
  

Visual Hull Construction Using Adaptive Sampling 

Ali Erol  George Bebis Richard D. Boyle Mircea Nicolescu 

Computer Vision Lab. 
University of Nevada, 

Reno, NV 89557 

Computer Vision Lab. 
University of Nevada, 

Reno, NV 89557 

BioVis Lab 
NASA Ames Research Center 

Moffett Field, CA 94035 

Computer Vision Lab. 
University of Nevada, 

Reno, NV 89557 
 
 

Abstract 
 

Volumetric visual hulls have become very popular in 
many computer vision applications including human body 
pose estimation and virtualized reality. In these applica-
tions, the visual hull is used to approximate the 3D ge-
ometry of an object. Existing volumetric visual hull con-
struction techniques, however, produce a 3-color volume 
data that merely serves as a bounding volume. In other 
words it lacks an accurate surface representation. Poly-
gonization can produce satisfactory results only at high 
resolutions. In this study we extend the binary visual hull 
to an implicit surface in order to capture the geometry of 
the visual hull itself. In particular, we introduce an oc-
tree-based visual hull specific adaptive sampling algo-
rithm to obtain a volumetric representation that provides 
accuracy proportional to the level of detail. Moreover, we 
propose a method to process the resulting octree to ex-
tract a crack-free polygonal visual hull surface. Experi-
mental results illustrate the performance of the algorithm. 

1. Introduction 

3D reconstruction of a moving object from arbitrary 
multiple views, using synchronized image sequences, has 
received considerable attention over the last few years 
[8]. A technique that supports robust and real time, recon-
struction of an object’s volume is based on the idea of 
intersecting the cones obtained by back-projecting the 
silhouettes of the object, from different viewpoints. The 
resulting volume is often called the visual hull of the 
object with respect to the available views [11]. 

Despite the fact that the visual hull is not an exact re-
construction, it has been used extensively in VR (virtual 
reality) applications  [10] [13] [15] and human body pose 
estimation [8] [19] [5] [20] [14]. In the case of pose esti-
mation, a 3D human model is usually fit to the visual hull 
to estimate pose parameters. In VR applications, the pur-
pose is to create new poses of a person’s body in a virtual 
environment. In these cases, the visual hull is textured 
using color information available in the images and ren-
dered directly at the desired view points. 

One approach to visual hull construction is calculating 
a polygonal surface by intersecting silhouette cones, 

computed easily by back-projection polygonal approxi-
mations of silhouette contours of the object. Since direct 
3D intersections suffer from numerical instabilities, re-
cent studies have improved robustness by calculating the 
intersections on 2D image planes and back-projecting the 
results [13]. From an application point of view, a polyhe-
dral surface representation of the visual hull might be 
very practical for texturing and rendering purposes. How-
ever, it might not be practical for other tasks such as col-
lision detection [10] in VR applications, or model fitting 
[5] in pose estimation applications. 

Volumetric reconstruction represents an alternative 
approach to visual hull construction [18]. In this case, the 
3D space is divided into elementary cubic elements (i.e., 
voxels) and tests are performed to label each voxel as 
being inside, outside or on the boundary of the visual 
hull.  This is done by checking the contents of its projec-
tions on all the available binary silhouette images. The 
output of volumetric methods is either an octree [6] [18], 
whose leaf nodes cover the entire space or a regular 3D 
voxel grid [8].  

The most important advantage of volumetric-based 
approaches is their robustness. A clear disadvantage is the 
high processing power requirements due to the volumetric 
processing, even in the case of octree-based implementa-
tions [6]. Another drawback, which is the main issue 
addressed in this study, is the lack of an accurate surface 
representation. The output is a 3-color voxel data repre-
sentation that merely serves as a bounding volume.  This 
voxel-based representation, called Voxel-Based Visual 
Hull (VBVH) in the rest of the paper, can provide only 
rough surface approximations [10]. Polygonization of 
VBVH can yield satisfactory results only at high enough 
resolutions, which is definitely not desirable in a real-time 
application.  

In this study, our purpose is to enhance the volumetric 
visual hull by replacing the voxel-based representation 
with an octree-based irregular grid of sampled data, 
which is also common to many computer graphics appli-
cations [9]. The octree samples an implicit surface repre-
sentation, derived from the implicit contours of silhou-
ettes. Given an octree-based VBVH [18] it is straight 
forward to build an octree that samples the implicit sur-
face visual hull regularly at a narrow band around the 



surface (See Section 3). Regular sampling may still be 
redundant for approximation purposes. In contrast here 
we will apply a fully irregular sampling strategy that 
keeps the resolution proportional to the level of detail on 
the silhouettes.  

