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Abstract

In this paper, we briefly describe a prototype of
the software system we have developed for mul-
tiple whole genome alignment. To develop our
algorithm, we have to solve several problems in-
cluding decomposition of genomes with a suffix
tree, finding an LIS for multiple MUM sequences,
and iterative pairwise multiple sequence align-
ment. This results in an overall linear time com-
plexity for our algorithm for finding conserved
regions; and between linear and quadratic time
complexity for multiple whole genome align-
ment. One of the motivating application is the
problem of finding maximum set of conserved re-
gions in closely related microorganisms.

∗This research was supported in part by NSF EPSCOR
Grant No. EPS-0091900 and NSF Digital Government
Grant No. EIA-0091530.

1 Introduction

The availability of whole genome sequences
opens great new possibilities for understanding
the evolutionary process. For example, it provides
an opportunity for studying the genetic relation-
ship among closely related microorganisms.

Whole genome alignment between pairs of
strains from a single species often reveal evidence
of extensive regions that abruptly interrupt syn-
teny [14]. The inheritance patterns and diversity
within these regions holds significant information
regarding the nature of small and large-scale evo-
lutionary events that shaped the genomes. The
algorithm for pairwise alignment for the entire
genome sequences of the prokaryotes was devel-
oped by Delcher et al. [5]. The MUMmer soft-
ware system, developed by Delcher et al. com-
bines suffix tree, longest increasing subsequence
(LIS), and Smith-Waterman algorithms to align a
pair of whole genomes.

The approach followed by Delcher et al.
first identifies the Maximum Unique Matches
(MUMs) using a data structure called a suffix tree
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for data decomposition . McCreight’s algorithm
is used to implement the suffix tree. If there are
two genomes A and B, the method constructs a
suffix tree for genome A, then the tree is expanded
by adding the suffixes of genome B into the tree
using the same algorithm. A MUM is then the
concatenation of maximal edge labels from an in-
ternal node to the root. The internal node has two
leaf nodes and its corresponding suffixes come
from two different genomes. The MUMs are la-
beled and assembled as a string according to their
positions in the genomes. Gusfield’s LIS algo-
rithm of O(klogk) time complexity [10], where k
is the number of the MUMs, is used for align-
ing MUMs. Since k is much smaller than n
(length of the genome), the complexity of the al-
gorithm can be thought of O(n) running time. Af-
ter the global MUM alignment is found, the local
gaps were closed by using Smith-Waterman’s al-
gorithm. The gaps include single nucleotide poly-
morphisms (SNPs), insertions, highly polymor-
phic region, and repeats. The Smith-Waterman’s
algorithm has time complexity O(m2), where m
is the length of a polymorphic region between
MUMs [16]. Again, m is much smaller than n,
and therefore the time complexity is close to lin-
ear, that is, O(n). The overall time complexity of
the MUMmer is close to linear time [5].

Recently, Brudno and Morgenstern [3] pro-
posed an anchored alignment approach. It used
a threaded trie data structure (Aho-Corasick al-
gorithm [1]) to find seeds. The LIS algorithm
given by Gusfield [10] was used to find the high-
est scoring montonically increasing subsequence
of alignments. The chained seeds are considered
as anchor points. The fields beween the anchor
points are aligned using DIALIGN program [13].
Both the above methods are designed for finding
alignment of only two sequences.

No efficient algorithm has been proposed for
multiple whole genome alignment. One ap-
proach for multiple sequence alignment is hidden
Markov models (HMMs) [8]. This is a statistic
methods and need a large set of training data to

construct species specific models of genomes. It
is not practical for whole genome sequence align-
ment.

MUM–structure of multiple genomes can re-
veal significant information for bioscientific dis-
covery. Such information can provide a bet-
ter view of the genetic inheritance and polymor-
phic relationship among several orgnisms. In
this paper we present a prototype of our efficient
software system for alignment of multiple whole
genome sequences.

2 Prototype Development

Before discussing our linear time algorithm, we
introduce some concepts and notations used in
this paper.

