notation. In each task the back-propagation rule was simulated with the
sequence of the exemplars determined randomly (random back-prop). sequentially
(sequential back-prop) and as described by our algorithm (predict back-prop). All
the experiments were implemented on a Sun 4/110 Workstation system using C.

The learning rate that we used in all the experiments was kept constant at
n = 0.3. In order to define €™ we used the max-norm as given by equation (9).
Our simulation results showed that this norm performs better than other norm
definitions. The termination condition was kept the same in all the algorithms for
comparison reasons. This condition determines that a task is solved when the error
™) associated associated with exemplar pattern m for all m = 1,2,...,M — 1,
was less than a given threshold. Every time that a termination was true for some
exemplar m, the rest of the exemplars were presented to the network in order to
calculate the error associated with each exemplar pattern and to check whether the
current set of weights satisfy the termination condition. In the case of the sequential
and random back-prop there is no reason to pass all the exemplar patterns through
the network. For these procedures, each time that the termination condition was
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true for some exemplar the rest of the exemplars were passed through the network,
one after the other, until for some exemplar the termination condition was false.
This is a very logical procedure since it is not necessary to compute the errors
associated with all the exemplar patterns, as we did with the predict back-prop.

We have run each task eight times. Each time the initial weight values were set to
small random values and in order to have proper comparisons the same set of initial
weights was used in each of the three algorithms. The results of our simulations
are listed in Tables 2,4, and 6. These results contain both the number of learning
sweeps (denoted sweeps in the Tables) and the number of retrieving sweeps. We
define a learning sweep to be a pass of all the exemplar patterns through the network
including the learning phase. Every retrieving sweep is defined as the pass of all the
exemplar patterns through the network, excluding the learning phase. The reason
that prompted us to discriminate between learning sweeps and retrieving sweeps is
that during training the network may go through a retrieving phase without having
to go through the learning phase (in the case where the termination condition for
the input pattern is satisfied).

We expected that the number of retrieving sweeps in the case of the predict
back-prop would be large due to the fact that we have to go through a retrieving
sweep every time that we learn an input pattern. On the contrary, the simulation
results show that both the number of learning sweeps and the number of retrieving
sweeps are significantly reduced in the case of the predict back-prop algorithm. In
the following section we present the analytical details of the three tasks involved in
the simulated studies.

5.1 Exclusive-or Task

The exclusive-or problem is a classical problem which requires two hidden units
to be solved. Many difficult problems involve an exclusive-or problem as a subprob-

lem. The inputs and the desired outputs of the exclusive-or problem are defined in
Table 1.

The network arcitecture for this task is illustrated in Figure 2. Table 2 presents
the results of the exclusive-or task. The threshold value for the termination condi-
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tion was set to 0.1. The simulation results show that the sequential back-prop and
the random back-prop perform about the same. The predict back-prop outperforms
both of them (by a factor of between 5 and 27 to 1 for the number of retrieving
sweeps and by a factor of between 1.2 and 3 to 1 for the number of learning sweeps).

5.2 Multiplexer Task

The multiplexer task consists of six input nodes and one output node. Two of
the input nodes act as a switch. Depending upon the number of values loaded to
the other four nodes the switch dertermines the output value of the network. The
inputs and the desired outputs in the multiplexer task are shown in Table 3, where
the terms x and a denote a binary value.

The network architecture for this task is illustrated in Figure 3, and Table 4
presents the results for the multiplexer task. In this task we have also set the
threshold value to 0.1. We observe again that the sequential back-prop and the
random back-prop perform about the same and as expected the predict back-prop
shows excellent results.

5.3 Binary to Local Task

This the most challenging task and it consists of the proper conversion from a
distributed representation, over three nodes, into a local representation over eight
nodes. The inputs and the desired outputs for the binary-to-local task are defined
in Table 5.

The network architecture for this task is illustrated in Figure 4. This network
arcitecture produces an error surface with sharp ravines. Thus, it is an interest-
ing problem to test learning algorithms. Because of the learning difficulty imposed
by this architecture the number of learning sweeps increase sharply in all cases.
In Table 6, we present the results for the binary-to-local task. Here we have set a
threshold value of 0.3. The symbol “*” means that the associated algorithm did not
converge after 200000 learning sweeps. Although the Predict back-propagation al-
gorithm converges in all cases, our experimental results have shown that for smaller
threshold values, less than 0.3, the sequential and random back-prop algorithms did
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not converge at all. As Table 6 indicates, the predict back-prop exhibits once more
the best performance.

6 Comparison with other techniques

In this section we will discuss the advantages of our algorithm compared to
other attempts to increase the convergence rate of the back-propagation algorithm.
S. Kung et. al. ([17]), in order to reduce the number of learning sweeps, attempted
to define the optimal number of hidden units per layer experimentally. Based on
results from random simulations, they claimed that the optimal number of hidden
units for efficient learning is equal to M — 1, where M is the number of exemplar
patterns used. Results from our simulations, showed that S. Kung’s conjecture does
not hold in general.

