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Abstract
We address the problem of recognizing real flat objects from
two-dimensional images. A new method is proposed which
has mainly been designed to handle complex objects and
performs under occlusion and similarity transformations.
Matching operates hierarchically, guided by a Curvature
Scale Space (CSS) segmentation scheme, and takes advan-
tage of important object features first, that is, features
which distinguish an object from other objects. The model
database is implemented using a set of Artificial Neural
Networks (ANNs) which pro vide the essential mechanism
not only for establishing correct associations between
groups of segments and models but also for enabling effi-
cient searching and robust retrieval, especially when noisy
or distorted objects are considered.

1. Introduction
Object recognition is an essential part of any high-

level computer vision system. The most successful
approach is probably in the context of model-based object
recognition [1], where the environment is rather constrained
and recognition relies upon the existence of a set of prede-
fined model objects. There are two separate phases of oper-
ation: training and recognition. During the training phase,
a model database is built by establishing proper associations
between features and models. During the recognition phase,
scene features are used to retrieve appropriate associations
stored in the model database. Indexing is a popular
approach which has received a lot of attention lately [2]-[6].
It is based on the idea of using a-priori stored information
about the models in order to quickly eliminate non-
compatible matches during recognition. Efficient indexing
schemes are used to store and retrieve information to and
from a table.

In this paper, a new indexing-based object recogni-
tion method is proposed. It is assumed that the object are
described by their boundaries which do not cross over
themselves and have a number of "interest" points. Objects
appearing in the scene may have undergone similarity trans-
formations, that is, rotation, translation and scaling. The
method has the following key characteristics: First, empha-
sis is given on the detection and utilization of important
object features, that is, features which can distinguish a
model object from other model objects. These features are

obtained by employing a multiscale segmentation scheme
based on the Curvature Scale Space (RCSS) of the object
contour [7]. Second, matching operates hierarchically,
guided by the multiscale segmentation scheme, and takes
advantage of important object differences first. Finally, the
organization of the model database is based on Artificial
Neural Networks (ANNs) which provide a mechanism for
efficient storage and robust retrieval [8].

2. Motivations
An important issue in the implementation of a model

based object recognition system is how to extract important
object features and how to utilize them efficiently during
matching. A common approach is to split the object contour
into a number of segments and then use them for matching
[2]-[6]. However, because a large number of segments is
usually obtained, which are usually too local to be appropri-
ate for matching, recognition can become quite slow. Sev-
eral methods [5][6] try to alleviate this problem by grouping
together a number of adjacent segments in order to create
more descriptive segments. This approach, however,
requires the a-priori choice of a parameter which deter-
mines the number of segments to be grouped together, a
parameter which is rather data dependent. Our approach for
obtaining descriptive segments is based on the use of a mul-
tiscale segmentation scheme and does not require such a
parameter. Segments located at relatively high scales are
usually very descriptive and distinct. This makes them quite
attractive for matching. Moreover, they are often very long
which allow us to localize the objects in the scene more
accurately. Unfortunately, their main drawback is that they
are very sensitive to occlusions. On the other hand, seg-
ments detected at lower scales are less descriptive and dis-
tinct, but are also more resistant to occlusions since they are
shorter. The approach we have taken is to consider both
kinds of segments by using a hierarchic matching proce-
dure, driven by the multiscale segmentation scheme.

Another important issue is how to org anize and
search the model database. Most of the current approaches
use efficient indexing schemes in order to store and retrieve
information to and from the database. Hashing is a popular
indexing scheme. In general, it is important for the hash
function to distribute the data randomly over the table. In
object recognition, however, it is important for the hash
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function to be proximity preserving, that is, to map similar
data to close by table locations. In addition, it should be
noise tolerant. Finding hash functions which satisfy these
properties is not an easy task. The multilayer ANN poses a
number of properties which make it an attractive choice.
Implementing the model database using ANNs requires that
appropriate associations between features and models have
first been established. Then, the mapping (hash function)
required to implement these associations can be found
through training. Assuming that the hash keys are unique,
the computed hash function will be collision free. Also,
some noise in the data can be handled since ANNs demon-
strate good tolerance to noise. Finally, proximity can be
enforced by choosing a proximity preserving representation
scheme for the outputs of the ANNs.

