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Abstract— Appearance-based methods represent a
promising research direction to the problem of vehicle
detection. These methods learn the characteristics of
the vehicle class from a set of training images which cap-
ture the variability in vehicle appearance. First, training
images are represented by a set of features. Then, the
decision boundary between the vehicle and non-vehicle
classes is computed by modelling the probability distri-
bution of the features in each class or through learning.
The purpose of this study is to investigate the effective-
ness of two important types of features for vehicle detec-
tion based on Haar wavelets and Gabor filters. In both
cases, the decision boundary is computed using Sup-
port Vector Machines (SVMs), a recent development in
classification algorithms which performs structural risk
minimization to maximize generalization on novel data.
Both wavelet and Gabor features have demonstrated
good performance in various application domains includ-
ing face detection and image retrieval. Wavelet features
encode edge information, a good feature for vehicle de-
tection. Most importantly, they capture the structure of
vehicles at multiple scales. Gabor filters provide a mech-
anism for obtaining orientation and scale tunable edge
and line detectors. Vehicles do contain strong edges
and lines at different orientation and scales, thus, this
type of features are also very attractive for vehicle de-
tection. Our experimental results and comparisons us-
ing real data illustrate the effectiveness of both types
of features for vehicle detection, with Gabor features
performing better than Haar wavelet features. Careful
examination of our results revealed that the two fea-
ture sets yield different misclassification errors which led
us to the idea of combining them for improving perfor-
mance. The combined set of features outperformed each
feature set alone on completely novel test images, yield-
ing an average error rate of 3.03% compared to 5.19%
using Gabor features and 8.52% using Haar wavelet fea-
tures.

Keywords—Vehicle detection, Haar wavelet transform,
Gabor filters, Support Vector Machine.

I. Introduction

Robust and reliable vehicle detection in images ac-
quired by a moving vehicle (on-road vehicle detection)
is an important problem with application to driver as-
sistance systems or autonomous, self-guided vehicles.
Several factors make on-road vehicle detection very
challenging including variability in scale, location, ori-
entation, and pose. Vehicles, for example, come into
view with different speeds and may vary in shape, size,
and color. Vehicle appearance depends on its pose and
is affected by nearby objects. In-class variability, oc-
clusion, and lighting conditions also change the over-
all appearance of vehicles. Landscape along the road
changes continuously while the lighting conditions de-

pend on the time of the day and the weather. Last but
not least, real-time processing is required.

In this paper, we consider the problem of rear-view
vehicle detection from gray-scale images. A first step of
any vehicle detection system is hypothesizing the loca-
tions in images where vehicles are present. Then, ver-
ification is applied to test the hypotheses. Both steps
are equally important and challenging. Approaches to
generate the hypothetical locations of vehicles in im-
ages include using motion information [1], symmetry
[2], shadows [3], and vertical/horizontal edges [4]. Our
emphasis here is on improving the performance of the
verification step.

Approaches to visual vehicle detection can be classi-
fied into three categories: (1) stereo- or motion-based,
(2) template-based, and (3) appearance-based. Stereo-
based approaches take advantage of the inverse per-
spective mapping (IMP) [5] to estimate the locations
of vehicles and obstacles in images. Bertozzi et al. [6]
compute the IMP of both the left and right images
and compare them. Based on the comparison, they
find objects that are not on the ground plane and use
this information to determine the free space in front
of a vehicle. In [7], inverse perspective mapping is
used to warp the left image to the right image. The
main problem with these methods is that they are sen-
sitive to calculated camera parameters. Accurate and
robust methods are required to recover these parame-
ters because of vehicle vibrations due to vehicle motion
or windy conditions [8]. Template-based methods use
predefined patterns of the vehicle class and perform
correlation between an input image the the template.
Betke et al. [4] proposed a multiple-vehicle detection
approach using deformable gray-scale template match-
ing. Improved detection results were claimed by using
temporal information. In [9], a deformable model is
formed from manually sampled data using Principal
Component Analysis (PCA). Both the structure and
pose of a vehicle can be recovered by fitting the PCA

model to the image.

