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Abstract-Methods for protein secondary structure 
prediction have improved significantly in recent years. 
This has lead to enhanced protein homology modeling 
efforts. Protein homology modeling involves the sub-task 
of identifying a set of homologous proteins from a protein 
database when given as input the amino acid sequence of a 
qnery protein, with the ultimate goal of using the resulting 
set of homologous proteins as a starting point for 
predicting the 3D structure of the qnery protein. Previous 
work has indicated that improvements can be made when 
combining secondary structure sequence alignment using a 
3-state structure symbol alphabet together with primary 
amino acid sequence alignment methods. These 
approaches typically use a local alignment algorithm. We 
compare the performance of several dynamic 
programming alignment algorithms on the task of aligning 
secondary structure sequences using an %state secondary 
structure alphabet. Our results indicate that the typical 
use of a local alignment algorithm may not be best when 
aligning protein secondary structure information. 

Index Terms- Dynamic programming, Pattem classification, 
Protein secondary structure, Protein function prediction. 

1. INTRODUCTION 
HE determination of protein structure andlor function 
from primary sequence information remains challenging 

and costly. As an altemative, researchers continue to develop 
knowledge-based computational methods such as homology 
modeling and threading for inference of protein structure and 
function based on similarities between newly sequenced 
proteins and databases of existing protein information, for a 
review of various approaches see [ I ] .  Many of the more recent 
knowledge based approaches to the structure prediction 
problem use a measure of secondary structure similarity as a 
part of the overall process [2-71. The measurement of 
secondary structure similarity between two or more proteins 
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can he made in many ways. In the late 1990's McGuffin et al. 
compared protein domain secondary structure similarity 
scoring methods for eleven different painvise similarity 
approaches [8]. In general it was shown that secondary 
structure similarity was not a sufficient method when taken in 
isolation for solving the protein homology-modeling problem. 
More recently, several attempts have been made that 
combined secondary structure similarity with primary 
sequence based homology methods with modest success [9,3, 
101. The secondary structure similarity measure employed in 
these particular approaches is determined by aligning 
sequences of secondary structure state symbols that represent 
the secondary structures of the proteins being compared. This 
form of the alignment problem is typically simplified by 
reducing the variety of secondary structures represented from 
the 8-state standard developed for the DSSP program [ 1 I] to a 
simpler three-state representation. The 8-states defined by the 
DSSP method account for three different types of helices, two 
different types of strand related structures, 2 tum structures 
and a catch-all state for residues in the loop/coil regions, while 
the 3-state alphabet, are often referred to as a, 0. and y (or 
coil), reduces the representation to just residues involved in 
helices, strands, and other structures (e.g.,loops/coils or 
unknown) respectively. 

Secondary structure sequence alignment is typically 
implemented as a Smith-Waterman local alignment algorithm 
[ 121. Preliminary work using a Needleman-Wunsch global 
alignment algorithm [ 131 as part of our own combined protein 
homology approach, led to the observation that a closer 
examination of the performance of different alignment 
algorithms was warranted when working with sequences 
representing secondary structure. This paper describes our 
initial efforts in this area and highlights the need for a more 
thorough comparison of alignment algorithms for secondary 
structure sequences. We compare six variations of dynamic 
programming (DP) based alignment algorithms for aligning 
secondary structure sequence data using a database of known 
protein secondary structure sequences. Our alignment 
algorithm variations include local, global and semi-global 
approaches each implemented to support either linear or affine 
gap penalty functions. The results indicate that the typical 
choice of a Smith-Waterman local alignment algorithm may 
not he the best choice for aligning secondary structure 
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sequences. We conducted the comparisons using a dataset of 
210 globular proteins representing I13 different SCOP 
superfamilies [I41 and 27 different CATH homologous 
superfamilies [15]. The test dataset is derived from a globular 
protein dataset originally developed by Michie et al. [I61 for 
use with their automated class assignment protocol. The same 
dataset was also used in other efforts at automating structural 
class prediction from sequence data [17]. The dataset was 
comprised of a set of 2 I O  protein domains classified into three 
classes based on their secondary structure motifs. Throughout 
the rest of this paper we will use the term protein to mean a 
protein domain, with the understanding that the Protein Data 
Bank (PDB) IDS used will always indicate the specific domain 
we are using. 