2. Implicit Surface Visual Hull 

To derive an implicit surface of the visual hull, we 
need to represent the silhouettes as implicit contours. One 
can imagine many forms of implicit representations but 
we have chosen to use the signed distance function. One 
reason for this choice is practical: In most studies, the 
silhouettes are represented in the form of a binary image 
obtained through a background subtraction procedure 
[10] and there exists fast algorithms for calculating the 
approximate distance transforms of the silhouettes. More-
over, there exist some slow but sub-pixel accurate seg-
mentation algorithms (e.g. geodesic snakes [7]) that out-
put signed distance functions. Another reason is the exis-
tence of a geometric interpretation of the signed distance 
function. 

Given the signed distance function of each silhouette, 
it is possible to calculate the signed distance function of 
the corresponding silhouette cone. Specifically, given a 
point in 3D space, the closest point on the cone surface 
lies on the viewing ray of the silhouette contour point 
closest to its projection. This is an elegant but expensive 
way of constructing an implicit silhouette cone, therefore, 
we follow a much cheaper method, which simply propa-
gates the signed distance along the viewing rays of each 
point on the image. Assuming Si(p) : ℜ2→ℜ denotes the 
signed distance function corresponding to the i'th camera 
silhouette, then each silhouette cone Ci(x) : ℜ3→ℜ  can 
be calculated to be 

( ) ( )( )P
i i i

C S=x x  (1) 

where Pi(x): ℜ3→ℜ2 denotes the perspective projection 
function  of the i’ th camera. The resulting silhouette cone 
Ci(x) may also be viewed as a distance function where the 
distances are measured on the image plane. For visualiza-
tion purposes, we did not observe any differences be-
tween the two silhouette cone calculation methods, how-
ever in the case of more detailed processing like model 
fitting operations the results may be very different. 

Assuming that the implicit function is negative inside 
the silhouette, the intersection of silhouette cones, which 
we will be called ISVH (Implicit Surface Visual Hull) in 
the rest of the paper and denoted as V(x), can be calcu-
lated to be 

( ) ( )max
i

i

V C=x x  (2) 

In principle, V(x) can be processed directly without 
going through an explicit visual hull construction stage 
because the geometry of the visual hull is fully captured 

by the implicit function. It is possible to derive the normal 
and higher order derivatives at an arbitrary point using the 
derivatives of Eq. (2) except at the C1 discontinuities 
introduced by the maximization operation. All the deriva-
tives are determined by the location of the point, the cam-
era parameters, and the derivatives of the implicit con-
tours. Such a processing scheme requires parallelization 
and acceleration of projection calculations. 

 

 
(a) 

 
 
 

Figure 1: Direct implicit visual hull polygoniza-
tion: (a) the synthetic model used to generate 
silhouettes on 6 cameras, (b) High resolution 
polygonization result. 

 
Figure 1 demonstrates the visual hull surface extracted 
from ISVH using the polygonizer provided in [3]. Figure 
1(a) shows a synthetic 3D human body model∗, which is 
used to obtain the silhouettes in OpenGL. The silhouettes 
are first obtained in binary form and then the signed dis-
tance function is calculated. An accurate Euclidean dis-
tance transform is usually very expensive to calculate so 
the Chamfer 3,4 metric [16], which can approximate 
Euclidean distance using integers, is utilized. Subpixel 
distances are calculated using bilinear interpolation. 
Figure 1(b) shows a high-resolution surface extraction 
output. It is interesting to note that the silhouette cone 
intersections produced some sharp features on the result-
ing surface. Moreover, the discrete distance transform 
produces some ripples on the surface.   

3. Octree-Based Regular Sampling 

Direct processing of the ISVH may not be very practi-
cal in certain applications due to the fact that we need to 
perform projections on a possibly large number of silhou-
ettes. An approximation, independent of the silhouettes, 
would be more useful for processing purposes. A straight-
forward way to achieve this is by sampling Eq. (2) on a 
regular grid using a small enough step to avoid aliasing. 
Then, tri-linear interpolation may be employed to obtain a 
continuous approximation. A drawback of using a regular 

                                                           
∗ Publicly available at Stanford Computer Graphics Laboratory 
(http://graphics.stanford.edu/ data/3Dscanrep). 

