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Abstract

* 
 

In robotics, homing can be defined as that behavior which 
enables a robot to return to its initial (home) position, 
after traveling a certain distance along an arbitrary path. 
Odometry has traditionally been used for the 
implementation of such a behavior, but it has been shown 
to be an unreliable source of information.  In this work, a 
novel method for visual homing is proposed, based on a 
panoramic camera. As the robot departs from its initial 
position, it tracks characteristic features of the 
environment (corners). As soon as homing is activated, 
the robot selects intermediate target positions on the 
original path. These intermediate positions (IPs) are then 
visited sequentially, until the home position is reached. 
For the robot to move between two consecutive IPs, it is 
only required to establish correspondence among at least 
three corners. This correspondence is obtained through a 
feature tracking mechanism. The proposed homing 
scheme is based on the extraction of very low-level 
sensory information, namely the bearing angles of 
corners, and has been implemented on a robotic platform. 
Experimental results show that the proposed scheme 
achieves homing with a remarkable accuracy, which is 
not affected by the distance traveled by the robot. 
 
 
1. Introduction 
 

The goal of this research is to study the behavior of 
visually guided homing. Homing is a term borrowed from 
biology [1], where it is usually used to describe the ability 
of various living organisms, such as insects, to return to 
their nest after having traveled a long distance along a 
certain path. Similarly, robots may be required to return to 
their initial position after moving around in their 
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environment in order to perform a certain task. If this is 
achieved using visual information, the behavior is known 
as visually guided homing. 
        There have been many efforts to solve the problem 
of autonomous robot navigation, incorporating a homing 
behavior, using non-visual sensors. Robots are usually 
equipped with odometry sensors that continuously 
measure the location of the robot with respect to some 
relative or absolute coordinate system. Unfortunately, the 
errors of these sensors are considerable and most 
importantly, cumulative.  The longer and more complex 
the path of the robot is, the larger the errors in position 
estimation become. For this reason, odometry is used as 
an indicator of the robot's position, which is supplemented 
by information provided by ultrasound or laser sensors.  
When such sensors are used, navigation and localization 
is usually achieved through the creation of a grid-based 
map of the environment [2].  Although many of these 
methods are quite successful, grid-based approaches 
imply a high space and time complexity that depends on 
the number of grid-cells. Moreover, robots based solely 
on proximity sensors get easily confused because the 
sensors often return similar readings at different locations. 
Many efforts have been made to solve the problem of 
uncertainty in robot localization for proximity sensors 
[3,4]. 
         By comparison, vision is much more informative, 
since it provides information regarding “where is what”.  
Nature provides many examples of visual systems that are 
successful in supporting long-range navigation. For 
example, insects such as bees and ants exhibit remarkable 
homing abilities, although their neural system is relatively 
small and not sophisticated. Cartwright and Collett [5] 
have proposed the so-called snapshot model for insect 
navigation. They suggest that ants and bees fix the 
locations of landmarks surrounding a position by storing a 
snapshot of the landmarks taken from that position.  This 
snapshot represents a constellation of objects and it does 
not encode explicitly any information regarding 3D 
structure. Another interesting finding [6,7], is that insects 



 

 

correct their path en-route to the target position by 
executing biased detours according to familiar landmarks, 
which act as beacons.  