The three protein classes represented in the test dataset are 
referred to as mainly-a, mainly+, and mixed-alp, that contain 
59, 79, and 64 proteins respectively, The secondary structure 
sequences of all 210 proteins in this dataset were derived 
using the DSSP method [ I  I]. For three sets of query proteins 
containing five proteins each we ran each of six alignment 
algorithm variations to generate alignment scores against all 
the proteins in our test As with all dynamic programming 
algorithms for sequence alignment, the scoring mechanism is 
dependent on the scoring matrix. We use an 8-state scoring 
matrix designed by modifying the 3-state scoring matrix used 
in the secondary alignment algorithm implemented by 
Wallqvist et al. [3]. 

11. B A C K G R O U N D  

Homology modeling is based on the observation that 
proteins with similar sequences tend to fold into similar 
structures. The goal of homology modeling programs is to 
generate a set of homologous proteins to an unknown “query” 
protein. The resulting homologous set will then be used to 
predict the 3D structure by comparing the query protein 
sequence with the sequences of the homologous proteins for 
which X-ray or NMR based structure data is known. 
Homology modeling is supported by the empirically 
determined fact that at least 66% of the known proteins having 
a similar structure also have a similar function [ 181. Homology 
modeling starts with a template identification step based either 
on sequence to sequence alignment, or sequence-to-structure 
alignment (threading). In the interest of space we restrict the 
remainder of our discussion to homology modeling based on 
sequence-to-sequence alignment. Sequence alignment based 
on painvise primary sequence identity works well for 
detecting homologs that have a high degree of sequence 
similarity but usually does not work for homologs with a low 
degree of sequence similarity. Primary sequence alignment 
approaches suffer from an inability to differentiate between 
protein sequences that differ significantly in primary sequence 
but never the less code for very similar secondary and or 
tertiary structures [19]. The homologous sets identified by 
using primary sequence alignment approaches often miss 

some, if not many, of the homologous proteins. These difficult 
to detect homologs are often referred to as those in the twilight 
zone and are typically defined to be homologous proteins with 
less than 30% primary sequence similarity [19,20]. 

Because protein function is known to be related to its 3D 
(or tertiary) structure, which is constrained by its 2D (or 
secondary) structure, some protein homology modeling 
approaches have been enhanced to combine secondary 
structure similarity measure together with primary sequence 
alignment results to improve the coverage of the resulting 
homology set [IO, 91. The problem of secondary (and tertiary) 
protein structure prediction is inherently difficult and is often 
approached with computational intelligence methods. These 
programs typically combine many of the same heuristic 
algorithms as used in homology modeling. Many structure 
prediction methods employ artificial neural networks (ANNs) 
[Zl-271, and are typically considered to he the most accurate 
[28, 291. Other heuristic based approaches that have been 
investigated include hidden Markov models [30-321, support 
vector machine approaches [33] and others [34-361. 

TABLE I 
8-STATE STRUCTURE SYMBOLS DEFINE0 BY DSSP WTH THREE TYPICAL 3 

STATE REDUCTIONS 

DSSP STRUCTURE CASP SIMPLEST S A S *  
SYMBOL DESCRIPTION REDUCTION REDUCTION REDUCTION 

H alpha-helix a a a 
G 3il0-helix a Y a 
I pi-helix (rare) Y Y Y 
E extendedstand p P P 
B betabridge P Y Y 
T H-bondedtum y Y Y 
S bend Y Y Y 

loopicoil or 
unknown 

* The SSAS program is described in 131. 

Y Y Y 

Secondary structure sequence similarity procedures are 
often built within structural prediction programs. For example, 
in early work by Russell et al., a fast algorithm was developed 
for generating all exact matching alignments under the 
constraint of a maximum number of insertions or deletions. 
The sequences being aligned were comprised of helix (H) and 
strand (B) secondary structure state symbols. In this approach 
each H represented an entire a-helix and each B represented 
a p-strand in the proteins to be aligned [5].  More recent 
secondary structure sequence representations maintain the 
same reside sequence length as the primary sequence hut use a 
secondary structure state alphabet such as those illustrated in 
Table I. In general secondary structure sequences are 
represented using either an 8-state alphabet or various 8-3 
state reduction alphabets. Each amino acid of a protein 
sequence is represented in a secondary structure sequence by a 
symbol from a secondary structure alphabet yielding a 
secondary structure sequence of the same length as the 
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original amino acid sequence. 
Many combination based approaches for the identification 