(b) 



grid is that time complexity becomes proportional to the 
volume of the grid. Nevertheless, there exist studies that 
apply regular sampling on the VBVH (e.g., [21] presents 
a prototype of a real-time, hardware accelerated, system). 
Another approach might be limiting the accuracy to a 
narrow band around the surface of the visual hull. In this 
case, the octree-based visual hull algorithm proposed in 
[18] can be applied without any modifications.  

 

 

Figure 2: The octree-based visual hull 
construction algorithm. 

In the algorithm (See Figure 2), an octree, which is ini-
tially a single node corresponding to the whole bounding 
box, is refined iteratively up to a predetermined maxi-
mum depth by splitting some of the leaf nodes. At each 
iteration, new voxels at the leaf nodes are classified into 
one of the following three types: (1) inside voxels, whose 
projections lie inside all the silhouettes, (2) outside vox-
els, whose projections lie entirely outside in at least one 
silhouette and (3) boundary voxels, whose projections 
contain the boundary of the silhouette in some of the 
images. Splitting is applied only to boundary voxels. The 
boundary leaf nodes in the resulting octree, found at 
maximum depth, enclose the surface of the visual hull; 
therefore, time complexity is proportional to the area of 
the visual hull. A parallel version of this algorithm is 
presented in [6]. In this case, the sequential algorithm is 

run over a single image for each silhouette in parallel. 
Then, the results (i.e., octree representations of the sil-
houette cones) are intersected using a distributed process.  

It should be noted that although the octree performs a 
non-regular sampling of the bounding volume, we are still 
referring to it as regular sampling since the surface of the 
visual hull is captured by a regularly sampled narrow 
band, made up of maximum resolution nodes (i.e., leafs) 
in the octree. Computing voxel projections and checking 
whether they overlap with the silhouettes are critical 
computational steps, affecting the processing speed of 
both algorithms. Since calculating and checking exact 
voxel projections (i.e., 6 or 4 sided polygons) are very 
expensive, they are approximated usually by their bound-
ing rectangles. This approximation allows fast processing 
but generates false boundary voxels. 
 

  

 
(a) 

 
(b) 

Figure 3: The octree-based VBVH (Top) and 
ISVH (Bottom) using octrees with a maximum 
depth of (a) 6, (b) 8. 
 
Sampling the ISVH requires two further processing 

stages after octree construction:  
1. Silhouette Cone Intersection: This stage corre-

sponds to the evaluation of Eq. (2) at the vertices of 
the leaf nodes of the octree. 

2. Polygonization: Marching cubes (MC) [12] look-up 
table is used on the boundary voxels containing zero 
crossings.  

The surface of the VBVH and approximate ISVH cor-
responding to Figure 1 are shown in Figure 3. Figure 3(a) 
shows a very low resolution construction. The main dif-
ference between the VBVH and the ISVH is the distortion 
due to aliasing. Point sampling causes loss of visual hull 

bool ShouldSplit(Voxel v) 
{ 
 int Type = INSIDE; 
 for all images I 
 { 
  Projection P= Projection(I,v); 
  if P is outside the silhouette 
  { 
   Type = OUTSIDE; 
   return FALSE; 
  } 
  else if P encloses silhouette  
      boundary 
  { 
   Type = BOUNDARY; 
  } 
 } 
 
 return Type == BOUNDARY; 
} 
 
OctreeVisualHull() 
{ 
 Initialize the octree to a single voxel; 
 for d=0 to MaximumDepth 
 { 
  for all voxels v at depth d 
  { 
   if( ShouldSplit(v) and   
      d<MaximumDepth) 
    Split(v); 
  } 
 } 
} 



volume, which violates the bounding volume property of 
the VH. VBVH does not suffer from aliasing; it is still 
possible to extract a surface that is guaranteed to enclose 
the object but it may not approximate small features well 
(i.e. the arm and wrist).  Figure 3(b) shows the output of a 
higher resolution processing. The resolution is lower than 
that of Figure 1(b). 

