A Comparison of Sequence Alignment
Algorithms for Measuring Secondary Structure
Similarity

L. Gwenn Volkert, I[EEE member and Deborah A. Stoffer

Abstraci—Methods for protein secondary structure
prediction have improved significantly in recent years.
This has lead to enhanced protein homology modeling
efforts. Protein homology medeling involves the sub-task
of identifying a set of homologous proteins from a protein
database when given as input the amino acid sequence of a
guery protein, with the ultimate goal of using the resulting
set of homologous proteins as a starting point for
predicting the 3D structure of the query protein. Previous
work has indicated that improvements can be made when
combining secondary structure sequence alignment using a
3-state structure symbol alphabet together with primary
amine acid sequence alignment methods. These
approaches typically use a local alignment algorithm. We
compare the performance of several dynamic
programming alignment algorithms on the task of aligning
secondary structure sequences using an 8-state secondary
structure alphabet. Our results indicate that the typical
use¢ of a local alignment algorithm may not be best when
aligning protein secondary structure information.

fndex Terms— Dynamic programming, Pattern classification,
Protein secondary structure, Protein function prediction.

[. INTRODUCTION

HE determination of protein structure and/or function

from primary sequence information remains challenging
and costly. As an alternative, researchers continue to develop
knowledge-based computational methods such as homology
modeling and threading for mference of protein structure and
function based on similarities between newly sequenced
proteins and databases of existing protein information, for a
review of various approaches see [1]. Many of the more recent
knowledge based approaches to the structure prediction
problem use a measure of secondary structure similarity as a
part of the overall process [2-7]. The measurement of
secondary structure similarity between two or more proteins
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can be made in many ways. In the late 1990°s McGuffin et al.
compared protein domain secondary structure similarity
scoring methods for eleven different pairwise similarity
approaches [8]. In general it was shown that secondary
structure similarity was not a sufficient method when taken in
isolation for solving the protein homology-modeling problem.
More recently, several attempts have been made that
combined secondary structure similarity with primary
sequence based homology methods with modest success [9, 3,
10]. The secondary structure similarity measure employed in
these particular approaches is determined by aligning
sequences of secondary structure state symbols that represent
the secondary structures of the proteins being compared. This
form of the alignment problem is typically simplified by
reducing the variety of secondary structures represented from
the 8-state standard developed for the DSSP program [11]to a
simpler three-state representation. The 8-states defined by the
DSSP method account for three different types of helices, two
different types of strand related structures, 2 turn structures
and a catch-all state for residues in the loop/coil regions, while
the 3-state alphabet, are often referred to as o, §, and vy (or
coil), reduces the representation to just residues involved in
helices, strands, and other structures (e.g.loops/coils or
unknown) respectively.

Secondary structure sequence alignment is typically
implemented as a Smith-Waterman local alignment algorithm
[12]. Preliminary work using a Needleman-Wunsch global
alignment algorithm [13] as part of our own combined protein
homology approach, led to the observation that a closer
examination of the performance of different alignment
algorithms was warranted when working with sequences
representing secondary structure. This paper describes our
initial efforts in this area and highlights the need for a more
thorough comparison of alignment aigorithms for secondary
structure sequences. We compare six vanations of dynamic
programming (DP) based alignment algorithms for aligning
secondary structure sequence data using a database of known
protein secondary structure sequences. OQOur alignment
algorithm variations include local, global and semi-global
approaches each implemented to support either linear or affine
gap penalty functions. The results indicate that the typical
choice of 2 Smith-Waterman local alignment algorithm may
not be the best choice for aligning secondary structure
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sequences. We conducted the comparisens using a dataset of
210 globular proteins representing 113 different SCOP
superfamilies [14] and 27 different CATH homologous
superfamilies [15]. The test dataset is derived from a globular
protein dataset originally developed by Michie et al. [16] for
use with their automated class assignment protocol. The same
dataset was also used in other efforts at automating structural
class prediction from sequence data [17]. The dataset was
comprised of a set of 210 protein domains classified into three
classes based on their secondary structure motifs. Throughout
the rest of this paper we will use the term protein to mean a
protein domain, with the understanding that the Protein Data
Bank {PDB) IDs used will always indicate the specific domain
we are using.

The three protein classes represented in the test dataset are
referred to as mainly-o, mainly-f, and mixed-a/f3, that contain
59, 79, and 64 proteins respectively, The secondary structure
sequences of all 210 proteins m this dataset were derived
using the DSSP method [11]. For three sets of query proteins
containing five proteins each we ran each of six alignment
algorithm variations to generate alignment scores against all
the proteins in our test As with all dynamic programming
algorithms for sequence alignment, the scoring mechanism is
dependent on the scoring matrix. We use an 8-state scoring
matrix designed by modifying the 3-state scoring matrix used
in the secondary alignment algorithm implemented by
Wallgvist et al. [3].

