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he Human Genome Project is developing a complete repre- T sentation of the information underlying our genetic make-up, 
as well as the genetic make-up of several other species that are 
either important for comparative scientific understanding, relied 
on for progress in human medicine, or of direct industrial or 
agricultural interest [ 1,2]. This information, encoded linearly 
along the genomic DNA polymer, will be used as a platform to 
rapidly expand our ability to characterize and understand human 
disease and infection, design and develop preventative and thera- 
peutic medicines, develop improved nutritional sources, and 
employ microbial tools in environmental and other applications. 
It is widely held that DNA sequencing throughput will have to 
be increased by orders of magnitude to complete the task in the 
time frame of 15 years that was laid out for the Human Genome 
Project, and that such dramatic increases will rely in large part 
on automating the several experimental and interpretive steps 
involved in DNA sequencing. 

DNA sequencing (Fig. 1) is the highest-resolution approach to 
genome mapping. It usually involves pieces of DNA (e.g., chro- 
mosomes, or sub-chromosomal regions to which a disease gene 
of interest has previously been mapped) that are much too long 
to be successfully analyzed- as long, intact molecules- with 
currently available biochemical methods. Thus, one breaks the 
long piece of DNA into shorter pieces of DNA that are amenable 
to current experimental methods, sequences the individual 
pieces, and then uses the fact that overlapping pieces will have 
common subsequences to stitch the sequences of individual 
pieces into a representation of the original, long piece. We focus 
here on the challenges associated with developing algorithms and 
software tools for automating the assembly of the pieces to 
reconstruct the original sequence. 

A DNA sequence is represented by a string of characters drawn 
from a four-letter alphabet (A, C, G, and T) corresponding to the 
four monomeric bases of which the DNA polymer is composed. 
A piece, or fragment, corresponds in our context to a sub-string 
of 100- 1000 bases. Overlap strength and offset relationships 
between pairs of fragments, used to drive the assembly of the 
fragments (Fig. 2)  into a global layout, is based on comparison 
of character strings. The output generated by sequencing repre- 
sents a consensus on the order of 1000-1,000,000 bases long, 
generated by voting in aligned columns of bases resulting from 
the layout. 

Recently, several groups have published the results of large- 
scale sequencing projects generating from tens of thousands to 
millions of contiguous bases (e.g., [3]). In contrast with pre- 
viously published sequences of comparable size, these efforts are 
noteworthy because of their conception and implementation as 
short-term, globally-comprehensive sequencing projects. The 
size of these projects, and the even more ambitious goals of the 
Human Genome Project, demand a particular emphasis on de- 
veloping large-scale, high-throughput DNA sequencing [4,5]. 

Complications 
The limitation of direct experimental determination to stretches 
of sequence that are short relative to the target, parent sequences 
has meant that for a large project, involving hundreds or thou- 
sands of sequence fragments, the computation of an optimal 
layout requires alternatives to the systematic exploration of all 
possible assemblies. A number of other factors further compli- 
cate the computational complexity of sequence assembly. 
Though sequencing both of the complementary, anti-parallel 
strands of the DNA double helix helps minimize errors arising 
in the determination of base identities, or base calling, it also 
leads to the need to assign and track strand sense through the 
assembly calculations. Naturally-occurring DNA sequences tend 
to be repetitive on many different scales. Repetitive sequences 
longer than individual fragments may cause ambiguities in the 
sequence assembly that cannot be resolved without additional 
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1: Overview of DNA sequencing. There are a number of 
opportunities for either instrumental automation or 
computational tools (or both) at each of these steps. 
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2. Overview of DNA sequence assembly. This is one of several 
possible stepwise representations of the process of fragment 
assembly. The solid lines represent sequence fragments, and 
their arrows indicate orientation along the DNA polymer. The 
character strings represent higher-resolution views of the 
fragments. 