Appearance-based methods learn the characteristics
of the vehicle class from a set of training images which
should capture the variability in vehicle appearance.
Usually, the variability of the non-vehicle class is also
modelled. First, each training image is represented by
a set of local or global features. Then, the decision
boundary between the vehicle and non-vehicle class is



learned either by training a classifier (e.g., Neural Net-
work (NN)) or by modelling the probability distribu-
tion of the features in each class (e.g., using the Bayes
rule assuming Gaussian distributions). In Matthews et
al. [10], feature extraction is based on PCA. Subwin-
dows containing vehicle candidates were first scaled to
a 20x20 subwindow. Each 20x20 subwindow was then
divided into 25 4x4 subwindows and each 4x4 subwin-
dow was subjected to PCA. The PCA features were
then fed to a NN for classification. Goerick et al. [11]
used a method called Local Orientation Coding (LOC)
to extract edge information. The histogram of LOC

within the area of interest was then fed to a NN for
classification.

A statistical model for vehicle detection was investi-
gated by Schneiderman et al. [12] [13]. First, a view-
based approach with multiple detectors was used to
cope with variation from different viewpoint. Second,
a statistical model within each of these detectors was
used to account for other variations. The statistics of
both object appearance and ”non-object” appearance
were represented using the product of two histograms
with each histogram representing the joint statistics
of a subset of PCA features in [12] and Haar wavelet
features in [13] and their position on the object. A dif-
ferent statistical model was investigated by Weber et
al [14]. They represented each vehicle image as a con-
stellation of local features and use the EM algorithm
to learn the parameters of the probability distribution
of the constellations. An interest operator, followed
by clustering, is used to identify important local fea-
tures in vehicle images. Papageorgiou et al. [15] have
proposed using the Haar wavelet transform for feature
extraction and Support Vector Machines (SVMs) for
classification.

The focus of this work is on the problem of fea-
ture extraction and classification for rear-view vehi-
cle detection from grayscale images. In particular, we
investigate the effectiveness of Haar wavelet features
and Gabor features for rear-view vehicle detection, us-
ing SVMs for classification. Both types of features
have shown good performance in various application
domains including object detection and image retrieval
[13], [15], [16], [17], [18]. Wavelet-based features encode
edge information, which is a good feature for vehicle
detection. Most importantly, they capture the struc-
ture of vehicles at multiple resolution levels. Gabor
filters provide a mechanism for obtaining some degree
of invariance to intensity due to global illumination, se-
lectivity in scale, as well as selectivity in orientation.
Essentially, they are orientation and scale tunable edge
and line detectors. Vehicles do contain strong edges
and lines at different orientation and scales, thus, these
features could be very powerful for vehicle detection.

Our experimental results and comparisons using real
data indicate that both wavelet and Gabor features
are powerful for vehicle detection with Gabor features
performing better than Haar wavelet features. Care-
ful analysis of our results, however, revealed that many
times we would get the correct classification result us-
ing wavelet features but not Gabor features and the

opposite. Thus, we considered combining the two fea-
ture sets. Superior performance was observed both in
terms of accuracy and false positives/false negatives
using the combined set of features.
The rest of the paper is organized as follows: In Sec-

tion II, we provide brief overview of Gabor filters, the
Haar wavelet transform, and SVMs. The feature ex-
traction methodology is described in Section III. A
description of the real data set used in our experiments
is given in Section IV. Our experimental results and
comparisons are presented in Section V. Section VI
contains our conclusions and plans for future work.