IL

Homology modeling is based on the observation that
proteins with similar sequences tend to fold into similar
structures. The goal of homology modeling programs is to
generate a set of homologous proteins to an unknown “query”
protein. The resulting homologous set will then be used to
predict the 3D structure by comparing the query protein
sequence with the sequences of the homologous proteins for
which X-ray or NMR based structure data is known.
Homology modeling is supporied by the empirically
determined fact that at least 66% of the known proteins having
a similar structure also have a similar function [18]. Homology
modeling starts with a template identification step based either
on sequence to sequence alignment, or sequence-to-structure
alignment {threading). In the interest of space we restrict the
remainder of our discussion to homology modeling based on
sequence-to-sequence alignment. Sequence alignment based
on pairwise primary sequence identity works well for
detecting homologs that have a high degree of sequence
similarity but usually does not work for homologs with a low
degree of sequence similarity. Primary sequence alignment
approaches suffer from an inability to differentiate between
protein sequences that differ significantly in primary sequence
but never the less code for very similar secondary and or
tertiary structures [19]. The homologous sets identified by
using primary sequence alignmen! approaches often miss
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some, if not many, of the homologous proteins. These difficult
to detect homologs are often referred to as those in the rwifight
zone and are typically defined to be homologous proteins with
less than 30% primary sequence similarity [19, 20].

Because protein function is known to be related to its 3D
(or tertiary) structure, which is constrained by its 2D (or
secondary) siructure, some protein homology modeling
approaches have been enhanced to combine secondary
structure similarity measure together with primary sequence
alignment results to improve the coverage of the resulting
homology set [10, 9]. The problem of secondary (and tertiary)
protein structure prediction is inherently difficult and is often
approached with computational intelligence methods. These
programs typically combine many of the same heuristic
algorithms as used in homology modeling. Many structure
prediction methods employ artificial neural networks {ANNs}
[21-27], and are typically considered to be the most accurate
[28, 29]. Other heuristic based approaches that have been
investigated include hidden Markov models [30-32], support
vector machine approaches [33] and others [34-36].

TABLEI
8-STATE STRUCTURE SYMBOLS DEFINED BY DSSP WITH THREE TYPICAL 3-
STATE REDUCTIONS
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DSSP STRUCTURE CASP SIMPLEST SSAS*
SYMBOL  DESCRIPTION REDUCTION REDUCTION  REDUCTION
H alpha-helix o o a
G 3/10-helix a ¥ vl
T pi-helix (rare) Y ¥ Y
E extended stand B ] B
B beta bridge B ¥ ¥
T H-bonded turn ¥ Y ¥
S bend ¥ v ¥
loop/coil or
unknown Y ¥ L4

* The SSAS program is descrnbed in [3].

Secondary structure sequence similarity procedures are
often built within structural prediction programs. For example,
in early work by Russell et al., a fast algorithm was developed
for generating all exact matching alignments under the
constraint of a maximum number of insertions or deletions.
The sequences being aligned were comprised of helix (H) and
strand (B) secondary structure state symbols. In this approach
each H represented an entire a-helix and each B represented
a B-strand in the proteins to be aligned [5]. More recent
secondary struclure sequence representations maintain the
same reside sequence length as the primary sequence but use a
secondary structure state alphabet such as those illustrated in
Table I. In general secondary structure sequences are
represented using either an 8-state alphabet or various 8-3
state reduction alphabets. Each amino acid of a protein
sequence is represented in a secondary structure sequence by a
symbol from a secondary structure alphabet vielding a
secondary structure sequence of the same length as the



original amino acid sequence.

Many combination based approaches for the identification
of homologous proteins employ either BLASTp or PSI-
BLAST as a first step in the combined process. These
programs are generally very effective at identifying
homologous proteins that have greater than 30% amino acid
similarity. Methods that secek to identify homologous proteins
with a low degree of sequence similarity can incorporate
secondary structure information into their approaches. These
can generally be divided into two approaches, either through
the use of secondary structural information as an additional
constraint on the primary alignment results [28, 4] or by using
secondary structure information as the primary source of
information {37, 6]. The interest in using secondary structure
information in homology programs continues to grow as
improvements in secondary structure prediction programs
continue to be made [38, 39]. The results of a secondary
structure prediction program can then be used to generate
secondary structure similarity scores that can then be
combined with primary sequence based homology prediction.
There are numerous secondary prediction programs currently
available (see [40] for a review), we briefly mention just three
of them here as examples of the variety of approaches
available. Jpred [41] and SSPro8 [22] are both ANN
approaches and SAM-T99 [32] is a Hidden Markov model
approach. Jpred uses a two-level neural network algorithm
together with PSI-BLAST derived multiple sequence
alignment profiles to predict the secondary structure. SSPro8
use bidirectional recurrent neural networks and PSI-BLAST
derived profiles. In each case the neural networks are trained
using protein sequence multiple alignments and known
secondary structures from the PDB. SAM-T99 takes a single
sequence and iteratively develops a hidden Markov model
(HMM) from the sequence and homologs found using the
HMM in a database search. The trained HMM is then used to
predict the protein secondary structure for an unknown amino
acid sequence.