The models of insect behavior described so far, 
provide interesting ideas on how to solve the homing 
problem for autonomous robots.  The use of vision and, 
especially, the exploitation of a large visual field have 
proven to be essential for the accomplishment of various 
navigational tasks in insects.  In addition, the selection of 
certain parts of images as areas of interest and their use as 
landmarks plays also a major role in the way biological 
systems deal with visual data.  Last, but not least, 
computed information regarding structure does not seem 
to be a prerequisite for navigation. 
        Many efforts at achieving visual homing in robotics 
have taken into consideration the models from insect 
physiology that has already been described. Lambrinos et 
al [8] implemented directly the model of Cartwright and 
Collett on the Sahabot II. The experiments were 
conducted on a flat plane in the Sahara desert with four 
black cylinders used as highly distinctive landmarks.  The 
snapshots were aligned with a compass direction, 
obtained from the polarized light compass of Sahabot.  
Franz et al [9] analyze the computational foundations of 
snapshot-based guidance and provide proofs on 
convergence and error properties based on a proposed 
alternative model to that of Cartwright and Collett. In 
[10], Möller describes the average landmark vector 
technique, which is closely related to the snapshot model, 
and its implementation on analog hardware.  Cassinis et al 
[11] have also dealt with bee-inspired visual navigational 
models.  In [12], a neural architecture is proposed which 
uses panoramic visual cues, detects landmarks and aims at 
navigating a robot.  In [13], a method is proposed for the 
selection of landmarks that can support robot navigation. 
A common characteristic of all these approaches is that 
they exploit the benefits of the wide field of a panoramic 
observer, so as to obtain more information about the 
environment.  
         The work presented in this paper exploits omni-
directional vision. The proposed method relies on the fact 
that, if there is a correspondence established among at 
least three features in two panoramic views taken from 
two different positions, then there is a control algorithm 
that can drive the robot from one position to the other.  In 
this work, the extracted features are corners, which can 
easily be defined, extracted and localized in images. To 
establish corner correspondence between views acquired 
from considerably different viewpoints, the KLT corner 
tracker [14] has been employed.   
        The proposed method has been implemented and 
extensively tested on a robotic platform.  The accuracy of 
the homing procedure is quite high; home position is 
achieved with an accuracy of a few millimeters, after a 

robot journey of approximately 10 meters, during which 
the robot performed a number of maneuvers. 
        The rest of this paper is organized as follows.  In 
section 2, the algorithmic steps of the proposed method 
for visual homing are described in more detail. Section 3 
presents representative results from extensive experiments 
that have been carried out using a robotic platform.  
Finally, the proposed method is further discussed in 
section 4. 

 
2. Method Description 
 
The method for robot homing proceeds as follows. The 
robot starts moving at a certain position (home position). 
As it departs from this position, it extracts characteristic 
features (corners) and tracks them in subsequent image 
frames. As the robot moves, some of the corners 
disappear, while some others appear. The system keeps a 
record of the “life-cycle” of all detected corners. At a 
certain moment in time, it is decided that homing should 
be activated. Then, the algorithm computes a number of 
IPs on the original path. The basic idea behind this 
selection process is to guarantee that between two 
consecutive IPs, a sufficient number of features survive 
(theoretically a minimum of three), so that the robot can 
move between these two positions in a vision based, 
reactive manner. In practice, the number of features that 
should survive is larger in order to guarantee a robust 
performance. The rest of this section describes the above 
algorithmic scheme in more detail. 
 
2.1.  Moving between adjacent positions 
 
The basic building block of the proposed approach is a 
method that drives a robot between two positions S and 
G, provided that there is an established correspondence 
among three features in the panoramic views acquired 
from these positions.  
 

 
Figure 1:  Sample panoramic image 

 



 

 

A panoramic image can easily be unfolded using a 
polar-to-Cartesian transformation [15]. Figure 1 shows an 
example of a panoramic image and Fig. 6(a) - 6(j) 
contains examples of unfolded ones. The property of the 
resulting image is that the full 360 degrees field of view is 
mapped on its horizontal dimension. In the remainder of 
this paper, unless otherwise stated, the term panoramic 
image refers to an unfolded panoramic image. 
Let F1, F2 and F3 denote three features of the environment. 
Let also S and G denote the panoramic images acquired at 
start S and goal G positions, and Si, Gi be the bearing 
angles of features Fi in images S and G, respectively. 
Since we deal with panoramic images, the bearing angle 
of a feature can easily be computed as: 

 
 

size

i
i S

xS π2
= , 

 
(1) 

 
where xi is the x-coordinate on the feature in the image 
and Ssize is the width of the panoramic image (measured in 
pixels). Two features Fi and Fj define two sectors in the 
images acquired at positions S and G. The angular sizes 
of these sectors are Sij = |Sj – Si| and Gij = |Gj-Gi|, 
respectively. 