3. Curvature scale space
The curvature scale space (CSS) approach was intro-

duced in [7] as a shape representation for planar curves.
Object boundaries are usually represented as planar curves
that do not cross over themselves. This method is based on
finding points of inflection (i.e, curvature zero-crossings) on
the curve at varying levels of detail. The curvature k of a
planar curve, at a point on the curve, is defined as the
instantaneous rate of change of the slope of the tangent at
that point with respect to arc length, and it can be expressed
as follows:

k(t) =
ẋ(t) ÿ(t) − ẏ(t) ẍ(t)

( ẋ(t)2 + ẏ(t)2)3/2
,

where ẋ(t), ẍ(t), ẏ(t), and ÿ(t) are the first and second
derivatives of x(t) and y(t) respectively, and (x(t), y(t)) is
the parametric representation of the curve.
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Figure 1. (a) The CSS, (b) the RCSS.

In order to compute the curvature of the curve at
varying levels of detail, x(t) and y(t) are convolved with a
Gaussian function g(t,σ ). Defining X(t, σ ) and Y (t, σ ) as
the convolution of x(t) and y(t) respectively with the Gaus-
sian function, the smoothed curve curvature kσ (t) can be
expressed as follows:

k(t, σ ) =
Xt(t, σ )Ytt(t, σ ) − Xtt(t, σ )Yt(t, σ )

(Xt(t, σ )2 + Yt(t, σ )2)3/2
,

where Xt(t, σ ) and Xtt(t, σ ) correspond to the first and sec-

ond derivatives of x(t). Yt(t, σ ) and Ytt(t, σ ) are defined in a
similar manner. The function defined implicitly by
k(t, σ ) = 0 is the CSS image of the curve. To demonstrate
the CSS approach, the object contour shown in Figure 1(a)
was convolved with a Gaussian filter, using successively
doubled values of σ . The locations at which k = 0 are
marked on each curve. The CSS representation of the an
object contour (Figure 3) is shown in Figure 1(left). In this
paper, we use a variation of the CSS which is called the
Resampled Curvature Scale Space (RCSS) representation.
The RCSS was introduced in [9], and was shown to be more
suitable when there is a high-intensity non-uniform noise or
local shape differences exist (see [9][10] for some exam-
ples). Also, it can be computed for open curves. More
details as well as a simple way to compute RCSS can be
found in [9]. Figure 1(right) shows the RCSS of the same
object contour.

4. The preprocessing step
The role of the preprocessing step is to compute a

hierarchy of segmentations for each model contour and to
encode the contour segments. Figure 2 illustrates the steps.

input model

countour extraction
edge detection and

computation of the RCSS

of segmentations

PREPROCESSING

STEP

construction of the hierarchy

encoded segments

segment normalization

Figure 2. The preprocessing stage

4.1. The hierarchy of contour segmentations
First,the RCSS image must be computed. Then, the

hierarchy of segmentations is obtained by concentrating at
each scale separately and breaking the original contour at
points which correspond to the curvature zero-crossing
points detected at this scale. The reason we use curvature
zero-crossings is because they are small in number and
robust to viewpoint changes. However, curvature extrema
can also be used. Initially, the RCSS of the object contour is
computed by convolving the object contour repeatedly, until
no curvature zero-crossing points exist any more. Then, the
coarsest apex points (i.e., maxima of the RCSS contours)
are detected. Apex points introduce new pairs of zero-
crossings which can be used to split the object contour. To
determine the endpoints of the segments accurately, the
zero-crossings are localized down to the original scale or to
a slightly higher scale for noise tolerance). Figure 3 shows
segmentation results at different scales and localization
down to the original scale.
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Figure 3. Segmentation and localization.

4.2. Encoding the contour segments
To encode the segments, the first four moments of

their centroidal profile is used [11][12]:
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where m1 = 1/N
N

i=1
Σ d(i) and d(i) is the centroidal profile

representation of a segment with N points, i=1,2, ..., N. The
advantages of using moments to represent the centroidal
profile of a segment are: (i) they are invariant to the starting
point used to compute the centroidal profile, (ii) they repre-
sent the centroidal profile economically, and (iii) they are
quite robust to noise and distortions.