Clearly secondary structure sequence alignment is not a
new concept as it is often an integral part of both homology
modeling programs and secondary structure prediction
programs. What is surprising is that littie justification for the
specific type of alignment algorithm (i.e. global or local) is
given. In general Smith-Waterman local alignment algorithms
are used with a passing reference to their appropriateness for
addressing alignment of protein primary sequences. The main
difference between global and local alignment is the trade-off
between recognition of overall similarity (generally reserved
for aligning long streiches of DNA between different
genomes) and recognition of evolutionarily conserved regions
of DNA or protein, which are relatively short and are often
flanked by region that will not easily align. Given the
biological and physical differences between amino acid
sequences and secondary structure sequences a comparison of
advantages and disadvantages of the alignment algorithm
variations is warranted.

III. METHODS

A. The Algorithms

We have implemented and compared the performance of
three different DP based alignment methods each with two
different methods of determining gap penalties. The specific
DP approaches compared are listed in Table II. By definition a
DP alignment algorithm will generate the best alignment of
two sequences, S; and S,, according to the measurement
criteria given in the scoring matrix. The score of each
alignment is calculated as the sum of the scores of each
aligned pair of sequence symbols s, and s;, where the pairwise
score is given by a value in a scoring matrix M. The scoring
matrix supplies a pairwise score for all possible pairs of

secondary sequence symbols.
TABLE 1L
LIST OF ALIGNMENT ALGORITHMS

ALGORITHM APPROACH
Global+Affine Global
GlobalH+Linear

LocaHAffine Local
Local+Linear

Semi-Global+Affine Semi-Global

Semi-Global+Linear

Starting with the sequence alignment algorithm package
written by Rolf Backofen and Sebastian Will, three different
dynamic programming based alignment algorithms were
implemented to compare secondary structure descriptors of a
target set of proteins obtained from the PDB [42]. A
secondary structure descriptor is a vector of characters where
each character represents the type of secondary structure each
amino acid participates in. The algorithms use an 8-state
alphabet containing the characters H (residue participates in
alpha helix), B (residue in isolated beta-bridge), E (residue is
part of an extended strand and participates in beta ladder), G
(residue in 3/10 helix), I (residue in a pi helix), T (residue in
hydrogen bonded turn), S (residue in bend), or “.” (residue is
part of a loop/coil region, or unknown) as defined in the
Definition of Secondary Structure of Proteins (DSSP) program
[11]. The six variations we have tested are listed in Table I

Each algorithm accepts as input a query protein in secondary
structure sequence character string format, a similarity scoring
matrix, and the name of a file containing protein secondary
structure sequences to align the query protein with. The
similarity score for each alignment is wriiten to an output file
in rank order based on the alignment similarity score along
with the PDB protein ID, and the protein secondary structure
of the target.

B. The Scoring Matrix

The scoring matrix used in all of the alignment
algorithms compared was extended to support an 8-state
alphabet from the 3-state similarity scoring matrix developed
for the SSAS project [3]. The original SSAS scoring matrix
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was calculated from log-odds scores based on three-
dimensional alignments obtained from 3D-ali data bank. The
values for the extended states were determined by either
copying or adjusting the values from the most similar scoring
pair as indicated by the CASP 8-state to 3-state reduction (see
Table 1). The secondary structure strings of the globular
proteins in general are mostly composed of alpha-helices (H})
and extended-strands (E), and residues participating in
loop/coils. The secondary structure states, G, B, T, and S are
less common and Is are rare.

It is likely that recalculating the log-odds scores in terms of
an 8-state alphabet would produce a more accurate similarity
matrix. We plan to explore this in future work. Favorable
pairings are assigned positive scores and negative scores are
assigned to structural elements least likely to be found
together. Implementation of the gap penalty versions were
uniformly implemented for the three types of alignment
algorithms such that the gap opening and elongation

parameters for the affine gap penalty versions were set to -12
and -2 respectively, and for the linear gap penalty versions a
gap penalty of -2 was used.