R. Jacobs ([18]) attempted to increase the rate of convergence of the back-
propagation rule by proposing the following heuristics:

i) Every parameter of the performance measure to be minimized should have its own
individual learning rate. In our case the parameters of the performance measure
are the weights, so we should associate an individual learning rate for each weight.

ii) Every learning rate should be allowed to vary over time. So weights should be
adapted by their learning rates varying over time.

iii) When the derivative of a parameter possesses the same sign for several consec-
utive time steps, the learning rate for that parameter should be increased.

iv) When the sign of the derivative of a parameter alternates for several consecutive
time steps, the learning rate for that parameter should be decreased.

The above heuristics can often be of value and their basic ideas have been
used in many problems in numerical analysis. We believe that the associated al-
gorithms using these heuristics can yield fewer learning sweeps than the classical
back-propagation rule. Altough fewer learning sweeps are required, the overhead
associated with the computation of a different learning rate for each weight is time
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consuming. In addition, the adjustment of each learning rate, which is based on both
the partial derivatives of the error with respect to the weights and on an estimate
of the curvatures of the error surface, imposes further computational complexity
to these algorithms. We believe that the additional computational compexity of
these algorithms should be taken into consideration before a fair comparison with
the back-propagation or the predict back-prop algorithms is conducted.

Let us now examine the additional cost imposed by our algorithm to the timing
and space requirements of the back-propagation rule. The only additional space
demand on memory required by the algorithm is an M -dimensional vector which
is needed for the storage of the errors (™. Periodically this vector must be up-
dated according to our policy, as discussed in section 5. This timing overhead has
been calculated and presented in the simulation results (the number of retrieving

sweeps). In addition, minimal time is required for the periodical computation of
the maximum error.

7 Conclusions

We presented a new algorithm which we called the predict back-propagation al-
gorithm. This algorithm increases the rate of convergence of the back-propagation
algorithm without increasing its computational complexity. We simulated the pro-
posed algorithm with two traditional implementations of the back-propagation al-
gorithm, the sequential and the random back-prop, over a representative class of

- learning problems. The predict back-propagation algorithm showed great efficiency
and robustness in all cases.
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FIGURE 1. A multilayer feed-forward Artificial Neural Network
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output layer
TABLE 1. Input Output data for the exclusive-or task
Inputs | OQutput
111 0
hidden layer 110 1
01 1
010 0
input layer

input input

FIGURE 2. Network architecture for the exclusive-or task

TABLE 2. Results from the simulation of the exclusive-or task

Simulation Results

sequent. | sweeps | 7390 | 8680 | 2784 | 5773 | 7457 | 4279 | 7437 | 7341

retriev. 562 | 840 154 | 499 566 495 560 561

random. | sweeps | 7392 | 8721 | 2799 | 5773 | 7458 | 4278 | 7437 | 7341

retriev. 562 857 154 499 566 495 560 561

predict. | sweeps | 3427 | 2932 | 2286 | 3031 | 3554 | 3277 | 4335 | 3876

retriev. 26 39 36 50 21 48 90 26
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output layer

hidden layer

input layer

FIGURE 3. Network architecture for the multiplexer task

TABLE 3. Input Output data for the multiplexer task

Inputs Output
X|x|x|la|0]|0
X |{x]lalx|0|1|a
Xla|x|x|1]10]|a
a | x| x|{x |1 11| a

TABLE 4. Results from the simulation of the multiplexer task

Simulation Results

sequent. | sweeps | 682 | 454 | 492 | 456 | 465 | 411 | 465 | 475

retriev. | 461 | 235 | 295 | 257 | 250 | 243 | 268 | 283

random. | sweeps | 682 | 454 | 492 | 457 | 465 | 413 | 465 | 475

retriev. | 461 | 235 | 295 | 258 | 250 | 244 | 268 | 283

predict. sweeps | 290 | 272 | 251 | 243 | 253 | 243 | 253 | 252

retriev. 3 6 4 4 4 9 3 4
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FIGURE 4. Network architecture for the binary to local task
TABLE S. Input Output data for the binary to local task

Inputs Output
0j0}111710j]0}]0(0]1010160
0j1/010(17010;0]0}10160
oj1{1{0}0}j1710]01010140
1{0j]0}/0}j0}j0}]1}1010j070
141011101010} 01110]1010
1711710101010 010}111010
114117101010} 0(0}J0}1]0
0/0]0}(0]0}j0]0]0J0]0]1

TABLE 6. Results from the simulation of the binary to local task

Simulation Results

sequent. | sweeps | 16336 * * 17203 * * * 15276
retriev. | 18756 * * 27661 * * * 11554
random. | sweeps * * 22361 * 31803 * * 16433
retriev. * * 55334 * 84524 * * 18940
predict. ‘ sweeps 9275 | 11149 9781 | 10996 9742 | 8922 | 9025 | 11018
retriev. 2523 5444 | 2304 2893 2767 | 2110 | 2021 2702
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