5. The training phase
During the training phase, the model database is built.

The model database has been partitioned into two parts. The
first part is implemented using a single ANN called, seg-
ment classifier. The goal of the segment classifier is to
assign segments extracted from the hierarchy of segmenta-
tions into appropriate classes. The second part is imple-
mented using a set of hierarchically structured ANNs
called, object recognizers. Their goal is to recognize which
models are present in the scene. Each object recognizer uses
information about groups of segments which have been pre-
viously classified by the segment classifier.

5.1. The segment classifier
The purpose of the segment classifier is to assign

encoded segments to appropriate segment classes. The way
segment classes are determined is by applying a clustering

procedure to the entire set of encoded segments. The clus-
tering algorithm used is a variation of a simple cluster seek-
ing algorithm (see [10]). The segment classifier is imple-
mented by a multilayer ANN. Figure 4 shows the steps
involved in the training of the segment classifier.

and gray coding

clustering

input

output

SEGMENT CLASSIFIER

TRAINING OF THE

segment classes

encoded segments

similarity based ordering

encoded segment classes

SEGMENT CLASSIFIER

Figure 4. The training of the segment classifier.

5.2. Training the segment classifier
The training of the segment classifier is performed

using training examples of the form (segment, segment
class). The segment classes are determined using a simple
cluster seeking algorithm (see [10]). The inputs of the net-
work are simply the four moments of the segment’s cen-
troidal profile. The outputs of the network must be an
appropriate representation of the segment class. Choosing a
proper encoding scheme for representing the outputs of the
segment classifier is very important. In our case, the scheme
should satisfy two requirements: first, it should be economi-
cal and second, it should be proximate. The proximity con-
straint assures that elements of this scheme, representing
similar classes, will be similar. This is very desirable for
increasing the robustness of the object recognizers which
use the outputs of the segment classifier in their decisions.
An appropriate scheme, satisfying both of the requirements,
is the Gray code scheme.

5.3. The object recognizers
The purpose of the object recognizers is to perform

recognition based on segment classifications made by the
segment classifier. Each object recognizer is trained to learn
associations between important groups of segments and
models. For each model, important groups of segments are
extracted by applying a selective search procedure on the
hierarchy of contour segmentations associated with the
model. The segments obtained are classified by the segment
classifier and the obtained segment classifications are used
to form the inputs to the object recognizers. Each object
recognizer has different capabilities which depend on the
size of groups (e.g., number of segments in the group) it uti-
lizes for recognition. Figure 5 shows the steps involved in
the training of the object recognizers.
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5.4. Finding important groups of segments
The objective of the selective search procedure is to

identify groups of segments having high discrimination
power (e.g., they can distinguish a model from other mod-
els). These groups are referred to as important groups.
First, the selective procedure looks for important groups of
size one, that is, single segments which characterize a
model uniquely. Such segments are usually found at the
higher levels of the segmentation hierarchy. Initially, one of
the hierarchies of contour segmentations is randomly cho-
sen and designated as the "reference hierarchy". Then, we
concentrate at each level of the reference hierarchy, starting
from the highest possible level, comparing segments at this
level with segments coming from any lev el of the other
hierarchies. Then, the procedure continues at the next lower
level of the reference hierarchy, until all the levels have
been considered. When all the levels of the reference hierar-
chy hav e been processed, one of the remaining hierarchies
is randomly chosen and becomes a new reference hierarchy.
Then, the same procedure is repeated until all the hierar-
chies have been treated as a reference hierarchy. Except
from identifying important segments, the selective search
procedure identifies important groups of segments as well.
An important group of segments consists of a number of
adjacent segments which may or may not be important by
themselves, however, their identity along with their order in
the group makes them important (i.e., they can characterize
a model uniquely). In our implementation, the search proce-
dure extracts important groups of size two, three, and four.

. . . . . . . .

First Level . . . . . . . .

input inputinput

output outputoutput

TRAINING OF THE

encoded model objects encoded model objectsencoded model objects

OBJECT RECOGNIZEROBJECT RECOGNIZER

selective search

segment classifications

Second Level Third Level

OBJECT RECOGNIZER

important groups
of size two

important groups
of size threeof size one

important groups

OBJECT RECOGNIZERS

Figure 5. The training of the object recognizers.