TABLE III
SECONDARY STRUCTURE SIMILARITY MATRIX

H G I E B T S other

H 2 1 1 -15 4 4 -4 -4

G 1 3 1 -15 -4 -4 -4 -4

I 1 1 3 -15 4 4 4 4

E |[-15 <15 -15 4 -4 -4 4 4

B 4 4 4 -4 2 1 1 1

T 4 4 4 4 l 2 1 1

5 4 4 4 4 1 1 2 !
other | -4 4 4 4 1 1 i 2

TABLE [V
PDB CODES OF PROTEINS {DOMAINS) USED ORGANIZED BY STRUCTURAL class with proteins used as queries marked with asterisks.

leca_ Imbd 3sdhA lhbg 1thbA lmba_ 11h1_* lithA
IepcA lepeB lcolA 1imb3 llecA 1169 _ lutg_ laca_
IfiaA * 2wrpR 1hddC trro_ losa_ 4ich_ 2sas 351c_
mainly-o.  3c2c_ 2mtaC lees Ic3a_ lpreC * 256bA 2ceyA 2hmgA
llpe ibbhA Itha IropA 11fb_ laep 2tmvP * Ircb_
3inkC IprcL 1preM Ippa_ 1gluA thyp Ilis_* 1tsC
lhuw IrfbA 1d66A lysaC lacp_ Ibha_ lbge InbA
lembA lpoc_ 1itsA
lifc_ Imdc_ lopaA * Istp laveA 1bbpA * lhbq lmup_
2por_ lomf 2sga 2pkaA 2rhe led8 lcid 1tlk
1fc2D Inoa_* lttaA 1itf ledb Iten_ lcobA Iple_
mainly-p Ipaz_ laaj laizA lhoe 2sty_ 1tnfA Itmel 2plvl
1bbt2 2phv2 1bbt3 2plv3 4sbvA 2tbvA lbmvi * 2ctvA
2ltnA 2ayh_ IsltA 2rspA LhivA lgpr_ InscA 2bat_
2sim_ 4fgf lilb _ ltie * Jebx ledtA fas latx
Ibds legf 21pf 2gi_ ipdgA lhee_ Itpm_ 1bgh_
4sgbl 2linB 4htel 1lyaA 2bpa2 llab_ 3monA 1fi
1cauB Ishg lpnj_ 2cpl_ 1bw3 1tsD 2sns_
Ixis_ StimA Inar 2mnr_ lchrA IfbaA lgox_ 5p21_
3chy letu lofv_ 4fxn_ leseE lede_* 2trxA 3trx_
lgplA 4dfrA lak3A 3adk_ 2cte_ 2emd_ lipd_ Ticd
InipA Itml_ lgps 2ovo_ ltgsl 1gatA * Iptf_ ZbopA
mixed a, B letf 1fxd 2nckL 3rub$S ipba_ laps_ lesel 2sicl
2m2_* laak Trsa_ lonc_ 1fus lbmL lpgx HirA *
lubq_ 3monB Ivil_ 3il8 1fkb_ 2msbA Spti_ ladn
1zaaC IshaA 2pna_ 3cla_ leaf Tcewl 2tscA IrveA
1stfl 3bSc Ipkp Sfdl 2dnjA * Imal_ lpyaB lhgeB
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C. The Test Daiaset

We conducted 15 runs of each algorithm using a dataset of
210 globular proteins (see Table IV). The dataset consists of
proteins originally classified as mainly-o, mainly-B, o/, or
a+f by Michie et al. [16]. Of these 210 proteins, 56 were
originally classified as mainly-a, 75 as mainly-B, 26 as a/f,
and 53 as a+f. For our experiments the mainly-a class
contains 59 proteins, the mainly- class contains 79 proteins,
and the o/p and a+p classes were combined into one mixed-
af3 class of 72 proteins after reassigning several proteins from
this class to the mainly-o. mainly-p class based on current
SCOP and CATH information, Five structures from each of
the three classes were randomly chosen to be used as query
proteins for each experiment. For each pretein in the test
dataset we also obtained the most recent SCOP super-family
and CATH homology codes for use in our analysis. Five of the
query proteins have homologous proteins in the test dataset as
determined by their CATH and SCOP superfamily
classifications. The five query proteins along with their
respective CATH and SCOP superfamily codes are given in
Table V.

TABLE V
QUERY PROTEINS AND CATH AND SCOP CODES

Sequence CATHA Scop .