II. Filters and SVMs Review

A. Gabor Filters

There has been an increased interest in Gabor anal-
ysis motivated by biological findings (i.e., the receptive
fields of neurons in the visual cortex are known to have
shapes that can be approximated by 2-D Gabor fil-
ters [19]). Gabor filters have been successfully applied
to many image analysis applications including texture
analysis [20] [21], handwritten number recognition [22],
and image retrieval [18]. An important property of
Gabor filters is that they have optimal joint localiza-
tion both in the spatial and frequency domains [19].
The general functional of the two-dimensional Gabor
filter family can be represented as a Gaussian function
modulated by an oriented complex sinusoidal signal.
Specifically, a two dimensional Gabor filter g(x, y) and
its Fourier transform G(u, v) can be written as:
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where σu =
1
2
πσx, σv =

1
2
πσy and

x̃ = x cos θ + ysinθ and ỹ = −x sin θ + ycosθ (3)

where σu and σv are the scaling parameters of the filter
(i.e., determine the effective size of the neighborhood
of a pixel),W is the center frequency, and θ determines
the orientation of the filter (i.e., it will respond stronger
to a bar or edge, the normal to which coincides with
θ). Gabor filters act as local bandpass filters. Figure
(1a) shows the power spectrum of a 4× 6 Gabor filter
bank (the light areas indicate spatial frequencies and
wave orientation).
In this paper, we use the design strategy described

in [18]. Given an input image I(x, y), Gabor feature
extraction is performed by convolving I(x, y) with a
Gabor filter bank:

r(x, y) =

∫ ∫

I(ξ, η)g(x− ξ, y − η)dξdη (4)

Although the raw responses of the Gabor filters could
be used directly as features, some kind of post-
processing is usually applied (e.g., Gabor-energy fea-
tures, thresholded Gabor features, and moments based
on Gabor features [23]). In this paper, we use Ga-
bor features based on moments, extracted from several
subwindows of the input image (see Section III)
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Fig. 1. (a) Gabor filter bank with 4 scales and 6 orientations;
(c) feature extraction patches.

B. Haar Wavelet Transform

Wavelets are essentially a type of multiresolution
function approximation that allow for the hierarchical
decomposition of a signal or image. They have been
applied successfully to various problems including ob-
ject detection [15], [13], face recognition [16] and im-
age retrieval [17]. Any given decomposition of a signal
into wavelets involves just a pair of waveforms (mother
wavelets). The two shapes are translated and scaled to
produce wavelets (wavelet basis) at different locations
(positions) and on different scales (durations). We for-
mulate the basic requirement of multiresolution analy-
sis by requiring a nesting of the spanned spaces as:

· · ·V
−1 ⊂ V0 ⊂ V1 · · · ⊂ L2 (5)

In space Vj+1, we can describe finer details than in
space Vj . In order to construct a multiresolution anal-
ysis, a scaling function φ is necessary, together with the
dilated and translated version of it:

φ
j
i (x) = 2

j

2φ(2jx− i). i = 0, · · · , 2j − 1. (6)

The important features of a signal can be better de-
scribed or parameterized, not by using φj

i (x) and in-
creasing j to increase the size of the subspace spanned
by the scaling functions, but by defining a slightly
different set of function ψ

j
i (x) that span the differ-

ence between the spaces spanned by various scales of
the scale function. These functions are the wavelets,
which spanned the wavelet space Wj such that Vj+1 =
Vj

⊕

Wj ,and can be described as:

ψ
j
i (x) = 2

j

2ψ(2jx− i). i = 0, · · · , 2j − 1. (7)

Different scaling function φj
i (x) and wavelets ψ

j
i (x)

determines different wavelet transform. In this paper,
we use Haar wavelet. Haar wavelet is the simplest to
implement and computationally the least demanding.
Furthermore, since Haar basis forms an orthogonal ba-
sis, the transform provides a non-redundant represen-
tation of the input images. The Haar scaling function
is:

φ(x) =

{

1 for 0 ≤ x < 1
0 otherwise

(8)

And the Haar wavelet is defined as:

ψ(x) =







1 for 0 ≤ x < 1
2

−1 for 1
2
≤ x < 1

0 otherwise

(9)

Wavelet features capture visually plausible features
of the shape and interior structure of objects. Fea-
tures at different scales capture different levels of de-
tail. Coarse scale features encode large regions while
fine scale features describe smaller, local regions. All
these features together disclose the structure of an ob-
ject in different resolutions.