3. Problems arising with repetitive DNA sequences. The solid, 
arrowed lines represent fragments in their true layout 
positions (the two long lines represent the parent, 
double-stranded DNA sequence). The presence of repeats, 
indicated by the shaded boxes along one or the other strand of 
the parent sequence, can lead to incorrect layouts, indicated 
with stippled lines. In one case, fragment b could be aligned in 
the wrong region; in a second case, fragmentfcould be 
aligned with fragment b, leading to a contracted layout; and 
the final case, fragment c could be aligned in the opposite 
orientation, leading to an incorrectly divergent layout. 

information (Fig. 3); this problem is exacerbated by higher rates 
of conservation among and larger repeat units in a repeat family. 
Finally, the input fragment sequences usually include experimen- 
tal ambiguities or errors that affect assessment of pairwise over- 
lap strength and subsequent detailed alignments. 

There are a number of sources of experimental error, including 
the substitution, insertion, and deletion of bases in determining 
sequence fragments; the ambiguous (uncertain) determination of 
bases; and the presence of artifact sequences arising either from 
rearrangement of the target, parent sequence or inclusion of 
unrelated sources of DNA. Furthermore, the rates and distribu- 
tions of errors can vary with source (e.g., different protocols, 
technicians, and sources of material). 

There are a number of compensating strategies for addressing 
these problems. Improved chemistry and instrumentation, either 
to decrease error rates or to increase the lengths of the directly- 
determined sequence fragments, reduces the complexity and 
uncertainty of assembly. Increased depth of coverage (with frag- 
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ments) of a given target region is another approach to decreasing the 
uncertainty of the result. Ancillary information about the the rela- 
tionships among fragments can augment or be made to over-ride the 
primary sequence comparison data, constraining the placement of 
fragments in the assembly layout. This information can arise from 
related, independent experiments (e.g., mapping data on the parent 
sequence) or as a result of a particular sequencing strategy (e.g., 
where the sequence of the end of one fragment is used to formulate 
a chemical template for determining the sequence of an adjacent, 
overlapping fragment). Prior knowledge of the sequence of repeat 
family members (some of which are welldocumented in a given 
species) allows one to down-weight the effect of those sequences 
on the assembly. There has also been considerable focus on devel- 
oping computational tools that have the potential of speeding-up and 
increasing the efficiency of assembly of large fragment sets, and on 
conceptual and run-time improvements in the algorithms on which 
these tools rely. 

Assembly Algorithms 
The most prevalent algorithmic approach to assembly has been 
the greedy construction of a single or a few solutions (e.g., [6,7]), 
where one builds up the layout (a layout composed of entirely 
interconnected fragments is called a contig by sequential addi- 
tion, one fragment at time, based on their pairwise overlap 
strengths. More global approaches have also been explored. We 
have implemented stochastic search strategies such as relaxation, 
simulated annealing, and genetic algorithms (e.g., [&SI). Others 
have implemented a tiered cluster approach (e.g., [lo]), or rapid 
approximations to exact, global constructions based on formu- 
lating the assembly in terms of finding the shortest common 
superstring (e.g., [ 111). A number of these these algorithms have 
recently been reviewed by Myers [ 121. 

Lacking from the software packages widely-used to date is the use 
of and dependence on confidence levels associated with individual 
bases in the input strings, in large part because the experimental 
community has not traditionally preserved these data. There is now 
considerable interest both in translating the raw sequencing data into 
base calls and their associated confidence values, and in using these 
more highly articulated data in the various string-processing algo- 
rithms associated with assembly. 

Software Engineering 
There are several issues that arise, and that have not been com- 
pletely settled, in the process of defining, implementing, and 
evaluating algorithms for assembly. First, experimentalists often 
prefer, and the data often demand, a strategy based on computer 
assistance rather than purely automated assembly (both because 
definitions of what constitutes an optimal assembly are varied or 
imprecise, and because the error rates lead to more correct 
solutions being less optimal). That is, the final sequence output 
depends on manual intervention and editing at one or more 
stages. Thus, when an end-user reports that they have used a 
particular tool to assemble data, it is often difficult to assess how 
much of the result (and whether or not it was satisfactory) was 
due to the automated steps, and how much due to the manual 
intervention. In addition, formulations of the assembly problem 
have varied considerably, particularly with respect to the degree 
of sequential modularity of the problem; increased modularity is 
often reflected in separate algorithms for each step, so that there 
is not really a single assembly algorithm to evaluate. 