Class PDB ID Length superfamily sup;rfamﬂ
1hl 130 1¢ 46458
Ifia A 79 60 48283
mainly-o Iprc C 138 10 48695
(59)* 2tmv_P 154 70 47195
s 131 10 47082
lopa_ A 133 20 50814
1bbp_A 173 20 50814
mainly-f3 Inoa_ 113 230 49319
(79)* lbmvl 123 20 88633
ltie_ 166 50 50386
lede 209 170 53328
Igat A 60 10 57716
Mixed-¢p  2m2_ 155 10 53098
(7)* 1fir A 95 30 54292
2dnj A 253 10 56219

* the number in parenthesis indicates the total number of proteins of the
indicated class in the test dataset

D. Experiment Description

For each of the fifteen query proteins, five from each of
the three different globular classes, alignments were obtained
for all of the 210 secondary structures in the test dataset
described above. The resulting alignments were ranked
according to their alignment score. For each query protein the

number of proteins in each of the globular classes (mainly-a,
mainly-B, and mixed-u B} that ranked within the bounds of the
number of proteins in the globular class of the query protein
was recorded along with the similarity score generated by the
algorithm. As noted in Table III there are 56 mainly-a
proteins, 75 mainly- proteins, and 79 mixed-off proteins. We
also recorded for each query protein the highesi and lowest
ranking alignment achieved for a protein of each class.

IV. RESULTS

We have lested six different alignment algorithms to
compare their effectiveness for detecting homologous
relationships between proteins based only on secondary
structure descriptors (i.e. vectors of secondary structure
states). The algorithms were applied to our test dataset of 210
globular proteins where the structures are known and the
corresponding sequences have been previously categorized
into particular protein families. We used as our query
sequences 15 proteins randomly selected from our test set such
that there were five proteins selected from each of the three
classes. For each query protein submitted the algorithm returns
a list of the target proteins ranked by their similarity score.

For each alignment algorithm we calculate the percentage of
proteins, of the same class as the query, that rank in the top #
positions, where » is the number of proteins in the class that
the query protein is a member of. We also record the
percentage of proteins of the other two classes that rank in the
top n positions. We label each of the possible relationships as
i/j, where 7 represents the class of proteins being counted
within the top positions possible for the class that the query
protein is a member of, where ;7 identifies this expected class.
For example, if the ranked list of aligned proteins for an alpha
query included 31 of the 56 possible alpha proteins along with
5 ab-mixed proteins in the top 56 positions of the ranked list
the o/ score would be 91%, the /o score would be 0% and
the mixed-ap/a score would be 9%. This recording method
generates three values for each of the 15 query proteins tested
giving a total of 45 values for each algorithm. We condense
this information into a chart depicting the average percentage
for the three sets of five query proteins representing each of
the three classes, mainly-a, mainly-f3, or mixed-o3.

In Fig. 1 each grouping of bars gives the average percentage
of same class rankings for each of the three sets of query
proteins mainly-o, mainly-B, and mixed-af respectively. For
example, the first grouping (labeled o/fat) illustrates the
average percentage of mainly-o proteins that were ranked
above the highest ranked protein from either of the other
classes, for each of the six algorithms compared. The first
observation to note is that mainly-o and mixed-aff proteins
achieve overall higher similarity scores when aligned using
the SEMI-GLOBAL+AFFINE algorithm and the lowest scores for
either the LOCAL+LINEAR or the LOCAL+AFFINE algorithm. Our
mtuition is that since global alignment methods are intended
to maximize the alignment over the length of the entire
sequence more of the individual helices end up aligned with
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each other since the individual helices are arranged
sequentially along the sequence. This advantage would not be
as easily exploited for the local style alignment algorithm,
regardless of gap penalty function. In the case of mainly-p
proteins it is plausible that the local alignment algorithm is
able to achieve similarity scores higher than those achieved
using a global style algorithm since the residues participating
in beta strands will not necessarily be side-by-side. The semi-
global alignment algorithm is able to ignore leading and
trailing gaps. This feature in combination with the
observations noted above may be the reason for the overall
good performance of the semi-global style.

1 o global- affine
o global-linear
0.9 - a local-affine
0.8 - jE alocal-linear
O semi- global-affine
0-7 T a semi- gtobal-linear
0.6 |
05 A
o4
0.3 1
0.2
0.1 A
O T T 1

a/a

B/p af/op

Figure 1. The chart shows the average percentage including standard deviation
of the proteins of the same classification as the query proteins for the six
different alignment algorithms compared. In general the best performance is
observed when the SEMI-GLOBAL alignment algorithm is used.

To obtain a measure of how likely 1t is for proteins from
different classes to align better than proteins of the same class,
the rank of the highest ranked alignment to a protein of a
different class than the query protein is divided by the count of
the number of proteins of the query class. In Figure 2 these
results are illustrated in charts (a), (b), and (c), representing
the data from the GLOBAL+AFFINE, SEMI-GLOBAL+AFFINE,
and LOCAL+AFFINE runs respectively. A lower rank/count
measure indicates a higher ranking. It is not surprising that for
all alignment algorithms and for each class of proteins the
highest ranked protein is of the same class, as it is expected
that the query protein should result in the best alignment when
aligned to itself. In some cases, proteins of a different class
achieve relatively high rankings. This is most apparent with
the mixed-ap class query proteins since all of the points along
the mixed-¢3 line are less have a value of less than 1.0. We
observed that ithe rank/count measures are consistently lower
{worse) for the mixed-o values for all mainly-a queries and
are lower for three of the five mainly-p queries measured
using the LOCAL+AFFINE algorithm. It should be noted that the
highest ranked mixed-af3 protein for the q9 query has a CATH
classification of mainly-p and a SCOP classification of mixed-

afl.