C. SVMs

SVMs are primarily two-class classifiers that have
been shown to be an attractive and more systematic ap-
proach to learning linear or non-linear decision bound-
aries [24] [25]. Given a set of points, which belong to
either of two classes, SVM finds the hyperplane leav-
ing the largest possible fraction of points of the same
class on the same side, while maximizing the distance
of either class from the hyperplane. This is equivalent
to performing structural risk minimization to achieve
good generalization [24] [25]. Assuming l examples
from two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ R
N , yi ∈ {−1,+1}

(10)
finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic pro-
gramming. The optimization criterion is the width of
the margin between the classes. The discriminate hy-
perplane is defined as:

f(x) =
l
∑

i=1

yiaik(x, xi) + b (11)

where k(x, xi) is a kernel function and the sign of f(x)
indicates the membership of x. Constructing the opti-
mal hyperplane is equivalent to find all the nonzero ai.
Any data point xi corresponding to a nonzero ai is a
support vector of the optimal hyperplane.
Suitable kernel functions can be expressed as a dot

product in some space and satisfy the Mercer’s condi-
tion [24]. By using different kernels, SVMs implement
a variety of learning machines (e.g., a sigmoidal kernel
corresponding to a two-layer sigmoidal neural network
while a Gaussian kernel corresponding to a radial basis
function (RBF) neural network). The Gaussian radial
basis kernel is given by

k(x, xi) = exp(−
‖ x− xi ‖

2

2δ2
) (12)

The Gaussian kernel is used in this study (i.e., our ex-
periments have shown that the Gaussian kernel outper-
forms other kernels in the context of our application).

III. Feature Extraction for Vehicle

Detection

A. Gabor Filter Features

In this section we describe our Gabor feature extrac-
tion procedure. The input to the feature extraction
subsystem are the hypothetical vehicle subimages ex-
tracted from the input image. As mentioned in the
introduction, vehicles contain strong edges and lines at
different orientation and scales, information that is also
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captured by the Gabor features. The statistics of these
features provide a compact and powerful representa-
tion for vehicle detection. Instead of extracting these
statistics from the whole image, we collect them from
several subwindows obtained by subdiving the vehicle
subimage. This provides robustness to errors in the
hypothesis generation step.

First, each subimage is scaled to a fixed size which
is 64 × 64. Then, it is subdivided into 9 overlapping
32 × 32 subwindows. Assuming that each subimage
consists of 16 16×16 patches (see Figure 1(c)), patches
1,2,5,and 6 comprise the first 32× 32 subwindow, 2,3,6
and 7 the second, 5, 6, 9, and 10 the fourth, and
so forth. The Gabor filters are then applied on each
subwindow separately. The motivation for extracting
-possibly redundant- Gabor features from several over-
lapping subwindows is to compensate for errors in the
hypothesis generation step (e.g., subimages contain-
ing partially extracted vehicles or background informa-
tion), making feature extraction more robust.

The magnitudes of the Gabor filter responses are col-
lected from each subwindow and represented by three
moments: the mean µij , the standard deviation σij ,
and the skewness κij (i.e., i corresponds to the i-th fil-
ter and j to the j-th subwindow). Using moments im-
plies that only the statistical properties of a group pix-
els is taken into consideration, while position informa-
tion is essentially discarded. This is particularly useful
to compensate for errors in the hypothesis generation
step (i.e., errors in the extraction of the subimages).
Suppose we are using S = 2 scales and K = 3 orien-
tations (i.e., S × K filters). Applying the filter bank
on each of the 9 subwindows, yields a feature vector of
size 162, having the following form:

[µ11σ11κ11, µ12σ12κ12 · · ·µ69σ69κ69] (13)

We have experimented with using the first two mo-
ments only, however, much worst results were obtained
which implies that skewness information is very impor-
tant for our problem.