4. Adaptive Sampling 

The outputs shown in Figure 3 illustrate that different 
parts of the visual hull surface can be represented reliably 
at different resolutions. The octree-based sampling de-
scribed in Section 3 results in a regularly sampled narrow 
band around the surface, which may still be redundant for 
approximation purposes. A more efficient alternative is 
applying an adaptive sampling strategy by considering the 
fidelity of the representation at each resolution level and 
stopping when satisfactory results have been obtained. 

There already exist many adaptive implicit surface 
sampling algorithms [4]. It is possible to apply an existing 
algorithm to sample ISVH but all of the algorithms per-
form 3D calculations, which require direct processing of 
the ISVH. A useful property of the visual hull is the re-
duction of 3D operations to 2D operations on the image 
planes as in recent surface-based visual hull construction 
algorithms [13]. Exploiting this property can help to re-
duce the computational requirements. 

The adaptive sampling algorithm requires modifying 
the three main modules of the regular sampling algorithm 
described in Section 3: 
1. Octree Construction: In the regular sampling 

scheme, every boundary voxel is refined. In the adap-
tive sampling, only the boundary voxels that do not 
satisfy an accuracy constraint are split. The Local Fea-
ture Size (LFS) function [1] is utilized to derive an 
adaptive sampling criterion. One important point to 
mention is that the criterion considers the fidelity of 
the sampling with respect to each silhouette cone in-
dependently. Handling the silhouette cones independ-
ently supports a potential parallel implementation 
similar to the one given in [6]. 

2. Silhouette Cone Intersection: The first stage results 
in an octree approximating the silhouette cones sepa-
rately; however, this does not guarantee that the inter-
section will be a good approximation for the ISVH. In 
fact, it is possible to loose visual hull volume during 
intersections. Such situations are detected and cor-
rected in this module. 

3. Polygonization: A direct application of MC to the 
leaf nodes produces a surface with cracks. After calcu-
lating the MC triangles, the cracks are detected and 
repaired in this module. 

 

In the following sub-sections, each of these modules 
are described in detail. 

4.1. Octree Construction 

When sampling an implicit surface adaptively, local 
geometric properties of the surface can be used to meas-
ure the fidelity of sampling [4]. If we consider a polygo-
nized silhouette cone (e.g., using the algorithm presented 
in Section 2) where the projections of its vertices are 
points on the silhouette curve, then the boundary of the 
projection of the cone is a polygon whose vertices sample 
the original silhouette curve. In this case, a reasonable 
adaptation rule is controlling the difference between the 
polygon boundary and the silhouette curve. 

In a generic algorithm, the intersections between the 
projection of a voxel and the silhouette can be considered 
as samples. Then, the line segments formed by the sam-
ples can be checked to see if they approximate the curve 
inside the projection. 

In a direct approach, the maximum distance between 
the curve and its polygonal approximation can be used as 
a measure of accuracy. A faster approach is calculating 
the maximum curvature on the silhouette curve segment 
inside the projection of a voxel but it is difficult to esti-
mate curvature robustly. Instead, we have chosen to use 
the LFS function [1]. 

LFS is a quantitative measure of level of detail. Given 
a LFS function, a smooth curve F is called r-sampled 
(r≤1) by a set of points S if every p∈F is within a dis-
tance rLFS(p) of a sample s∈S. The r-sampling of a curve 
results in a sampling strategy where the sample density is 
kept proportional to the level of detail. In [1], LFS(p) of a 
point p∈F is defined to be the distance from a point p∈F 
to the closest point on the medial axis (MA) of the curve. 

A way to make use of r-sampling in adaptive silhou-
ette cone sampling is by checking if the curve inside the 
projection satisfies the r-sampling criterion for a fixed 
value of r. If the condition is satisfied for all the voxels on 
the surface, then the silhouette curve should be r-sampled 
by the vertices of the silhouette polygon of the cone. 

Performing exact r-sampling tests for each voxel re-
quires many calculations similar to the maximum distance 
measure. Instead, a rough measure based on the minimum 
LFS inside the projection of the voxel is used: Let d be 
the length of the diagonal of the bounding rectangle of the 
projection of a voxel and let m be the minimum LFS 
value inside the rectangle. Then, boundary voxels satisfy-
ing the condition m ≥ αd for some parameter α  are not 
split further. Intuitively, the condition keeps the diagonal 
of the rectangle proportional to the level of detail. In this 
way, small features are captured by small voxel projec-
tions. From the r-sampling point of view, the parameter α 
enforces an upper bound on the r value. 