A comparison of the B line in the three charts indicates that
the GLOBAL+AFFINE algorithm is less likely than the other
algorithms to rank an alignment with a mainly-§ protein high
when the query protein is a mainly-o protein,

{a) Global+Affine

2 -
1.8 - =
164 A o
144 70N a4
1.2 1 o Y ::
14 v
0.8 ¢
0.6 {
0.4

rankiclass count

q3 q4 g5 g6 q7 a8 q9 ql10 q11 g12 413 q14 qi15

q1 g2
Query protein

{b) Semi-Global+Affine

21 g
1.8 A i

1.6 - 0. .0 ol —*—<b

rankiclass count

B -
PR T N P - a”
T u T T T T u Y T T

o o o0 0 - =
ON B D B = N
P S U T

ql g2 g3 g4 g5 g6 g7 g8 g% ql10 gt1 q12 g13 q14 q15
Query protein

(¢) Local+Afffine

2 9
18 1 R
16 T ," ;z
1 .~

-
[
1
&

rank/class count

o o
5 B -
L L

0.4 {

f=
N
1

(=)

ql g2 q3 q4 q5 q6 g7 g8 q9 ql0 q11 q12 q13 q14 q15
Query protein

T

Figure 2. For each of the |5 query proleins (ql-ql3), the highest ranked
alignment to a protein of a different class than cach of the query proteins
divided by the count of the mumber of proteins in the query class is shown.
This measure indicates differcnces in how the alignment algorithms perform
and indicates that the use of a LOCAL+AFFINE alignment approach is not
necessarily the best choice.
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Five of the query proteins have CATH and SCOP
superfamily codes represented multiple times in the dataset.
These homologs are shown in Table VI along with the
alignment ranking obtained using the SEMI-GLOBAL+AFFINE
alignment algorithm, For each of the mainly-o and mainly-§
query proteins the highest ranked alignment, (identified i the
table with an ALIGNMENT RANK value of 2) is achieved with a
protein identified as a CATH and SCOP homclog. The
ALIGNMENT RANK is 2 since in all the rank 1 alignment are to
the query pretein itself. The rankings for the query proteins
that have SCOP homologs in the test dataset are given in
Table VI.

TABLE V]
RANK OF HOMOLOGOUS PROTEINS FROM SEMI-GLOBAL+AFFINE ALIGNMENT

QUERY SCOP BASED

PROTEIN HOMOLOG ALIGNMENT
PDB ID PDB ID RANK
lmbd:_ 2
lhbg: 4
Ihl_ Imba:_ 6
(mainly-ct) lith:A 7
leca:_ 8
3sdh:A 10
lepe:A 11
1lis 12
Ibmv:i 2
2phvi3 7
1bmv:1 lime:1 10
(mainly-f) 1bbt:2 15
2tbv:A 18
4sbv:A 45
2plv:1 62
2plv:2 63
1hbq:_ 2
ibbp:A lmup:_ 3
(mainly-p) Imdc:_ 13
lifc: 16
lopa:A 17
Imdc: 2
1bbp: A lopa:A 3
(mainly-B) 1ife 19
lhbq: . 24
lmup: 49
lgat:A lglu:A 10
(mixed-ofB)
V. CONCLUSION
Many structural prediction and homology modeling

methods use various forms of ANNs in their implementations.
This powerful computational intelligence approach often is
combined with primary and secondary structure alignment
algorithms to improve the quality of the results, The typical
approach used for alignment of secondary structure sequences

for proteins is a Waterman style local alignment algorithm
using a 3-state secondary structure alphabet. Our comparison
of six different alignment algorithms for aligning protein
secondary structure sequences, indicates that the accuracy of
the structural prediction and homology modeling methods is
likely to be affected by the type of alignment algorithm used.
While some research has focused on comparing different types
of computational intelligence methods for structural prediction
and homology modeling, our results indicate that the type of
secondary structure sequence alignment algorithm used also
deserves careful scrutiny.

We have compared local, global, and semi-global
approaches with linear and affine gap penalty functions using
the DSSP 8&-state secondary structure alphabet. The
preliminary results indicate that semi-global alignment
algorithms may be a better choice when aligning secondary
structure sequences. The preliminary nature of this
comparison leaves many avenues for future work. To date we
have experimented only with globular proteins, using a
secondary structure similarity matrix for which only 3 of the 8
possible state symbol pairings are based on derived
probabilities. Thus the similarity matrix used here may not be
the best choice. Additionally, it is not likely that the best
scoring matrix for globular proteins will be appropriate for
other types of proteins. Future work will need to address
possible differences in how secondary structure sequence
alignment works on fibrous and membrane type proteins as
well.