We define a control strategy that can move the robot 
between two adjacent positions S and G, by exploiting 
only the bearing angles of three features. The method 
assumes that features Fi can be corresponded between 
images S and G. Given a retinotopic ordering of the 
features, we define consecutive sectors in images S and G. 
Since features can be corresponded, sectors can also be 
corresponded. For each sector we record the difference in 
its angular extend between images S and G. If the 
difference is positive, we define a vector parallel to the 
bisector of this sector with a magnitude proportional to 
the difference |Gij – Sij|. If the difference is negative, then 
the vector has opposite direction. In fact, each of these 
vectors is targeted towards the direction of the motion that 
is required in order to equalize the angular extend of the 
sector between the two views. The vector sum of all 
contributions from all sectors defines a vector M (see Fig. 
2).  
     M is not necessarily directed exactly towards target 
position G. It has been experimentally validated that if 
this control law is applied continuously, then the robot 
converges to the goal position G. Reaching the target 
position can easily be verified by checking whether the 
magnitude of the motion vector M is lower than a 
predefined threshold. 
     The method requires monitoring of at least two sectors 
and, consequently, the correspondence of at least three 
features between two views. With less than three features 
the control law fails to move the robot to the goal 

position. If more than three features can be corresponded 
between different views, then all of them can be used to 
define the global motion vector M. Simulations have 
shown that as the number of features increases, vector M 
becomes parallel to the line defined by S and G, with a 
direction towards G. This is also the case if the features 
are uniformly distributed around position G. 
 

 
Figure 2: Graphical presentation of the method used 
for moving between adjacent positions based on the 
bearing angle of features. 

 
Feature correspondence may introduce errors in the 

estimation of the bearing angle of features. One way to 
eliminate some of these errors is to exploit the ordering of 
features, as they appear in panoramas acquired in two 
different positions. More specifically, features that do not 
appear in the same order in panoramas acquired at two 
different positions are excluded from the computation of 
vector M. In order to detect these features, the Longest 
Common Sub-string Algorithm [16] that is based on 
dynamic programming, has been employed. Formally, 
given two sequences X = <x1, x2, …, xk>and Z = <z1, z2, 
…, zm>, Z is considered a subsequence of X if there exists 
a strictly increasing sequence <i1, i2, …, ik> of indices of 
X such that, for all j = 1,2, …,k, xi(j) = zj. Given three 
sequences X, Y and Z, Z is a common subsequence of X 
and Y, if Z is a subsequence of both X and Y.  

Consider the sequence of features FS = < F1, F2, …, 
FM > in the start position and the sequence FG = < F1, F2, 
…, FK > in the goal position. The estimation of the motion 
vector M (from S to G) is based on the features contained 
in the maximum-length common subsequence of FS and 
FG. The time complexity of the Common Sub-string 
Algorithm is O (M+K).  

An important aspect of this control strategy is that it 
achieves the goal position G, but does not necessarily fix 
the pose of the robot. This is because it employs 
information regarding the difference of the bearing angles 
and not the absolute values of the bearing angles 
themselves. However, once the target position is 
achieved, pose correction is an easy task because 
panoramas acquired from the same position but with 
different pose are shifted versions of the same image.  



 

 

The proposed method drives a robot from a starting 
position S to a nearby position G by exploiting the 
bearing angles of features that implicitly contain structure 
information. Compared to the original snapshot model 
proposed by Cartwright and Collett, no external compass 
is required to align views.  Moreover, it avoids the 
definition of centrifugal motion vectors. 

 
2.2.  Extracting features from images 
 

The control law for moving between adjacent positions is 
based on the availability of feature correspondences 
between two panoramic views. If, however, the two views 
have been acquired from a significantly different 
viewpoint, feature correspondence is not a trivial task 
[17]. For this reason, the developed homing behavior 
achieves feature correspondence through feature tracking 
in a series of panoramic images that the robot acquires as 
it moves. This guarantees small inter-frame 
displacements, which, in turn, facilitates the task of 
feature correspondence. More specifically, the KLT 
tracking algorithm [14] has been employed. KLT starts by 
identifying characteristic image features (corners), which 
then tracks in a series of images. An important property of 
KLT is that the definition of features to be tracked is 
exactly the one that guarantees optimal tracking.  The 
definition of corners is based on the quantity 
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which is defined over an NxN neighborhood of image 
point (i,j). In eq. (2) gx and gy are the partial derivatives of 
the image intensity function. The eigenvalues λ1 and λ2 of 
the Z matrix are computed. Good features to track are 
considered those satisfying the rule 

 
min {λ1, λ2} > t (3) 

 
where t is a predefined threshold. Tracking is then based 
on a Newton-Raphson style minimization procedure that 
minimizes the error vector e: 