B. Wavelet Features

We use the wavelet decomposition coefficients as our
features directly. Performing the wavelet transform on
the 64 × 64 images, yields a vector of 4096 features,
which is much bigger than the Gabor feature vector.
To compute a feature vector of approximately the same
size as the Gabor feature vector, we rescale the images
to 32 × 32, then we perform a 5 level Haar wavelet
decomposition which yields 1024 coefficients. We do
not keep the coefficients in the HH subband of the first
level since they encode mostly noise [13]. This yielded
a vector of 768 features.

C. Feature Combination

The combined feature set contains 1416 features.
Since the values of Gabor and wavelet features assume
different ranges, first we normalize them in the range
[-1 1] before combining them in a single vector.

IV. Dataset

The images used in our experiments were collected in
Dearborn, Michigan during two different sessions, one
in the Summer of 2001 and one in the Fall of 2001, using
Ford’s proprietary low-light camera. To ensure a good
variety of data in each session, the images were caught
during different times, different days, and on five dif-
ferent highways. The training set contains subimages
of rear vehicle views and non-vehicles which were ex-
tracted manually from the Fall 2001 data set. A total
of 1051 vehicle subimages and 1051 non-vehicle subim-
ages were extracted by several students in our lab. Al-
though specific instructions were given to the students,
there is some variability in the way the subimages were
extracted. For example, certain subimages cover the
whole vehicle, others cover the vehicle partially, and
others contain the vehicle and some background (see
Figure 2). In [15], the subimages were aligned by wrap-
ping the bumpers to approximately the same position.
We have not attempted to align the data in our case
since alignment requires detecting certain features on
the vehicle accurately. Moreover, we believe that some
variability in the extraction of the subimages can actu-
ally improve performance. Each subimage in the train-
ing and test sets was scaled to 64×64 and preprocessed
to account for different lighting conditions and contrast
[26]. First, a linear function was fit to the intensity of
the image. The result was subtracted out from the
original image to correct for lighting differences. Then,
histogram equalization was performed to improve con-
trast.
To evaluate the performance of the proposed ap-

proach, the average error (ER), false positives (FPs),
and false negatives (FNs), were recorded using a three-
fold cross-validation procedure. Specifically, we split
the training dataset randomly three times (Set1, Set2

and Set3) by keeping 80% of the vehicle subimages
and 80% of the non-vehicle subimages (i.e., 841 vehicle
subimages and 841 non-vehicle subimages) for training.
The rest 20% of the data was used for validation during
the training of the neural network classifier which was
used for comparison purposes. For testing, we used
a fixed set of 231 vehicle and non-vehicle subimages
which were extracted from the Summer 2001 data set.

Fig. 2. Subimages for training.

V. Experimental Results and Comparisons

We have performed a number of experiments and
comparisons to demonstrate the proposed approach.
First, we evaluated the performance of wavelet features
using SVMs, referred to a WSVM. Figure 3(a) shows
the error rate of this approach while Figure 3(b) shows
the FP/FN rates. The average error rate was 8.52%,
the average FP rate was 6.50%, and the average FN

rate was 2.02%. Next, we evaluated the performance
of Gabor features using SVMs, referred to as GSVM.
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We used a 4×6 filter bank in these experiments. Figure
3(a) shows the error rate while Figure 3(b) shows the
FP/FN rates. We have also experimented with a 3× 5
filter bank without observing much differences in the
average error rate except in the number of FNs (the
3 × 5 filter bank yielded lower number of FNs). The
average error rate using Gabor features was 5.19%, the
average FP rate was 1.58%, and the average FN rate
was 3.61%. Obviously, using Gabor features have re-
duced the error and FP rates significantly, however, the
FN rate was somewhat higher. In terms of SVM com-
pactness, the average number of support vectors using
Gabor features was 218, 278 less than using wavelet
features.