Overall, the differences exhibited throughout the limited set
of runs reported indicate that a more thorough comparison of
secondary structure sequence alignment is warranted. Never
the less the limited results presented enable the framing of
additional questions about the usefulness of secondary
structure sequence alignment. The datasets used in this report
are not the ideal choice for testing protein homology modeling
in the twilight zone (those exhibiting <30% amino acid
sequence homology). We are in the process of running a set of
more detailed experiments with datasets that specifically
address the difficulties encountered with matching twilight-
zone proteins. A more detailed studied is clearly warranted
and will aid researchers in making intelligent choices when
incorporating secondary structure alignment into a variety of
bioinformatics applications,

ACKNOWLEDGEMNTS

We thank the conference reviewers for their time and effort
and are grateful for their useful comments and suggestions.

REFERENCES

[1] S.C. Teichman, C. Chothia, and G. M. Church, "Advances in structural
genomics.," Current Opinions in Structural Biology, vol. 9, pp. 390-399,
1999,

[2] H.Xu, R. Aurora, G. D. Rose, and R. H. White, "Identifying two ancient
enzymes in Archaea using predicted secondary structure alignment,” Mt
Struct Biol, vol. 6, pp. 750-4., 1999.

188



3

(4}
15]

{6]

(8]
5

(1a]

fm

(12]
(131

[14]

£1s]

[16]

[17]

(18]
[19]

(20

21

22]

A. Wallgvist, Y. Fukunishi, L. R. Murphy, A. Fadel, and R. M. Levy,
“lterative sequence/secondary structure search for protein homologs:
comparison with amino acid sequence alignments and application to fold
recognition in genome databases,” Bioinformatics, vol. 16, pp. 988-1002,
2000.

B. Rost, R. Schneider, and C. Sander, "Protein fold recognition by
prediction-based threading,” J Mo/ Biol, vol. 270, pp. 471-80., 1957,
R.B. Russell, R. R. Copley, and G. J. Barton, "Protein fold recognition
from secondary structure assignments,” Proc. 28th Hawail. Int. Conf.
Svs. Sci. IEEE Press, vol. 5, pp. 302-311_ 1995,

R. Aurora and G. D. Rose, "Seeking an ancient cnzyme in
Methanococcus jannaschii using ORF, a program based on predicted
secondary structure comparision.,” Proc Nail Acad Sci U S A, vol. 95,
pp. 2818-2823, 1998.

R. Liithy, A. D. McLachlan, and D. Eisenberg, " Secendary structure-
based profiles: use of structure-conserving scoring tables in searching
protein sequence databases for structural similarities.,” Proreins, vol. 10,
pp. 229-239, 1991.

L. J. McGuffin, K. Bryson, and D. T. Jones, "What are the baselines for
protein fold recognition?,” Bieinformatics, vol. 17, pp. 63-72, 2001,

C. Geourjon, C. Combet, C. Blanchet, and G. Deleage, "Identification of
related proteins with weak sequence identity using secondary structure
information,” Pratein Science, vol, 10, pp. 788-797, 2001.

E. Bindewald, A. Cestaro, J. Hesser, M. Heiler, and 8. C. Tosatto,
"MANIFOLD: protein fold recognition based on secondary structure,
sequence similarity and enzyme classification,” Protein Eng, vol. 16, pp.
785-9., 2003.

W. Kabsch and C. Sander, "Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features,"
Bigpolymers, vol. 22, pp. 2577-637., 1983.

T. F. Smith and M. S. Waterman, "ldentification of common molecutlar
sequences,” J Mol Biol, vol. 147, pp. 195-197, 1981,

S. B. Needleman and C. D. Wunsch, "A general method applicable to the
search for similarities in the amino acid sequence of two proteins.," J
Mol Biol, val. 48, pp. 443-453, 1970.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: a
structural classification of proteins database for the investigation of
sequences and structures.,” J Mol Biol, vol. 247, pp. 536-540, 1995.

C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and
J. M. Thornton, "CATH- A Hierarchic Classification of Protein Domain
Structures.,” Structure, vol. 3, pp. 1093-1108, 1997.

A.D. Michie, C. A. Orengo, and J. M. Thomton, "Analysis of domain
structural class using an automated class assignment protocol,” J Mol
Biol, vol. 262, pp. 168-85., 1996.

C. T. Zbang and R. Zhang, "A new criterion to classify globular proteins
based on their sccondary structure contents,” Bioinformatics, vol. 14, pp.
§57-65., 1998.