of homologous proteins employ either BLASTp or PSl- 
BLAST as a first step in the combined process. These 
programs are generally very effective at identifying 
homologous proteins that have greater than 30% amino acid 
similarity. Methods that seek to identify homologous proteins 
with a low degree of sequence similarity can incorporate 
secondary structure information into their approaches. These 
can generally be divided into two approaches, either through 
the use of secondary structural information as an additional 
constraint on the primary alignment results [28, 41 or by using 
secondary structure information as the primary source of 
information [37, 61. The interest in using secondary structure 
information in homology programs continues to grow as 
improvements in secondary structure prediction programs 
continue to be made [38. 391. The results of a secondary 
structure prediction program can then be used to generate 
secondary structure similarity scores that can then be 
combined with primary sequence based homology prediction. 
There are numerous secondary prediction programs currently 
available (see [40] for a review), we briefly mention just three 
of them here as examples of the variety of approaches 
available. Jpred [41] and SSProX [22] are both ANN 
approaches and SAM-T99 [32] is a Hidden Markov model 
approach. Jpred uses a two-level neural network algorithm 
together with PSI-BLAST derived multiple sequence 
alignment profiles to predict the secondary structure. SSPro8 
use bidirectional recurrent neural networks and PSI-BLAST 
derived profiles. In each case the neural networks are trained 
using protein sequence multiple alignments and known 
secondary structures from the PDB. SAM-T99 takes a single 
sequence and iteratively develops a hidden Markov model 
(HMM) from the sequence and homologs found using the 
HMM in a database search. The trained HMM is then used to 
predict the protein secondary structure for an unknown amino 
acid sequence. 

Clearly secondary structure sequence alignment is not a 
new concept as it is often an integral part of both homology 
modeling programs and secondary structure prediction 
programs. What is surprising is that little justification for the 
specific type of alignment algorithm (i.e. global or local) is 
given. In general Smith-Waterman local alignment algorithms 
are used with a passing reference to their appropriateness for 
addressing alignment of protein primary sequences. The main 
difference between global and local alignment is the trade-off 
between recognition of overall similarity (generally reserved 
for aligning long stretches of DNA between different 
genomes) and recognition of evolutionarily conserved regions 
of DNA or protein, which are relatively short and are often 
flanked by region that will not easily align. Given the 
biological and physical differences between amino acid 
sequences and secondary structure sequences a comparison of 
advantages and disadvantages of the alignment algorithm 
variations is warranted. 

~ 
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111. METHODS 

A.  The Algorithms 
We have implemented and compared the performance of 

three different DP based alignment methods each with two 
different methods of determining gap penalties. The specific 
DP approaches compared are listed in Table 11. By definition a 
DP alignment algorithm will generate the best alignment of 
two sequences, SI and S1,  according to the measurement 
criteria given in the scoring matrix. The score of each 
alignment is calculated as the sum of the scores of each 
aligned pair of sequence symbols s, and sl, where the painvise 
score is given by a value in a scoring matrix M. The scoring 
matrix supplies a painvise score for all possible pairs of 
secondary sequence symbols. 

TABLE t1 
LIST OF ALIGNMENT ALGORITHMS 

ALGORITHM APPROACH 
Global+Affine Global 
Global+Linear 
Local+Affine Local 
Local+Linear 

Semi-Global+Aftine Semi-Global 
Semi-Global+Linear 

Starting with the sequence alignment algorithm package 
written by Rolf Backofen and Sebastian Will, three different 
dynamic programming based alignment algorithms were 
implemented to compare secondary structure descriptors of a 
target set of proteins obtained from the PDB [42]. A 
secondary structure descriptor is a vector of characters where 
each character represents the type of secondary structure each 
amino acid participates in. The algorithms use an &state 
alphabet containing the characters H (residue participates in 
alpha helix), B (residue in isolated beta-bridge), E (residue is 
part of an extended strand and participates in beta ladder), G 
(residue in 3/10 helix), 1 (residue in a pi helix), T (residue in 
hydrogen bonded tum), S (residue in bend), or "." (residue is 
part of a loopicoil region, or unknown) as defined in the 
Definition of Secondary Structure of Proteins (DSSP) program 
[ I  I ] .  The six variations we have tested are listed in Table 11. 

Each algorithm accepts as input a query protein in secondary 
structure sequence character string format, a similarity scoring 
matrix, and the name of a file containing protein secondary 
structure sequences to align the query protein with. The 
similarity score for each alignment is written to an output file 
in rank order based on the alignment similarity score along 
with the PDB protein ID, and the protein secondary structure 
of the target. 