5.5. Training the object recognizers
During training, the object recognizers learn to asso-

ciate important groups of segments with the models
uniquely characterized by these groups. The object recog-
nizers have been structured hierarchically, according to the
size of groups they utilize for recognition. The object recog-
nizer located at the top of the hierarchy is trained using
important segments only. The object recognizer located at
the next level is trained using important groups of size two.
In a similar fashion, the object recognizer located at the bot-
tom the hierarchy is trained to recognize model objects

using important groups of a maximum size (four in our
case).

The inputs to the object recognizers are simply the
encoded segment classifications associated with the impor-
tant groups. The output of the object recognizers is an
appropriate representation of the model characterized by the
important group of segments. The local coding scheme has
been used. According to this scheme, the number of output
nodes is equal to the number of model objects, with each
node representing a different model. This is very suitable
for our task because it allows us to distinguish between
ambiguous and unambiguous decisions. In the case of an
unambiguous recognition, the output of an object recog-
nizer contains only one 1 at a certain location and 0’s every-
where else. Outputs with more that one 1’s are considered
to be ambiguous because they do not correspond to a partic-
ular model object representation. Ambiguous recognition
results are rejected immediately while unambiguous recog-
nition results are considered for further verification. It
should be mentioned that the training set of an object recog-
nizer includes two kinds of examples: positive and negative.
The negative training examples correspond to non-
important groups of segments, that is, groups that do not
characterize any model uniquely. Neg ative examples are
important so that the networks respond in a predictable way
when a decision can not be made.

6. Recognition and verification
Initially, the preprocessing step is applied to every

contour extracted from the scene. Matching is performed
from higher to lower scales and in a local to global basis.
First, recognition is attempted using segments located at a
high scale. Each segment is classified by the segment clas-
sifier and the obtained encoded segment classifications are
fed, one at a time, to the top level object recognizer. If this
object recognizer fails to yield an unambiguous recognition,
pairs of encoded segment classifications, corresponding to
adjacent segments, are fed, one at a time, to the next level
object recognizer. If this object recognizer is also unable to
perform an unambiguous recognition, encoded segment
classifications corresponding to triplets of adjacent seg-
ments are chosen and fed to the object recognizer located at
the next lower level. This procedure continues until all the
levels of the hierarchy of segmentations have been consid-
ered or all the objects present in the scene have been recog-
nized. In case of an unambiguous recognition, verification
takes place to evaluate its validity. During verification, we
find model-scene groups which are in correspondence (see
[10]), and we compute a transformation which aligns them.
This transformation is then used to back-project the model
onto the scene.

7. Simulations
The performance of the recognition system was

tested using a set of 20 real objects (see [10]). A Laplacian
edge detector separated the objects from the background
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and a boundary following routine extracted their bound-
aries. All boundaries were approximated by 256 contour
pixels.

7.1. Applying the preprocessing step
Once the boundaries of the object models were

extracted, their RCSS images were computed. Thus, each
contour was convolved with a Gaussian filter for a continu-
ous range of scales. The standard deviation σ of the Gaus-
sian was set equal to 1 and the filter’s kernel size was cho-
sen to be 5σ . Then, we computed the hierarchy of segmen-
tations for each model, as described in section 5.1. The total
number of segments obtained was 351 (segments which
appeared at multiple levels were counted only once).

7.2. Training the segment classifier
First, the segment clusters were found, then they were

ordered based on their similarity and finally, they were
encoded using gray codes. The total number of clusters
found was 159 which required 8-bits to encode them. This
determined also the number of output nodes of the segment
classifier (8 nodes). The network used was a two layer net-
work (one hidden layer and one output layer), with 80
nodes in the hidden layer. The back-propagation algorithm
with momentum was used for training.

7.3. Training of the object recognizers
Tw o layer ANNs were used for implementing the

object recognizers. The object recognizer located at the top
of the hierarchy was trained to recognize model objects
using important segments. Thus, the number of input nodes
for this network was set to 8. The number of positive train-
ing examples used to train this object recognizer was 107
while the number of negative examples was 14. The ANN
located at the next lower level of the hierarchy was trained
to recognize model objects using important groups of size
two. Thus, the number of its input nodes was set to 16. Its
training set consisted of 150 positive training examples and
8 neg ative training examples. In a similar manner, the num-
ber of input nodes and training examples of the rest net-
works were determined (see [10]). For each network, the
number of output nodes was set to 20. Back-propagation
with momentum was used for training.