2.1 The Suffix Tree Method

Definition 1 A suffix tree τ for an n-character
string S is a rooted directed tree with exactly n
leaves numbered 1 to n. Each internal node, other
than the root, has at least two children and each
edge is labeled with a nonempty substring of S.
No two edges out of a node can have edge labels
beginning with the same character. The key fea-
ture of the suffix tree is that for any leaf i, the
concatenation of the edge labels on the path form
the root to leaf i exactly spells out the suffix of S
that starts at position i. That is, it spells out sub-
sequence S[i..n] [10].

The Figure 1 gives an example of a suffix tree
for a string S = a d f c d f x. A suffix can be
found by traversing from a leaf node to the root.
For example, tracing back from leaf node 3 to the
root, the edge labels are concatenated to get a sub-
string f c d f x, which is the suffix of S starting at
position 3. For constructing a suffix tree there is,
however, one restriction is placed strings, that is,
no suffix of S is same as a prefix of S. For this
reason, a special character, such as $, is appended
to the end of the string.
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Figure 1. A suffix tree example for a string
a d f c d f x.

A naive algorithm to build a suffix tree takes
O(n2) time, where n is the length of the
string [10]. A string of length n has a total of n
suffixes, one starting at each position in the string.
To construct the suffix tree, we start with a tree
consisting of one node as a root. Suffixes are pro-
cessed iteratively in the order of their positions in
the string. In each iteration, a suffix is matched
with the suffixes already in the tree. If no match
is found, a new leaf node is attached to the root
and the edge is labeled with the suffix. If a par-
tial match is found, then a new internal node is
created at the endpoint of the partial match. A
new leaf node is attached to this internal node and
edge labels are updated accordingly. Consider the
suffix c d f x in Figure 1 for an example, there is
no match for all edge labels from the root in the
current tree, so a new leaf node is created and the
edge is labeled as c d f x. The suffix d f x, how-
ever, has a match from the root in the current tree,
which is f d. So the algorithm creates a new inter-
nal node and updates the edge labels for the inter-
nal node and nodes 2 and 5 to d f, c d f x, and x,
respectively.

There are, however, several linear time algo-
rithms for building a suffix tree, such as Ukkonen,
Weiner, and McCreight algorithms [12, 15, 17].
Weiner was the first researcher who developed a
linear algorithm to build a suffix tree. Ukkonen’s
algorithm use much less memory than Weiner’s

and is easier to understand. McCreight’s algo-
rithm has the same space complexity as Ukko-
nen’s.

The above algorithms, however, can also be
used to build a suffix tree representing suffixes of
a set of strings {S1, S2, S3, . . . , Si}. This suffix
tree is called a generalized suffix tree. A gen-
eralized suffix tree is used to solve the MUM
(matching) problem. There are two approaches
for constructing a suffix tree for multiple genome
sequences [10]:

1. a suffix tree is first constructed for the string
of the first genome sequence, then it is
grown by matching the suffixes of the other
genomes with edge labels of the suffix tree
using the same construction methods.

2. the strings of genomes are concatenated into
one string, a suffix tree ia then built for this
string.

However, the first method is preferred since
it can preserve the suffix positions in different
genomes.

2.2 MUM Structure

After MUMs are identified using the above
method, each of the MUMs is labeled with an in-
teger from {1, 2, 3, . . . , m}, according to their po-
sitions in the first genome, where m is the num-
ber of MUMs. This label is a unique identifier
of a MUM. The MUMs may appears in different
order in different genome sequences according to
their positions in the corresponding genome.

Definition 2 A MUM sequence is a permutation
of MUM identifiers {1, 2, 3, . . . , m}.

A MUM sequence can be represented by inter-
vals on a horizontal line. Such a horozontal line
is called a MUM line. A MUM line for MUM se-
quence i is denoted by Li. For convenience, we
make all interval of unit length although MUMs
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are of different length. Each interval on the line
represents an element in the MUM sequence, see
Figure 2.