B. The Scoring Matrix 
The scoring matrix used in all of the alignment 

algorithms compared was extended to support an &state 
alphabet from the 3-state similarity scoring matrix developed 
for the SSAS project [3]. The original SSAS scoring matrix 



was calculated from log-odds scores based on three- 
dimensional alignments obtained from 3D-ali data bank. The 
values for the extended states were determined by either 
copying or adjusting the values from the most similar scoring 
pair as indicated by the CASP 8-stale to 3-state reduction (see 
Table I). The secondary structure strings of the globular 
proteins in general are mostly composed of alpha-helices (H) 
and extended-strands (E), and residues participating in 
loopicoils. The secondary structure states, G ,  B, T, and S are 
less common and 1’s are rare. 

It is likely that recalculating the log-odds scores in terms of 
an 8-state alphabet would produce a more accurate similarity 
matrix. We plan to explore this in future work. Favorable 
pairings are assigned positive scores and negative scores are 
assigned to structural elements least likely to he found 
together. Implementation of the gap penalty versions were 
uniformly implemented for the three types of alignment 
algorithms such that the gap opening and elongation 

H 
G 
1 
E 
B 
T 
s 

other 

H G I E B T S other 
2 1 1 -15 -4 -4 -4 -4 
I 3 I -15 -4 -4 -4 -4 
1 I 3 -15 -4 -4 -4 -4 

-15 -15 -15 4 -4 -4 -4 -4 
-4 -4 -4 -4 2 1 1 1 
- 4 - 4 - 4 - 4  I 2  1 I 
4 4 - 4 - 4  1 1  2 I 
-4 -4 4 -4 1 1 1 2 

TABLE Iv 
PDB CODES OF PROTEMS (DOMAINS) USED ORGANIZED BY STRUCTURAL E I ~ S S  with proteins used as queries marked with asterisks. 

1 eca- 1 mbd- 3sdhA Ihbg- IthbA Imba- l l h l _ *  lithA 
1 cpcA IcpcB IcolA llmb3 IlccA lr69- I utg- laca- 
IfiaA * 2wrpR IhddC 1 rro- losa- 4icb- 2sas- 351c- 

mainly-a 3c2c- 2mtaC lcc5- Ic5a- lprcC* 256bA 2ccyA 2hmqA 
1 be-  1 bbhA 1 fha- IropA I I f i -  1 aep- 2tmvP * Ircb- 

1 huw- I rfbA ld66A IysaC 1 acP- lbha- lbgc- I ribA 
IcmbA 1 POC- IltsA 

3inkC lprcL lprcM lppa- lgluA 1hyp- Ilis- * IltsC 

I ifc- Imdc- lopd. * IS% laveA lhbpA * l h b q  1muP. 

I fc2D Inoa-* lttaA lttf- lcdb- 1 ten- lcobA 1 P k  
mainly-P Ipaz- 1% IaizA 1 hoe- 2stv- 1 tnfA ltmel 2plvl 

%or- I omf- 2 ~ -  2pkaA Zrhe- Icd8- lcid- ltlk- 

lbbt2 2plv2 I bbt3 2plv3 4sbvA 2tbvA lbmvl * 2ctvA 
21tnA 2aYh- IsltA 2rspA IhivA kPr-  InscA 2bat- 
2sim- 4fgf- lilb- Itie- * 3ebx- IcdtA 1 fas- 1 atx- 

4sgbl 2ltnB 4htcl l lyd .  2bpa2 I lab- 3monA ltfi- 
1 cauB lshg- Ipnj- 2CPlL lbw3- IltsD Zsns- 

3 c k  1 etu- 1 ofv- 4fxn- IcseE Icde- * ZtrxA 3tm- 
IgplA 4dfrA lak3A 3adk- 2ctc- 2cmd- lipd- 7icd- 
InipA 1 tml- 1 gPs- 20vo- I tgsl IgatA * IPtf- ZbopA 

2m2-* laak- 71%- lonc- 1 fus- lbmL IPgX- lfrrA * 
1 u b q  3monB lvil- 3i18- 1 fkb- 2mshA 5pti- 1 adr- 
lzaaC IsbaA 2pna- 3cla- leaf- 1 cewI 2tscA 1 rveA 
lstfl 3b5c- 1 PkP- 5fdl- ZdnjA * Imal- 1 PY aB lhgeB 