 

 

(4) 

 
where I and J are the two images containing the features 
to be tracked and gx, gy are the gradients of the image 
intensity function. The minimization of e is based on the 
solution of the linear system  

 
eZd =  

 
(5) 

 
where d is the displacement of the tracked feature.  Except 
the purely translational model, tracking can take into 
account the case of an affine transformation between two 
consecutive images. Theoretically, the second model is 
more general and allows tracking of features that have 
undergone shearing or rotation. Practically, it leads to 
poor results and many false matches. Shi and Tomasi [14] 
propose the use of the translation model for a good 
displacement measurement of features and confine the 
affine model to monitor a feature's quality by checking 
the dissimilarity between the initial and the current frame. 
 
2.3.  Definition of intermediate positions during 

homing 
 
Based on the KLT feature selection and tracking 
algorithm, the robot defines corners in the view acquired 
at its home position. As it departs from this position it 
continuously tracks these corners in the frames it acquires. 
During its course, some of the initially selected features 
may not satisfy the criterion of eq. (3) while other features 
may appear that satisfy this criterion. In the first case the 
system “drops” the features from subsequent tracking. In 
the second case, features are being tracked. The system 
builds some type of internal memory in which 
information regarding the “life-cycle” of features is kept. 
A graphical presentation of this type of memory is shown 
in Fig. 3.  
 

 
Figure 3: The life-cycle of features tracked between 
the initial position and the goal position. 

 
The vertical axis in this figure corresponds to the features 
that have been identified and tracked during the journey 
of the robot from home position to goal position. The 
horizontal dimension corresponds to time. Horizontal 
lines correspond to the life cycle of a certain feature. In 
this particular example, the start and the goal position do 
not share any common feature and, therefore, the simple 
control law presented in section 2.1 cannot be employed 
to directly support homing. In order to alleviate this 
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problem, the notion of intermediate target positions is 
introduced. 

Being at the goal position, the algorithm decides how 
far the robot can go towards the home position. In terms 
of the control law described in section 2.1, this position is 
the one that is closer to the home position and shares at 
least three common features with the goal position. For 
the example of figure 3, this position is denoted as “IP1”. 
Achieving “IP1” from the end position is, by definition, 
feasible by employing the control strategy of section 2.1. 
The algorithm proceeds in a similar manner to define the 
next IP towards home. The procedure terminates when the 
last IP achieved coincides to the home position. 

It should be noted that the control strategy of section 
2.1 guarantees the achievement of the target position but 
not necessarily the achievement of the pose with which 
the robot has previously visited this position. This poses a 
problem in the process of switching from the features that 
drove the robot in a certain IP to the features that will 
drive the robot to the next IP. To solve this problem, we 
exploit the fact that panoramic images that are acquired at 
the same location from a different pose are shifted 
versions of the same image. Moreover, the amount D (in 
pixels) of shift is proportional to the difference in pose, φ. 
Theoretically, one feature suffices for the computation of 
φ, because features are tracked and their bearing angle in 
both images is known. Practically, all available features 
should contribute to get a robust estimation of φ. Errors 
can be due to the inability of KLT to track accurately 
some features and due to the non-perfect achievement of 
an IP. In our implementation, φ is calculated as the 
median of angular shifts suggested by all tracked points. 

Having an estimation of the displacement φ between 
the images taken in an IP during the initial and the 
homing path, it is possible to restart a new homing 
procedure. The features detected during the first visit at 
this IP are recovered and their coordinates are 
transformed according to the displacement φ.  Feature 
selection is then applied to small windows centered at the 
predicted locations. The result of this calculation is 
considered as the current position of the old feature in the 
image.   

An important implementation decision is the 
selection of the number of features that should be 
corresponded between two consecutive IPs. In section 2.1 
it has been shown that three features suffice, although 
more features can be used if available. It is quite 
important that the minimum number of required features 
is only three. Provided that in both indoor and outdoor 
environments corners exist in abundance, this almost 
guarantees that there will be a series of IPs that when 
sequentially visited, lead the robot to its home position. 
The advantage of considering more than three 
correspondences is the fact that the achievement of IPs 

(and consequently the achievement of the home position) 
becomes more accurate because tracking errors are 
smoothed out. On the other hand, if the number of 
correspondences is unnecessarily too high, this can lead to 
the definition of an unnecessarily large number of IPs. 
 