1 2 3 54

Figure 2. A representation of a MUM sequence
with 5 MUMs.

Definition 3 A k-level MUM diagram is a dia-
gram depicting the structure of MUMs in differ-
ent MUM sequences. It consists of k MUM lines.
The MUMs with the same identifier are joined
together with line segments resulting in a MUM
chain, see Figure 3. A MUM chain for MUM x is
denoted by Cx.
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Figure 3. A MUM diagram for four MUM se-
quences.

To apply graph theoretic techniques to solve
MUM alignment problem, we define a MUM
graph.

A MUM diagram can be simplified by replac-
ing each interval by a point on the horizontal
line. The simplified version of the k-dimensional
MUM diagram in Figure 3.

2.3 Discussions on Approach and Prototype

Multiple whole genome alignment can provide
a powerful tool for biologists to analyze evolu-
tionary pattern, syntenic chromosomal regions,
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Figure 4. An example of 4-level MUM diagram.

and polymorphic regions by giving a clear picture
of the similarities and differences at the genome
sequence level. Since the whole genome se-
quence is very large, we use divide and conquer
methodology to solve the problem.

First we use suffix tree method to decompose
the whole genomes to find the MUMs. Sec-
ondly the MUM sequences are aligned by finding
their LIS. The polymorphic regions between the
MUMs are much shorter than the whole genome
sequences. If the polymorphic regions are still
large, a recursive call to the divide and conquer
method can be employed to shorten the regions.
Fanilly, this region can be aligned using iterative
pairwise alignment [10]. This results in a com-
plete alignment of multiple whole genomes.

The core problem here is to find the LIS for k
MUM sequences. Gusfield [10] described a lin-
ear time algorithm for finding the LIS of one se-
quence using greedy cover method. However this
method does not work for multiple sequences.

Our approach is based on transforming the LIS
problem into a graph theoretic problem. Figure 5
gives a flow diagram of the prototype for multiple
whole genome alignment.
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Input: Multiple genome sequences

Build a suffix tree for the genomes
using Ukkonen’s algorithm

Construct a k−dimensional MUM structure graph

Output the aligned multiple whole genomes

Find MUMs for all genomes

Construct a MUM structure diagram

Find an LIS for the MUM sequences

using iterative pairwise alignment method
Align the polymorphic regions between MUMs

Figure 5. A flow diagram of the prototype for
mutliple genome alignment.

3 Brief Description of the Algorithm

In this section, we briefly describe the im-
portant problems comprising the multiple whole
genome alignment as well as algorithm used to
solve them.

3.1 Find MUMs of Multiple Genomes

The MUMs are found by using the first method
of generalized suffix tree structure described in
section 2.1 with Ukkonen’s algorithm. Each
leaf node represents a suffix from one the the k
genomes and has a unique identifier from 1 to k

to indicate which genome the suffix comes from.
If each genome is given a distinct termination
symbol, identical suffixes in different genome se-
quences end at distinct leaves in the generalized
suffix tree. Therefore, each leaf node in the tree
has only one string identifier. Figure 6 shows
the suffix tree constructed for three strings S1 =
a d b c e, S2 = b c b e a d, and S3 = a b c d e.
If the child nodes of an internal node are all leaf
node and have all the string identifiers, then a
MUM can be found by concatenating all the edge
labels from this internal node to the root. As in
the example, MUM, (b c), was found by concate-
nating the edge label b and c.
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Figure 6. Generalized suffix tree for three strings
listed above. In the leaf node label, the first num-
ber shows the string number, and second number
indicates the starting position of the suffix in the
string. The dish line with an arrow is a suffix
link.

After the MUMs are found, the MUM se-
quences and k-level MUM structure diagram are
constructed. In this example four MUMs were
found. MUMs 1, 2, 3, and 4 are (a), (d), (b, c)
,and (e), respectively.

Figure 7 displays all the MUMs found in the 3
sequences. We use this figure as an example as
we discuss the use of graph theoretic methods to
solve the LIS problem for multiple sequences.