I bds- 1 egf- 2Qf- Ztgi- IpdgA Ihcc- 1 tpm- 1 hgh- 

Ixis- 5timA I nar- 2mnr- IchrA lfbaA 1gox- 5P21- 

mixed a ,  p Ictf- 1 fxd- 2nckL 3NbS IPbL  laps- lcsel Zsicl 
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C. The Test Dafasef 
We conducted 15 runs of each algorithm using a dataset of 

2 10 globular proteins (see Table IV). The dataset consists of 
proteins originally classified as mainly-a, mainly-a, a@, or 
a + p  by Michie et al. [l6]. Of these 210 proteins, 56 were 
originally classified as mainly-a, 75 as mainly+, 26 as a@, 
and 53 as a+p.  For our experiments the mainly-a class 
contains 59 proteins, the mainly-@ class contains 79 proteins, 
and the a / p  and a + p  classes were combined into one mixed- 
a b  class of 72 proteins after reassigning several proteins from 
this class to the mainly-a mainly-b class based on current 
SCOP and CATH information. Five structures from each of 
the three classes were randomly chosen to he used as query 
proteins for each experiment For each protein in the test 
dataset we also obtained the most recent SCOP super-family 
and CATH homology codes for use in OUT analysis. Five of the 
query proteins have homologous proteins in the test dataset as 
determined by their CATH and SCOP superfamily 
classifications. The five query proteins along with their 
respective CATH and SCOP superfamily codes are given in 
Table V. 

TABLE V 
QUERY PROTEINS AND CATH AND SCOP CODES 

CATFI SCOP Sequence Class PDB ID Length superfamily superfamil 
Y 

llhl- 130 10 46458 
I f i a A  79 60 48283 

mainly-a Iprc-C 138 I O  48695 
(59)* 2tmv-P 154 70 47195 

llis- 131 10 47082 
lopa-A 133 20 50814 
Ihbp-A 173 20 50814 

mainly+ Inoa- I I3 230 49319 
(79)* I bmv 1 123 20 88633 

Itie- 166 50 50386 
I cde- 209 I70 53328 

1 gat-A 60 10 57716 

Mixed-ap 2m2- 155 I O  53098 
(72)* 1 frr-A 95 30 54292 

Zdnj-A 253 10 56219 

* the number in parenlhcsis indicalcs thc total number of proteins of the 
indicated class in the test dataser 

D. Experimenl Description 
For each of the fifteen query proteins, five from each of 

the three different globular classes, alignments were obtained 
for all of the 210 secondary structures in the test dataset 
described above. The resulting alignments were ranked 
according to their alignment score. For each query protein the 

number of proteins in each of the globular classes (mainly-a, 
mainly-p, and mixed-ap) that ranked within the bounds of the 
number of proteins in the globular class of the query protein 
was recorded along with the similarity score generated by the 
algorithm. As noted in Table 111 there are 56 mainly-a 
proteins, 75 mainly-p proteins, and 79 mixed-ap proteins. We 
also recorded for each query protein the highest and lowest 
ranking alignment achieved for a protein of each class. 

IV. RESULTS 

We have tested six different alignment algorithms to 
compare their effectiveness for detecting homologous 
relationships between proteins based only on secondary 
structure descriptors (i.e. vectors of secondary structure 
states). The algorithms were applied to our test dataset of 210 
globular proteins where the structures are known and the 
corresponding sequences have been previously categorized 
into particular protein families. We used as our query 
sequences 15 proteins randomly selected from OUT test set such 
that there were five proteins selected from each of the three 
classes. For each query protein submitted the algorithm returns 
a list of the target proteins ranked by their similarity score. 