The adaptive sampling criterion explained above re-
quires some extra post-processing after the distance trans-
form step. First, the MA should be extracted [16]. Then, 
the LFS of the samples on the curve should be calculated 
using the chamfer distance transform of MA. The outputs 
of the pre-processing stages are shown in Figure 4. We 
use kd-trees to find the minimum LFS value inside the 
bounding rectangle of the projection of a voxel. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Processing stages of binary silhou-
ettes: (a) silhouette Curve, (b) chamfer distance 
transform, (c) medial axis, (d) LFS function. 

4.2. Silhouette Cone Intersection 

 

 

Figure 5: Silhouette cone intersection problem 
in 2D: Intersection operation results in loss of 
visual hull area. 
 
After the octree has been constructed, the ISVH should 

be sampled at the vertices of the leaf nodes of the octree. 
When the silhouette cones are intersected using Eq. (2), 
there is a possibility to loose visual hull volume. This 
problem is demonstrated in the case of a 2D visual hull in  
Figure 5. Such situations are detected by checking alter-
nating signs on each edge of the voxel. Then, the voxel is 
split until the lost edge surface intersections are recov-
ered. Since the octree from the previous stage is a good 

sampling of each silhouette cone, the implicit function 
values at new vertices are calculated by interpolating 
existing silhouette cone values. In this way, the expensive 
step of accessing the silhouette images is avoided. 

 

4.3. Polygonization 

When the octree nodes are polygonized independently, 
some cracks arise because of differences in the resolution 
between the neighboring octree leafs. This is not a prob-
lem in the case of octree-based regular sampling because 
the neighbors of a voxel on the surface have the same 
resolution. In the adaptive octree however, the cracks 
should be removed for visualization purposes. 

There are many studies on the polygonization of oc-
trees. Our crack removal procedure has been inspired by 
[17] and [2], both of which make use of MC-based poly-
gonization. When the voxels are polygonized using the 
MC look-up table, some triangles, each of which has an 
edge lying on one of the faces of the voxel, are generated. 
The edges on voxel faces correspond to the intersection of 
the face with the surface. When a low-resolution voxel 
has high resolution neighbors, cracks occur (See Figure 6  
for examples). To make things easier, we first get rid of 
the voxels containing faces with ambiguous sign configu-
rations by splitting the voxel until the ambiguities disap-
pear. Although, It is actually possible to handle ambigu-
ous faces, it requires more complicated processing. 
Moreover we observed that LFS-based adaptation rule 
does not generate too many ambiguous faces. When am-
biguous faces are eliminated, all the faces of boundary 
voxels contain at most one triangle edge corresponding to 
the surface intersection. In this case, two types of cracks 
are detected by the polygonization algorithm: 

 
 

 
Figure 6: Two types of cracks detected during 
polygonization. 
 

• Type I (See Figure 6 (a)):  This type is characterized 
by the existence of multiple surface intersections on 
the same edge of the low resolution voxel. For exam-
ple, A and B in the figure are generated by high reso-
lution voxels and lie on the same edge of the low-
resolution voxel. It should be noted that they can not 
be detected by the low-resolution voxel itself. 

A 
B 

(b) 

C E F 

D 

(a) 

 
 

 

 

 

H L 

+ 

+ 

- - 

+ 

- 
- 

+ 

- 

A 

B 

L H 

Intersection 
- + 

+ + 

Cone I 
Cone II 

Cone I 
+ - 

+ + 

Cone II 
+ + 

+ + 



• Type II (See Figure 6(b)): In the figure high-
resolution voxels generate the contour CDEF shown 
with solid lines on the low-resolution face. Low-
resolution voxel generates a single edge AB shown 
with dashed lines. 

 
The first type of crack is not repaired; instead the low 

resolution voxel is split until the crack disappears or re-
duces to one or more Type II crack, which is easy to re-
pair. To repair Type II cracks, it is enough to replace the 
edge of the low-resolution triangle by the corresponding 
contour generated by the high resolution voxels. For ex-
ample in Figure 6(c), the edge AB is replaced by the 
curve CDEF. When the replacement is made, the triangle 
generating the edge AB is converted to a closed polygon. 
Then the centroid of the polygon is calculated and a fan 
of triangles from the centroid to the polygon vertices is 
generated. 