 
Another important aspect of the proposed homing 

method is that the accuracy in the achievement of the 
home position does not depend on the distance traveled by 
the robot, which constitutes a fundamental problem in 
odometry-based homing. The error does not accumulate 
and the achievement of the home position depends only 
on the last step of the whole procedure (moving from the 
last IP to the home position).   
3. Experimental results  
The proposed method has been implemented on a real 
robotic platform equipped with a panoramic camera.  A 
Pentium III processor running at 750 Mhz consisted the 
processing power used for both vision processing and 
robot motion control. Testing took place in a real office 
environment where several experiments have been 
conducted. Due to space limitations, sample results are 
presented. Figure 4 gives an approximate layout of the 
robots’ workspace and the robots’ start position. This 
position was marked on the ground to facilitate the 
evaluation of the homing procedure. The robot was driven 
towards the empty space covering a distance of 
approximately ten meters. During this motion, panoramic 
images were acquired and processed on line.  The robot’s 
maximum translational speed was 4.0 cm/sec and its 
maximum rotational velocity was 3 deg/sec. 

After the execution of the initial path, three 
intermediate target positions were selected so as to 
guarantee that at least 80 features would be constantly 
available during homing.  Figure 6 shows snapshots of the 
homing experiment.  More specifically, Fig. 5(a)-5(h) 
correspond to the initial robot journey and Fig 5(h)-(o) 

 

Figure 4: Graphical representation of the method 
used for exploiting IPs so as to return to home after 
a long journey in space.  S and G are the initial and 
final robot positions. The robot returns to home 
position S by sequentially visiting IPs I1I2,...,In. 



 

 

correspond to the homing procedure.  The robot has 
reached the home position with sub-centimeter accuracy 
(the mark on the ground is covered by the robot in both 
figures 5(a) and 5(o)). For comparison, the odometry-
based homing resulted in an error of approximately 1.5 
meters for exactly the same homing task.  

Figures 6(a)-6(e) show samples of the panoramic 
views that the robot acquired during its initial journey and 
figures 6(f)-6(j) show samples of the panoramic views 
that the robot acquired during homing.  In both figures the 
corners extracted and tracked are also displayed.  From 
these views it can easily be verified that although the 
homing experiment has been carried out in one room, the 
appearance of the environment from the home and end 
positions differs considerably.  
4. Discussion  

In this paper, a novel method of visual has been 
proposed.  The method is based on the tracking of corners 
in panoramic views of the environment.  By memorizing 
and processing the “lifecycles” of such corners, the robot 
is able to define IPs that should be visited sequentially 
before reaching the home position. 

The proposed method has a number of attractive 
properties. A complex behavior such as homing is 
achieved by exploiting very simple sensory information. 
More specifically, only corners are extracted and tracked 
in a series of images and only the evolution of their 
position on a panoramic view is monitored.  It is quite 
important to note that robot navigation, typically handled 
by exploiting range information, is achieved without 
computing any explicit range information at all.  The 
decomposition of the homing journey to a number of 
intermediate reactive navigation sessions appears quite 
intuitive.  Moreover, the fact that, between IPs, the robot 
moves in a reactive manner enables the robot to 
accommodate its behavior according to changes in the 
environment such as obstacles etc, at least to the point that 
these changes do not affect substantially the overall 
appearance of the environment. 

This work also reveals the importance of omni-
directional vision in robot navigation tasks. In 
environments that lack rich visual content, a panoramic 
sensor has higher probability of capturing features that 
can support navigation.  A standard camera would have 
much less candidate features to select and track because 
of its limited field of view. Furthermore, the experiments 
show that homing accuracy is improved when the robot 
exploits information in 360 degrees.  

In our approach to visual homing, the selected 
features were corners.  Current research efforts are 
targeted towards exploiting more complex visual features. 
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Figure 5: Views of the robot while homing: Robot departs from designated home position ((a) to (h)) and then it 
returns back ((h) to (o)) 
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Figure 6: Panoramic images and corner tracking as the robot departs from and returns back to the home 
position 

 