7.4. Experiments and results
First, we performed experiments to test the robust-

ness of the method in presence of noise and distortion. No
occlusion was allowed at this time. For each model object,
100 test objects were generated. These test objects con-
sisted of samples of different sizes of the model objects in
various translational and rotational positions, with noise and
distortion. The objects were rotated over the range from 0
to 2π radians and translated to random positions. The size
of each object was varied from 0.5 to 1.5 times the size of
the original object. Noise and distortion effects were intro-
duced by adding random noise to the boundary points using

the approach of You and Jain [13]. The accuracy of the pro-
posed was tested using objects corrupted with various
amounts of noise (0% to 50% noise corruption). Figure 6
shows a recognition example.
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Figure 6. Recognition results (proposed method)
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Figure 7. Recognition results (variation)

For comparison purposes, we also implemented a
variation of [3]. In [3], the segments are represented by the
Fourier Descriptors of the object’s contour segments. Here,
we are using the moments of the centroidal profiles of the
segments, as is the case with our approach. Also, the proce-
dure for extracting the contour segments in [3] is different
than the one used here (the segments are determined by the
curvature zero-crossings of the object’s contour using a
Gaussian with σ =1). The variation yields much less seg-
ments compared to the original approach ([3]) since we do
not consider overlapping windows. However, our objective
here is to demonstrate the problems associated with tradi-
tional indexing schemes when noise and distortion are pre-
sent. Also, we want to demonstrate the advantages of using
segments from higher scales first for better recognition and
localization. Figure 7 shows a recognition example in the
case of the variation. Both methods were able to recognize
the instance of this object, however, the proposed method
has localized the object more accurately. In addition, the
proposed method verified only 2 hypotheses while the vari-
ation verified 46. Figure 8 (left) shows the overall recogni-
tion accuracy of the two methods (the solid line corresponds
to our method), assuming various levels of noise (0% to
50%). The average number of hypotheses verified by the
two methods are also shown in Figure 8 (right).
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Figure 8. Comparison of the methods.

Next, we tested the proposed approach using objects
corrupted by occlusion. Occlusion was introduced in a ran-
dom way. The amount of occlusion in an object contour was
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determined by the percentage of absent contour points. The
test objects used in this experiment were also rotated, trans-
lated, and scaled. Our results show that the recognition
accuracy and number of hypotheses were not significantly
different with up to 50% occlusion. With more than 50%
occlusion, however, we observed that the recognition accu-
racy started to deteriorate rather fast and the number of
hypotheses to increase considerably.

Finally, we tested the proposed approach using a
number of real scenes containing overlapping objects. Fig-
ure 9 shows one of the scenes used in our experiments. The
figure shows the segments chosen by the method during
recognition. As can be observed, the method chose some
composite segments first yielding unsuccessful recognition.
In most of these cases, ambiguous recognition results were
reported by the object classifiers while in some other cases,
verification required to reject these matches. The total num-
ber of hypotheses tested for the recognition of both models
was 8.
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Figure 9. Recognition results.

8. Conclusions
We hav e presented a new method for the recognition

of two dimensional objects from intensity images. The
method is based on a hierarchical matching approach and
uses ANNs to organize the model database. The proposed
method has been tested using both artificial and real data
illustrating good performance. Some comments that can be
made are the following: first, although the hierarchical seg-
mentation scheme is quite effective, it is also quite time
consuming. In the current implementation, we have not
tried to optimize it. However, faster implementations are
possible using a number of heuristics [7]. Second, maintain-
ing the model database is quite important. Assuming that
the model database needs to be expanded by adding new
models, our present implementation requires retraining all
the ANNs. This is quite inefficient. However, there exist
ANNs which have the ability to store new knowledge with-
out significantly destroying previous one. This problem is
known as the "stability plasticity" problem and some archi-
tectures which can deal with this problem are the Fuzzy-
ARTMAP [14], and Cascade Correlation [15] architectures.
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