5. Experimental Results 

Execution time and the size of the resulting octree rep-
resent good quantitative measures for evaluating the algo-
rithms tested here. Another important measure is the 
accuracy of the visual hull surface. Projecting every point 
on the visual hull surface should lie on the boundary of at 
least one of the silhouettes. Given the ISVH defined in 
Eq. (2) the projection error for a point x on the recon-
structed surface can be calculated as 

( )( )E V=x x  (3) 

The mean of the projection error for samples of points 
on the polygonal surface will be used as a quantitative 
measure of accuracy. In error calculation, the sample 
points are taken from the triangles on the surface and the 
number of samples per triangle is kept proportional to the 
area of each triangle. 

The first three rows of Table 1 show some measure-
ments obtained by running the regular sampling algorithm 
on the silhouettes used in Figure 3 at different resolutions 
(shown in the first column). The second column shows 
the time spent (measured on 2.53GHz Pentium 4 with 
Windows-XP) on signed distance function calculations, 
which is an overhead compared to the algorithms operat-
ing directly on the binary silhouette. For the outputs 
shown in Figure 3, six 640x480 binary silhouettes were 
used. The table shows the total time spent for processing 
all the silhouettes. The third column shows the execution 
time for the whole octree construction process. It is the 
total time spent on the octree construction and silhouette 
cone intersection. The fourth column shows the time 
spent on polygonization, which is another overhead com-
pared to VBVH. An important observation is the expo-
nential increase in time requirements due to the exponen-
tial increase in the visual hull surface area (reported in the 

fifth column of the table in terms of boundary voxels in 
the resulting octree). The last column shows the mean 
projection error. 

Table 1: Performance measures of different vis-
ual hull construction algorithms.  

Res. Preproc. 
(Seconds) 

Octree 
(Seconds) 

Surface 
(Seconds) 

Bound. 
Voxels 

Proj. 
Error 

D=7 0.05 0.19 0.02 5365 0.23 

D=8 0.05 0.52 0.09 21887 0.11 

D=9 0.05 1.84 0.50 89169 0.05 

α=0.3 0.14 0.18 0.05 5354 0.30 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

Regular Adaptive

 
(a) 

0

5000

10000

15000

20000

25000

0 0.5 1 1.5 2

Regular Adaptive

 
(b) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

Regular Adaptive

 
(c) 

0

0.04

0.08

0.12

0.16

0.2

0 0.5 1 1.5 2

Regular Adapt ive

 
(d) 

Figure 7: Numerical results for adaptive sam-
pling algorithm. (a) mean projection error, (b) 
number of boundary voxels in the octree, (c) oc-
tree construction time, (d) surface extraction 
time. 

There are two parameters in the case of the adaptive 
sampling algorithm: i) The maximum depth constraint 
and ii) the value of the sampling parameter α. In a practi-
cal setting, the depth constraint is expected to be present 
in any application, mainly due to the processing speed 
requirements (i.e. the minimum resolution that satisfies 
other requirements of the application would be the choice 
for the maximum depth). Moreover the existence of cam-
era calibration errors and segmentation errors can also 
make very high resolution processing unnecessary; there 
is no benefit in reconstructing noise.  In a general setting 
the complexity of the object’s shape and/or the physical 
size of the details that can be safely segmented from the 
images (for example we do not expect correct segmenta-
tion of the fingers in a typical human body reconstruction 
scenario) can be used to derive an upper bound on the 
resolution. When maximum depth is fixed, α becomes a 



somewhat finer measure of resolution that determines the 
quality of the adaptive sampling. 

Figure 7 shows the processing speed, number of 
boundary voxels, and the projection error obtained by 
running the adaptive sampling algorithm on the silhou-
ettes shown in Figure 3, using different values of α. The 
maximum depth of the octree is set to 8 by considering 
the visual and numerical results obtained for the regular 
sampling algorithm (note that the maximum depth con-
straint does not apply in the polygonization phase since 
refinement is the only solution for removing some type of 
cracks). The horizontal axis in all the graphs shows the 

 

 
(a) 

 
(b) 

Figure 8:  (a) the output of the adaptive sampling 
algorithm with αααα =0.3, (b) the resolution map on 
the surface. 
 