There is no standard measure of the quality of an output 
assembly. The speed of attaining a result is always important, but 
the quality of the result has variously been quantified as lower 
number of output contigs, higher percent coverage of the parent 
sequence, less ambiguity in the columns of aligned bases con- 
tributing to the output consensus sequence, and higher percent 
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match of the output consensus sequence to the parent sequence 
in the regions that are covered. Some of these measures can only 
be calculated when using artificial data sets where the parent 
sequence is known apriori, or by holding up aresult from another 
assembly of an experimental data set as the true result. Finally, 
there has been little standardization of benchmark data sets on 
which to test assembly algorithms. 

Benchmark Data Sets 
What data sets are to be used to test new algorithms and the tools 
in which they are imbedded? Obviously, the ultimate testbed and 
source of benchmarks are experimental data sets, accessible 
either where they have been posted for that explicit purpose (e.g., 
[ 131) or by wandering down the (electronic) hall to the nearest 
sequencing laboratory and asking for sample data sets. However, 
these experimental data sets usually represent a very sparse 
sampling of the solution space of data set parameters, making it 
difficult to isolate and assess the impact of any single data 
parameter on the assembly algorithm being tested. In this context, 
being able to generate artificial data sets, by computationally 
fragmenting known sequences, can be very useful. For example, 
we have developed a tool [14] @at provides systematic, inde- 
pendent variation of fragment set parameters, including range 
and mean of fragment lengths, mean depth of coverage, mean 
error rates, error distribution along fragments, and repeat com- 
plexity of the parent sequence from which the fragments are 
drawn. 

Ancillary Information 
As noted above, several sources of ancillary information can 
potentially compensate for either incompleteness or errors in the 
primary sequence data. The traditional approach to sequence 
assembly relies on a well-defined algorithm to automatically 
generate a layout based only on the primary sequence data, 
usually followed by a lengthy, manual editing process to incor- 
porate the ancillary information that the experimentalist has at 
hand. However, in the interest of ramping up throughput rates 
(and therefore reducing the amount of manual editing), it is 
desirable to consider ways in which the ancillary information can 
incorporated into the automatic assembly of layouts. 

One can translate the ancillary information into constraints and 
perform some form of constraint propagation while generating a 
solution. This approach has been implemented for optimizing the 
ordering of genetic maps [ 151 and physical maps [ 161. However, 
constraint propagation requires any solution to satisfy all con- 
straints, which is not possible if constraints are contradictory, as 
is often the case in the face of errors associated with both the 
primary sequence data and the associated, ancillary information. 
In addition, it is not always possible to precisely quantify a 
particular constraint; for example, offset information relating a 
pair of fragments is often imprecise. Alternatively, one could use 
bayesian techniques, often used in balancing related probabilistic 
events. However, it is not clear how to map several of the 
important assertions relating fragments to one another into this 
framework, given the arbitrariness required for the selection of 
the probability distributions. 

Yet another approach is to develop a general framework of 
assertion classes for defiiing and quantifying the various rela- 
tionships among fragments (overlap strength of their sequences, 
offsets in the layout, and so on), develop a corresponding library 
of objective function components corresponding to these asser- 
tion classes, and to build up objective functions from these 

components for layout optimization based on competition among 
the various individual ancillary assertions [17]. 