Our literature review in Section I shows that fea-
tures based on PCA and classification using NNs have
been used quite extensively for vehicle detection. For
comparison purposes, we have evaluated the perfor-
mance of PCA features using SVMs, referred to as
PCASVM, and Gabor features using NNs, referred to
as GNN. To extract the PCA features, we preserved
95% of the information. The NN classifier used was
a fully connected, two-layer, feed-forward neural net-
work trained by the back-propagation algorithm. We
varied the number of hidden nodes to obtain optimum
performance and used cross-validation to stop training.
Figure 3(a) shows the performance of the PCASVM

and the GNN approaches. The PCASVM approach
achieved an average error rate of 9.09%, an average FP

rate of 7.52%, and average FN rate of 1.57%. The GNN

approach achieved an average error rate of 16.33%, an
average FP rate of 14.35% and average FN rate of
1.98%. Obviously, Gabor features perform much better
than PCA features while the SVM classifier performs
better than the NN classifier.

Considering the WSVM and GSVM approaches
again, a careful analysis of our results revealed that
there were many times where the two approaches would
make different classification errors. Thus, we decided
to apply a simple fusion approach by simply combin-
ing the wavelet and Gabor features, referred to as
GWSVM. The average error rate obtained in this case
was 3.03%, the average FP rate was 0.87%, while the
average FN rate was 2.16% (still slightly higher than
using wavelet features alone). Figures 3(a) and (b)
show these results. Obviously, feature fusion is a sub-
ject that requires further investigation.

Figure 4 show some of successful detection examples
using the GWSVM approach. These results illustrate
several strong points. Figure 4(a) shows a case where
only the general shape of the vehicle is available (i.e., no
details) due to its far distance from the camera. The
proposed method seems to discard irrelevant details,
leading to improved robustness. Figures 4(b) shows
an example where the vehicle is detected successfully
from its front views. This is despite the fact that we did
not include any front views in our training set. Also,
the proposed method can tolerate some illumination
changes as can be seen from Figures 4(c-d).

The majority of FNs were due to the lack of repre-
sentative examples in the training set or due to some

extreme rotations. The FPs also were due to the rela-
tively small number of ”non-vehicle” examples used for
training. Given that the ”non-vehicle” class is much
larger than the vehicle class, it would make more sense
to include much more ”non-vehicle” examples in the
training sets. Bootstrapping [27] would definitely be
very useful in choosing good ”non-vehicle” examples.
Figure 5 shows some more examples that have been

classified correctly by the GWSVM approach, however,
either GSVM or WSVM have failed to perform correct
classification in these cases. Figure 5(a), for example,
shows a case classified correctly by the GSVM approach
but incorrectly by the WSVM approach. Figure 5(b)
shows another case which was classified incorrectly by
the GSVM but correctly by theWSVM approach. Nei-
ther GSVM nor WSVM were able to classify correctly
the case shown in Figure 5(d).

(a)

(b)

Fig. 3. Performance of various methods: (a) error rate, (b) false
positives and false negatives.

VI. Conclusions and Future Work

We have considered the problem of on-road vehicle
detection from rear views of gray-scale images. In par-
ticular, we investigated the effectiveness of two types
of features using SVMs for classification: Haar wavelet
features and Gabor features. Our experimental results
demonstrated that both types of features are promising
for vehicle detection, with Gabor features performing
better than Haar wavelet features. We also considered
a simple fusion approach by combining wavelet and Ga-
bor features. The combined feature set demonstrated
even better performance than either feature set alone.
For future work, we plan to investigate more exten-
sively the problem of feature fusion for vehicle detec-
tion.
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Fig. 4. Successful vehicle detection examples.
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Fig. 5. Cases where either the GSVM approach or the WSVM
approach failed to perform correct classification(all cases are
classified correctly by the GWSVM approach).
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