 value of α. The dashed lines show the corresponding 
values for the regular sampling algorithm with a maxi-
mum depth 8 (See row 2 in Table 1 ). It can be observed 
that depending on the value of α, it is possible to obtain a 
faster and more memory efficient system by sacrificing 
accuracy (i.e., the projection error). The last row of Table 
1 shows the numerical results for α=0.3. An important 
overhead is the extra processing required by the adaptive 
sampling algorithm. The preprocessing overhead is 
roughly tripled but an efficient parallelization in the pre-
processing stage is possible. In fact, a speed-up factor of 
6 (6 silhouettes are used) is reasonable to expect in case 
of a parallel implementation. In terms of other perform-
ance measures, adaptive sampling stands very close to the 
regular sampling with maximum depth 7 (row 1). When 
compared to regular sampling at depth 8 (row 2) it is 
much faster and much more memory efficient but the 
projection error is larger. Note that we can not expect an 
inverse behavior in the projection error as the adaptive 
sampling algorithm produces a much  smaller number of 
boundary voxels than regular sampling (i.e. roughly 4 
times).  Our purpose in using the adaptive sampling algo-
rithm is mainly to preserve small features of the object by 
keeping the resolution proportional to the level of detail. 
We assume that a less accurate approximation is accept-
able for larger parts of the object. 

The output of the adaptive sampling algorithm for 
α=0.3 is shown in Figure 8. Figure 8(a) is visually similar 
to the regular sampling output shown in Figure 3(b). 
Figure 8(b) shows the resolution map on the surface of 
the visual hull. The resulting construction consists of 
voxels at depth 6, 7 and 8. It can be seen that high resolu-
tion voxels are used mostly for the finer body parts, 
which means that the fine structures on the body are ap-
proximated properly.  

 
 
 
 
 
 
 
 
 
 

(a) 
 

(b) 

(c) 
 

(d) 

Figure 9: The visual hull of another model. (a) 
Synthetic model, (b) the output of adaptive sam-
pling, (c) a closer look at the claw of the arma-
dillo, (d) the visual hull obtained using regular 
sampling.  
 
To illustrate the importance of preserving the details, 

the algorithm was run on another synthetic model shown 
in Figure 9(a). The sampling parameter α was set to 0.3, 
and the maximum depth was chosen to be 8. Figure 9(b) 
shows the output and Figure 9(c) shows the claw, which 
contains fine details. Figure 9(d) shows the same claw in 
the case of regular sampling with a maximum depth of 7. 
Figure 9(d) clearly shows that regular sampling at low 
resolution introduces distortions and the details of the 
claws are lost due to aliasing. The adaptive algorithm, 
however, does not sacrifice accuracy at these fine details. 
In a sense, it makes use of higher resolution only when 
necessary. 

Finally we present experimental results using real data 
(See Figure 10). Figure 10-a shows the adaptively sam-
pled visual hull of a walking person using four cameras.  
Figure 10-b shows the adaptively sampled visual hull of a 
hand using eight cameras. In both cases maximum depth 
of the octree was chosen to be 8 and α was set to 0.3. The 



maximum resolution corresponds to voxels sizes of 
8.6mm and 2.0mm for the human body and the hand 
respectively. It can again be verified that the finer parts of 
the objects are captured by the highest resolution voxels. 

 

  
 

 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 

(b) 

Figure 10: Adaptive sampling results on real data. a) A 
walking person (top) and her ASVH, b) A hand (top) 
and its ASVH. The color of the visual hull surfaces is 
kept proprotional to the resolution. 

6. Conclusions 

We have extended the conventional VBVH to implicit 
surfaces using the implicit representations of the input 
silhouettes. The ISVH is a model of higher quality and 
can capture the geometry of the visual hull without sacri-
ficing robustness. The higher representation power of 
ISVH allowed us to design an octree-based adaptive sam-
pling algorithm. The adaptive sampling strategy targets a 
volumetric representation that provides accuracy propor-
tional to the level of detail. In human body reconstruction, 
this corresponds to a volume model representing smaller 
body parts (e.g., hands) with higher accuracy. In the oc-
tree-based BVH construction algorithm [18], the only 
parameter of fidelity is the desired resolution which may 
be too restrictive in a real time environment. The adaptive 
sampling algorithm provides a finer fidelity parameter 
that preserves the details. This should be desirable both in 
human body pose estimation and VR applications. 

Acknowledgments: This research was supported by 
NASA under grant # NCC5-583. 

References 
[1] Amenta N., Bern M., Eppstein D., “The crust and the 

�
-

skeleton: Combinatorial curve reconstruction,”  Graphical 
Models and Image Processing, 60/2 (2), pp. 125–135, March 
1998. 