It is worth mentioning that a suffix link is very
important property in the linear time suffix algo-
rithm. This is because the subtrees below the two
suffix link nodes are same. Therefore the algo-
rithm can move around the tree efficiently without
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going back to the root during the traversal.
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Figure 7. A 3-level MUM diagram

3.2 Finding LIS of multiple MUM sequences

After the MUMs are found, the LIS of mul-
tiple MUM sequences is computed according to
our linear time algorithm [7]. So the LIS for se-
quences A, B, and C is {1, 2}, or {3, 4}. They
are actually the conserved segments if we con-
sider the sequences A, B, and C as genomes.

3.3 Alignment of Polymorphic Regions

This can be done by commonly used method,
iterative pairwise alignment [10]. The basic idea
is that this approach uses pairwise alignment
scores to iteratively add one additional string to
a growing multiple alignment. For detailed algo-
rithm, please refer to [4, 10, 11]. In our example,
if we choose the independent set of MUM 3 and
4, the alignment of the three sequences is given in
Figure 8.

a b c d e

a bd c e

b c e a d

Figure 8. The alignment of the three sequences,
A, B, and C.

4 Time Complexity Analysis

The time complexity of construction of a suf-
fix tree and finding all MUMs is O(n), where n
is the length of the longest of the input genome
sequences. Our algorithm of finding LIS takes
O(m2) [7]. The iterative pairwise alignment
takes O(kmq2), where q is the maximum num-
ber of bases in any polymorphic region. Usually,
k is considered to be a constant.

It is commonly accepted that m is extremly
small compared to the length of any input genome
sequence. In fact, it can be assumed without loss
of generality that m � √

n [5]. Therefore, the
overall time complexity is linear i.e. O(n) for
finding the conserved regions; and between linear
and quadratic time complexity for multiple whole
genome alignment.

5 Implementation Issues

On the implementation of a suffix tree, the
string size of a whole genome is normally a few
millions of bases, the space complexity is very
important for the implementation of the suffix tree
algorithm. The size of alphabet has also a pro-
found impact [10]. A linked list is prefered to an
array for the DNA string, as there are maximum
four possible branches since the alphabet Σ con-
tains only 4 letters, i.e. Σ = {A,C,G, T}. Also
because of the small size of the alphabet, we can
use a simple array implementation with the char-
acters from Σ to index the array.

As the suffix tree grows, more edges may be
added. Array elements also hold the edge label
information [10]. Another pointer to be imple-
mented is the suffix link, which makes the algo-
rithm traverse the tree efficiently. Each child node
needs to keep track of the suffix position and the
string identification. Figure 9 gives the internal
node data structure.

C++ language is used for the software develop-
ment because of its advantage in maintaining and
reusing the software.
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Figure 9. The structure of a internal node in the
suffix tree.

6 Experimental Results

Our program was tested on SGI O300 ma-
chine with 32 500 MHz CPU. Three Ecoli whole
genomes were downloaded from GenBank web-
site, Escherichia coli K12 (4.5 MB), Escherichia
coli O157:H7 (5.3 MB), and Escherichia coli
O157:H7 EDL933 (5.3 MB). The minimum
length of a MUM is set to 15 bp for the test run.
The program output 81,778 MUMs for the Ecolis
bacteria. The MUM finding operation takes total
378.327 seconds (user + system). The LIS opera-
tion takes 11,238.365 seconds.

7 Conclusions

In computational biology, the alignment of
multiple whole genome sequences is an impor-
tant problem, because it can provide significant
information about inheritance and polymorphsim
of multiple whole genomes. In this paper, we
present a new algorithm for aligning multiple
whole genome sequences. To develop our al-
gorithm, we have to solve several problems in-
cluding decomposition of genomes with a suffix

tree, finding LIS for multiple MUM sequences,
and iterative pairwise multiple sequence align-
ment. These problems are solved based on exist-
ing alignment and graph theoretical concepts and
algorithms. A prototype of the software system
developed is described in this paper. A more de-
tailed description of the algorithm can be found
in [7].
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