Christian Burks is Program Coordinator for the Computational 
Biology Program at Los Alamos National Laboratory. He re- 
ceived a B.A. in the Great Books Program from St. Johns College 
and a Ph.D. in Molecular Biophysics and Biochemistry from 
Yale University. He then joined the Theoretical Biology and 
Biophysics Group at Los Alamos National Laboratory, fiist as a 
post-doctoral fellow, then as a Staff Member, and finally as 
Group Leader. During this period his primary focus was the 
GenBank DNA sequence database project, the Los Alamos 
component of which he led from 1987-1992. Recently, he has 
shifted his focus from databases to genome assembly and DNA 
sequence analysis problems. In his current position, he is devel- 
oping an institution-wide program in computational biology. His 
address is: LANSCEER, MS K710; Los Alamos National Labo- 
ratory; Los Alamos, NM 87545 (e-mail, cb@tlO.lad.gov; fax, 
505-665-3493; tel, 505-667-6683). 

References 
1. Collins F, and Galas D: A new 5-year plan for the United-States Human 
Genome Project. Science, 262,43-46, 1993. 
2. Cooper NG, ed: The Human Genome Project: Deciphering the Blueprint 
of Herediry , University Science Books, Mill Valley, CA, 1994. 
3. Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, et al: 2.2 
Mb of contiguous nucleotide sequence from chromosome III of C. elegans. 
Nature, 368,32-38, 1994. 
4. Hunkapiller T, Kaiser RJ, Koop BF, and Hood L: Large-scale and 
automated DNA sequence determination. Science, 254,59-67, 1991b. 
5. Adams MD, Fields C, and Venter JC, eds: AutomafedDNA Sequencing 
and Analysis, Academic Press, New York, NY, 1994. 
6. Dear S. and Staden R: A sequence assembly and editing program for 
efficient management of large projects. Nucl. Acids Res., 19, 3907-3911, 
1991. 
7. Huang X: A contig assembly program based on sensitive detection of 
fragment overlaps. Genomics, 14, 18-25, 1992. 
8. Burks C, Engle ML, Forrest S, Parsons RJ, Soderlund CA, and Stolorz 
PE: Stochastic optimization tools for genomic sequence assembly. In: Auto- 
mafedDNA Sequencing anddnalysis, Adams M.D, Fields C, and Venter JC, 
eds., Academic Press, New York, pp. 249-259, 1994. 
9. Parsons R, Forrest S, and Burks C: Genetic algorithms for DNA 
sequence assembly. In: Proceedings of the First International Conference on 
Intelligent Systems for Molecular Biology, Hunter T, Searls D, and Shavlik 
J, eds, W I T  Press, Menlo Park, CA, 310-318, 1993. 
10. Gleizes A, and Henaut A: A global approach for contig construction. 
Comp. Applic. Biosci. , 10,401-408, 1994. 
11. Kececioglu JD: Exact and approximation algorithms for DNA sequence 
reconstruction. Ph.D. Thesis (TR#91-26), Department of Computer Science, 
U. Arizona, Tucson, AZ (1991). 
12. Myers EW: Advances in sequence assembly. In: Automated DNA 
Sequencing and Analysis , Adams MD, Fields C, and Ventner JC, eds., 
Academic Press, New York, pp. 249-259, 1994. 
13. Set0 D, Koop BF, and Hood L: An experimentally-derived data set 
constructed for testing large-scale DNA sequence assembly algorithms. 
Genomics, 15,673-676, 1993. 
14. Engle ML and Burks C: Artificially generated data sets for testing DNA 
sequence assembly algorithms. Genomics, 16,286-288, 1993. 
15. Letovsky S and Berlyn MB: CPROP A rule-based program for con- 
structing genetic maps, Genomics, 12,435-446,1992. 
16. Soderlund CA and Burks C: GRAM and genfragII: simulating and 
solving the single-digest partial restriction map problem. Comp. Applic. 
Biosci., 10,349-358,1994. 
17. Burks C, Parsons RJ, and Engle ML: Integration of competing ancil- 
lary assertions in genome assembly. In: Proceedings Second International 
Conference on Intelligent Systems for Molecular Biology, Altman R, Brutlag 
D, Karp P, Lathrop R, and Searls D, eds, AAA1 Press, Menlo Park, CA, pp. 
62-69, 1994. 

November/Detember 1994 

-7- -77- 

IEEE ENGINEERING IN MEDICINE AND BIDLOGY 773 