[2] Ashida K., Badler N., "Feature preserving manifold mesh from 
an octree." Solid Modeling and Applications 2003, pp. 292-
297. 

[3] Bloomenthal J., "An Implicit Surface Polygonizer", In Graph-
ics Gems IV 324-349, 1994 

[4] Bloomenthal J., “ Introduction to Implicit Surfaces” , Morgan 
Kaufmann Publishers, Inc. San Francisco, CA. 1997 

[5] Borovikov E., Davis L., "3D Shape Estimation Based on 
Density Driven Model Fitting", Intl. Symposium on 3D Data 
Processing, Visualization and Transmission, 2002 

[6] Borovikov E., Davis L., “A Distributed System for Real-Time 
Volume Reconstruction” , Fifth IEEE International Workshop 
on Computer Architectures for Machine Perception 
(CAMP'00), Padova, Italy, September 11 - 13, 2000. 

[7] Caselles V., Coll B., “Snakes in Movement”  SIAM Journal on 
Numerical Analysis, 33:2445-2456, December 1996 

[8] Cheung K. M., Kanade T., Bouguet J., Holler M.,”  A real time 
system for robust 3D voxel reconstruction of human motions” , 
CVPR 2000, Vol. 2, June, 2000, pp. 714 – 720, 2000. 

[9] Frisken, S.F.; Perry, R.N.; Rockwood, A.P.; Jones, T.R., 
"Adaptively Sampled Distance Fields: A General Representa-
tion of Shape for Computer Graphics", ACM SIGGRAPH, 
ISBN: 1-58113-208-5, pps 249-254, July 2000  

[10] Hasenfratz Jean-Marc, Lapierre M., Gascuel J.-D., Boyer E., 
“Real-Time Capture, Reconstruction and Insertion into Virtual 
World of Human Actors.”  VVG'03, 2003 

[11] Laurentini A., “The Visual Hull Concept for Silhouette-Based 
Image Understanding” , PAMI, Vol. 16, No. 2, 1994 

[12] Lorensen W. E., Cline, H. E., "Marching Cubes: a high resolu-
tion 3D surface reconstruction algorithm," Computer Graph-
ics, Vol. 21, No. 4, pp 163-169, 1987 

[13] Matusik W., Buehler C., McMillan L., "Polyhedral Visual 
Hulls for Real-Time Rendering", Eurographics Workshop on 
Rendering, 2001.  

[14] Mikic I., Hunter E., Cosman P., Trivedi M., "Articulated Body 
Posture Estimation from Multi-Camera Voxel Data", IEEE 
CVPR 2001, Kauai, Hawaii, December 11-13, 2001 

[15] Moezzi S., Katkere A., Kuramura D. Y., Jain R., “Reality 
modeling and visualization from multiple video sequences” , 
IEEE Computer Graphics and Applications, 16(6):58--63, 
November 1996. 

[16] Remy E., Thiel E., "Medial Axis for Chamfer Distances: 
Computing Look-Up Tables and Neighbourhoods in 2D or 
3D", Pattern Recognition Letters, 23(6):649-661, April 2002. 

[17] Shekhar R., Fayyad E., Yagel R., Cornhill J. F., "Octree-Based 
Decimation of Marching Cubes Surfaces", Conference on 
Visualization, pp. 335-344, IEEE, October 27- November 1 
1996. 

[18] Szeliski R., "Rapid Octree Construction from image se-
quences", CVGIP: Image Understanding, Vol. 58, No. 1, pp. 
149-156, 1993. 

[19] Theobalt C., Magnor M., Schueler P., Seidel H. P., “Combin-
ing 2D Feature Tracking and Volume Reconstruction” , Pacific 
Graphics 2002, Beijing, China. p.96-103, 2002. 

[20] Villa-Uriol M., Sainz M., Kuester F. and Bagherzadeh N., 
“Automatic creation of three-dimensional avatars” , SPIE and 
IS&T's Electronic Imaging (EI 2003), Santa Clara, California, 
USA, January 2003. 

[21] Wada T., Wu X., Tokai S., Matsuyama T., “Homography 
Based Parallel Volume Intersection: Toward Real-Time Vol-
ume Reconstruction Using Active Cameras” , Computer Archi-
tectures for Machine Perception, pp.331-339, 2000 

 