For each alignment algorithm we calculate the percentage of 
proteins, of the same class as the query, that rank in the top n 
positions, where n is the number of proteins in the class that 
the q u e j  protein is a member of. We also record the 
percentage of proteins of the other two classes that rank in the 
top n positions. We label each of the possible relationships as 
iJ, where i represents the class of proteins being counted 
within the top positions possible for the class that the query 
protein is a member of, wherej identifies this expected class. 
For example, if the ranked list of aligned proteins for an alpha 
query included 51 of the 56 possible alpha proteins along with 
5 ab-mixed proteins in the top 56 positions of the ranked list 
the a/a score would he 91%, the pia score would he 0% and 
the mixed-apia score would be 9%. This recording method 
generates three values for each of the 15 query proteins tested 
giving a total of 45 values for each algorithm. We condense 
this information into a chart depicting the average percentage 
for the three sets of five query proteins representing each of 
the three classes, mainly-a, mainly-P, or mixed-ap. 
In Fig. 1 each grouping of bars gives the average percentage 
of same class rankings for each of the three sets of query 
proteins mainly-a, mainly-p, and mixed-ab respectively. For 
example, the first grouping (labeled &a)  illustrates the 
average percentage of mainly-a proteins that were ranked 
above the highest ranked protein from either of the other 
classes, for each of the six algorithms compared. The first 
observation to note is that mainly-a and mixed-ap proteins 
achieve overall higher similarity scores when aligned using 
the SEMI-GLOBAL+AFFINE algorithm and the lowest scores for 
either the LOCAL+LINEAR or the LOCAL+AFFWE algorithm. Our 
intuition is that since global alignment methods are intended 
to maximize the alignment over the length of the entire 
sequence more of the individual helices end up aligned with 
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each other since the individual helices are arranged 
sequentially along the sequence. This advantage would not be 
as easily exploited for the local style alignment algorithm, 
regardless of gap penalty function. In the case of mainly-p 
proteins it is plausible that the local alignment algorithm is 
able to achieve similarity scores higher than those achieved 
using a global style algorithm since the residues participating 
in beta strands will not necessarily be side-by-side. The semi- 
global alignment algorithm is able to ignore leading and 
trailing gaps. This feature in combination with the 
observations noted above may be the reason for the overall 
good performance of the semi-global style. 

1 . 6  - - 1.4 - 
1.2 - 

- H 1 -  
2 0.8 - 
c 
e 0.6 - 
0.4 - 
0 .2  - 

0.9 7 

n . o  -ap I 

0.8 

0.7 

f ::: 
& 0.4 

0.3 

0.2 

0.1 

0 

ala P m  aWaD 

Figure I .  The chart shows thc avcrage percentage including standard dwieion 
of the proteins of the same classification as the qucry proteins for the six 
different alignment algorithms compared. In general the best performance is 
observed when the SEMI-tiLOBAL alignment algorithm is used. 

To obtain a measure of how likely it is for proteins from 
different classes to align better than proteins of the same class, 
the rank of the highest ranked alignment to a protein of a 
different class than the query protein is divided by the count of 
the number of proteins of the query class. In Figure 2 these 
results are illustrated in charts (a), (b), and (c). representing 
the data from the GLOBALCAFFINE, SEMI-GLOBALtAFFINE, 

and LOCAL~AFFINE runs respectively. A lower ranklcount 
measure indicates a higher ranking. It is not surprising that for 
all alignment algorithms and for each class of proteins the 
highest ranked protein is of the same class, as it is expected 
that the query protein should result in the best alignment when 
aligned to itself. In some cases, proteins of a different class 
achieve relatively high rankings. This is most apparent with 
the mixed-ap class query proteins since all of the points along 
the mixed-ap line are less have a value of less than 1.0. We 
observed that the ranWcount measures are consistently lower 
(worse) for the mixed-up values for all mainly-a queries and 
are lower for three of the five mainly-0 queries measured 
using the LOCAL~AFFINE algorithm. It should be noted that the 
highest ranked mixed-ab protein for the q9 query has a CATH 
classification of mainly-p and a SCOP classification of mixed- 
a0. 

A comparison of the p line in the three charts indicates that 
the GLOBAL+AFFINE algorithm is less likely than the other 
algorithms to rank an alignment with a mainly-0 protein high 
when the query protein is a mainly-a protein. 

(a) Global+Affine 

2 
1.8 4 
1 . 6 4  ,P., 

.... ... ... .... ~ 

ql q2 q3 q4 q5 96 q7 96 q9 q10 qll q12 q13 q14 q15 
Query protein 

(b) Semi-Global+Affine 

, _  
. . . . . . . . . . . . . . 