F. S. Domingues, W. A. Koppensteiner, and M. J. Sippl, "The role of
protein structure in genomics," FEBS Lett, vol. 476, pp. 98-102., 2000,
B. Rost, "Twilight zone of protein sequence aligments,” Protein
Engineering, vol. 12, pp. 85-94, 1999.

R. F. Doolittle, Gf URFs and ORFs: a primer on how to analyze derived
amino acid sequences. Mill Valley, CA, USA.: University Science
Books, 1986.

N. Qian and T. J. Sejnowski, "Predicting the secondary structure of
globular proteins using neural netwerk models,” J Mol Bicl, vol. 202, pp.
865-84., 1988.

G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, "Improving the
prediction of protein secondary structure in three and eight classes using

189

23]

[24]
{25

[26]

[27]

(28]

{29

[30

EX}

32

[331

B4

{35]

[36]

(371

(38}

(39]
(40]

[41]

(42]

recurrent neural networks and profiles," Proreins, vol. 47, pp. 228-35.,
2002.

L. H. Hung and R. Samudrala, "Accurate and automated classification of
protein secondary structure with PsiCSL" Profein Sci, vol. 12, pp. 288-
95., 2003.

L. H. Holley and M. Karplus, "Neural networks for protein structure
prediction,” Methods Enzvmol, vol. 202, pp. 204-24., 1991,

J.-M. Chandonia and M. Karplus, "New methods for accurate prediction
of protein secondary structure,” Proteins, vol. 35, pp. 293-306., 1999,
S. K. Riis and A. Krogh, "Improving prediction of protein secondary
structure using structured neural networks and multiple sequence
alignments," J Comput Biol, vol. 3, pp. 163-83., 1996,

B. Rost, "PHD: predicting one-dimensional protein structure by profile-
based neural networks," Methods Enzvmol, vol. 266, pp. 525-39., 1996,
L. Jaroszewski, W. Li, and A. Godzik, "In the search for more accurate
alignments in the twilight zone.," Protein Science, vol. 11, pp. 1702-
1713, 2002.

J. A. Cuff and G. J. Barton, "Application of multiple sequence alignment
profiles to improve protein secondary structure prediction," Proveins,
vol. 40, pp. 502-11., 2000.

C. Bystroff, V. Thorsson, and D. Baker, "HMMSTR: a lidden Markov
model for local sequence-structure correlations in proteins,” J Mol Biol,
vol. 301, pp. 173-50., 2000.

R. Karchin, M. Clinc, Y. Mandel-Gutfreund, and K. Karplus, "Hidden
Markov models that use predicted local structure for fold recognition:
alphabets of backbone geometry,” Proteins, vol. 51, pp. 504-14., 2003,
K. Karmplus, C. Barrett, and R. Hughey, "Hidden Markov models for
detecting remote protein homologies,” Bieinformatics, vol. 14, pp. 846-
56., 1998.

J. Guo, H. Chen, Z. Sun, and Y. Lin, "A novel method for protein
secondary structure prediction usimg dual-layer SVM and profiles,”
Proteins, vol. 54, pp. 738-43, 2004.

K. Pawlowski, L. Rychlewski, B, Zhang, and A. Godzik, "Fold
predictions for bacterial genomes,” J Struct Biol, vol. 134, pp. 219-31,,
2001.

A. A, Salamov and V. V. Solovyev, "Prediction of protein secondary
structure by combining nearest-neighbor algorithms and multiple
sequence alignments,” J Mol Biol, vol. 247, pp. 11-5_, 1995.

R. D. King, M. Saqi, R. Sayle, and M. I. Sternberg, "DSC: public
domain protein secondary structure predication,” Comput Appl Biosci,
vol. 13, pp. 4734, 1997.

R. B. Russell, R. R. Copley, and G. J. Barton, "Protein fold recognition
by mapping predicted secondary structures,” J Mol Biol, vol. 259, pp.
349-65., 1996.

T. N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr, J. Bohr, S. Brunak,
G. P. Gippert, and O. Lund, "Prediction of protein secondary structure at
80% accuracy,” Proteins, vol. 41, pp. 17-20., 2000.

B. Rostand C. Sander, "Prediction of protein secondary structure at
better than 70% accuracy,” J Mol Biol, vol, 232, pp. 584-99,, 1993,

B. Rost, "Review: protein secondary structure prediction continues to
rise,” J Struct Biol, vol. 134, pp. 204-18., 2001.

J. A, Cuff, M. E. Clamp, A. S. Siddiqui, M. Finlay, and G. J. Barton,
"IPred: a consensus sceondary structure prediction server,”
Bioinformatics, vol. 14, pp. 892-3., 1998.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.
Weissig, I. N. Shindyalov, and P. E. Boume, "The Protein Data Bank,"
Nucleie Acids Res, vol. 28, pp. 235-42_, 2000.