ql 92 q3 q4 95 q6 q7 q8 q9 q10 qll q12 q13 q14 q15 
Query protein 

(e) Local+Afffine 

2 

1.8 
1.6 - 1.4 

: : I  

c I 1.2 

2 0.8 - 

0.6 
0.4 
0.2 

0 

Figure 2. For each of the 15 query proteins (ql-qI5). the highest ranked 
alignment to a protein of U different class than each of the query proteins 
divided by the count of thc number of proteins in the query class is shown. 
This measure indicates diflkrcnccs in how the alignment algorithms perform 
and indicates that the use of a LOCAL+AFFME alignment approach is not 
ncccssady the best choice. 
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Five of lhe query proteins have CATH and SCOP 
superfamily codes represented multiple times in the dataset. 
These homologs are shown in Table VI along with the 
alignment ranking obtained using the SEMI-GLOBAL+AFFINE 
alignment algorithm. For each of the mainly-a and mainly-e 
query proteins the highest ranked alignment, (identified in the 
table with an ALIGNMENT RANK value of 2) is achieved with a 
protein identified as  a CATH and SCOP homolog. The 
ALIGNMENT RANK is 2 since in all the rank 1 alignment are to 
the query protein itself. The rankings for the query proteins 
that have SCOP homologs in the test dataset are given in 
Table VI. 

TABLE VI 
RANK OF HOMOLCGOUS PROTEINS FROM SEMI-GLOBALCAFFME ALIGNMENT 

QUERY SCOP BASED 
PROTEIN HOMOLOG 
PDB ID PDB ID 

ALIGNMENT 
RANK 

Imbd: 2 - 
Ihbg:- 4 

lhl- Imba:- 6 
(mainly-a) lith:A 7 

1 eta:- 8 
3sdhA 10 
1cpc:A 1 1  
1 lis 12 
1 bmv: 1 2 
2plv:3 7 

Ihmv:l 1 tme: 1 I O  
(mainly+) Ibht:2 1s 

2tbv:A 18 
4sbv:A 45 
2plv: I 62 
2plv:Z 63 
1hbq:- 2 

Ibbp:A Imup:- 3 
(mainly-p) Imdc:_ 

lifc: 
13 
16 

lopaYA 17 
Imdc:- 2 

Ibhp:A lopa:A 3 
(mainly-p) lift:- 19 

1 hbq:- 24 
1 mup: 49 

Igat:A Iglu:A I O  
(mixed-ap) 

V. CONCLUSION 

Many structural prediction and homology modeling 
methods use various forms of ANNs in their implementations. 
This powerful computational intelligence approach often is 
combined with primary and secondary structure alignment 
algorithms to improve the quality of the results. The typical 
approach used for alignment of secondary structure sequences 

for proteins is a Waterman style local alignment algorithm 
using a 3-slate secondary structure alphabet. Our comparison 
of six different alignment algorithms for aligning protein 
secondary structure sequences, indicates that the accuracy of 
the structural prediction and homology modeling methods is 
likely to he affected by the type of alignment algorithm used. 
While some research has focused on comparing different types 
of computational intelligence methods for structural prediction 
and homology modeling, our results indicate that the type of 
secondary structure sequence alignment algorithm used also 
deserves careful scrutiny. 

We have compared local, global, and semi-glohal 
approaches with linear and affine gap penalty functions using 
the DSSP 8-state secondary structure alphabet. The 
preliminary results indicate that semi-glohal alignment 
algorithms may he a better choice when aligning secondary 
structure sequences. The preliminary nature of this 
comparison leaves many avenues for future work. To date we 
have experimented only with globular proteins, using a 
secondary structue similarity matrix for which only 3 of the 8 
possible state symbol pairings are based on derived 
probabilities. Thus the similarity matrix used here may not he 
the best choice. Additionally, it is not likely that the hest 
scoring matrix for globular proteins will he appropriate for 
other types of proteins. Future work will need to address 
possible differences in how secondary structure sequence 
alignment works on fibrous and membrane type proteins as 
well. 

Overall, the differences exhibited throughout the limited set 
of runs reported indicate that a more thorough comparison of 
secondary structure sequence alignment is warranted. Never 
the less the limited results presented enable the liaming of 
additional questions about the usefulness of secondary 
structure sequence alignment. The datasets used in this report 
are not the ideal choice for testing protein homology modeling 
in the twilight zone (those exhibiting <30% amino acid 
sequence homology). We are in the process of running a set of 
more detailed experiments with datasets that specifically 
address the difficulties encountered with matching twilight- 
zone proteins. A more detailed studied is clearly warranted 
and will aid researchers in making intelligent choices when 
incorporating secondary structure alignment into a variety of 
bioinformatics applications. 
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