
0018-9162/02/$17.00 © 2002 IEEE July 2002 47

C O V E R F E A T U R E

Genome
Sequence Assembly:
Algorithms and Issues

E ach cell of a living organism contains chro-
mosomes composed of a sequence of DNA
base pairs. This sequence, the genome, rep-
resents a set of instructions that controls
the replication and function of each organ-

ism. The automated DNA sequencer gave birth to
genomics, the analytic and comparative study of
genomes, by allowing scientists to decode entire
genomes.

Although genomes vary in size from millions of
nucleotides in bacteria to billions of nucleotides in
humans and most animals and plants, the chemical
reactions researchers use to decode the DNA base
pairs are accurate for only about 600 to 700
nucleotides at a time.

The process of sequencing begins by physically
breaking the DNA into millions of random frag-
ments, which are then “read” by a DNA sequenc-
ing machine. Next, a computer program called an
assembler pieces together the many overlapping
reads and reconstructs the original sequence. This
general technique, called shotgun sequencing, was
introduced by Fred Sanger in 1982.1 The technique
took a quantum leap forward in 1995, when a team
led by Craig Venter and Robert Fleischmann of The
Institute for Genomic Research (TIGR) and
Hamilton Smith of Johns Hopkins University used
it on a large scale to sequence the 1.83 million base
pair (Mbp) genome of the bacterium Haemophilus
influenzae.2

Much like a large jigsaw puzzle, the DNA reads
that shotgun sequencing produces must be assem-
bled into a complete picture of the genome. This

seemingly simple process is not without technical
challenges. For one thing, the data contains errors—
some from limitations in sequencing technology and
others from human mistakes during laboratory
work. Even in the absence of errors, DNA
sequences have features that complicate the assem-
bly process—most notably, repetitive sections called
repeats. The human genome, for example, includes
some repeats that occur in more than 100,000
copies each. Similar to pieces of sky in jigsaw puz-
zles, reads belonging to repeats are difficult to posi-
tion correctly. Further complicating assembly, some
DNA fragments from each genome are impossible
to sequence, resulting in gaps in coverage.

The resolution of these problems entails an addi-
tional finishing phase involving a large amount of
human intervention. Finishing is very costly, as it
requires specialized laboratory techniques and
highly trained personnel. Assembly programs can
dramatically reduce this cost by taking into account
additional information obtained during finishing,
yet most current assemblers disregard this infor-
mation and generate the best possible assembly
solely from the initial shotgun reads. Advances in
assembly algorithms must include features that help
finishing efforts.

WHOLE GENOME SHOTGUN SEQUENCING
While shotgun sequencing remains the basic

strategy for all genome sequencing projects, its
applicability to large genomes has been controver-
sial. Until recently it was applied only at the end of
a hierarchical process. This process first breaks the

Algorithms that can assemble millions of small DNA fragments into gene
sequences underlie the current revolution in biotechnology, helping
researchers build the growing database of complete genomes.

Mihai Pop
Steven L.
Salzberg
Martin
Shumway
The Institute for
Genomic Research

48 Computer

DNA of large genomes into a set of large pieces
called bacterial artificial chromosomes. The BACs
are then mapped to the genome to obtain a tiling
path, after which the shotgun method is used to
sequence each BAC in the tiling path separately.

In contrast, whole-genome shotgun sequencing
(WGSS) assembles the genome from the initial frag-
ments without using a BAC map. This requires
enormous computational resources. The sheer size
of the data argued against WGSS for large projects.
So did the presence of repeats. If positioning the
long repeat stretches correctly is difficult, automat-
ing the process is even harder.

In 2000, however, Eugene Myers and colleagues
put most doubts to rest when they published a
whole-genome assembly of the fruit fly Drosophila
melanogaster.3 Using a new assembler built specif-
ically for very large genomes, the Myers team suc-
cessfully sequenced and assembled the 135-Mbp
genome. The project was 25 times larger than any
previous WGSS project, and the team went on to
apply the WGSS strategy to sequence and assem-
ble the draft human genome in 2001.

Clones and coverage
A WGSS project begins in the laboratory, where

ultrasound or a high-pressure air stream randomly
shatters the DNA into pieces that researchers then
insert into cloning vectors, or clones, as illustrated
in Figure 1a. The clone in this case is a circular piece
of DNA called a plasmid. It has a known sequence
of base pairs and can accept a clone insert of foreign
DNA. The bacterium Escherichia coli is then used
to multiply the plasmid, thus amplifying the clone
insert.

In most projects, researchers sequence both ends
of each clone insert, yielding a set of sequencing
reads that defines the clone-pairing data for that
insert. This process links each read from a clone
insert to its clone mate from the opposite end of the
insert. The resulting clone-pairing data is extremely
valuable not only in guiding the assembly process
but also in correctly ordering the contiguous
sequences, or contigs, resulting from assembly.
Figure 1b shows the process for three contigs.

The ultimate goal of sequencing is to determine all
the base pairs contained in the DNA. In practice,

however, we try to achieve the goal of having more
than 99 percent of the genome covered by reads
after the initial shotgun phase. To achieve this goal
we need to sequence clones until the reads (averag-
ing 600 to 700 base pairs) provide an eightfold (8X)
oversampling of the genome. For example, a 2-Mbp
bacterial genome sequenced to 8X coverage requires
16 Mbp, or approximately 27,000 reads.

Researchers choose the inserts from among sev-
eral “libraries” of clone collections generated in the
laboratory. The insert size specifies the average dis-
tance separating each pair of clone mates, and sizes
vary from one library to the next. Typical projects
contain at least two insert libraries of sizes 2 to 3
kbp and 8 to 10 kbp, respectively, and may include
others, such as BAC libraries of 100 to 150 kbp.
The sequenced portion of each insert averages
1,200 bp out of 3,000 bp total, so the clone inserts
of a 3-kbp library sequenced to 8X cover 2.5 times
as much distance as the sequences themselves.

These libraries provide a “clone coverage” of
more than 20-fold, meaning that, on average, 20
clones span each of the genome’s bases, thus offer-
ing the theoretical guarantee that each base is con-
tained in at least one of the clones. This guarantee
assumes uniformly random-sampled clones from
the genome. In practice, this requirement is seldom
perfectly satisfied. Cloning biases lead to a non-
random clone distribution, causing areas of the
genome to remain unsequenced regardless of the
amount of sequencing performed.

Assembly
A WGSS assembler’s task is to combine all the

reads into contigs based on sequence similarity
between the individual reads. The basic principle
is that two overlapping reads—that is, reads where
a suffix of one is a prefix of another—presumably
originate from the same region of the genome and
can be assembled together. This assumption is
invalid, however, for repetitive sequences, where it
is impossible to distinguish reads from two or more
distinct places in the genome.

Figure 2 shows how an assembler can incorrectly
combine the reads from two copies (rpt1A, rpt1B) of
a repeat, producing a misassembled contig and
throwing out the unique region between the two

Clone insert

Sequencing
reads

Clone

Links

(a) (b)

Contigs

Figure 1. Clone and
scaffold. (a) Clone
inserts are se-
quenced from both
ends, yielding
mated sequence
reads. (b) A scaffold
uses linking infor-
mation provided by
the clone-pairing
data to order and
orient contiguous
sequences, or con-
tigs, in the genome
under assembly.

July 2002 49

repeat copies as a separate contig. Repeats represent
a major challenge to assembly software. An assem-
bler’s utility depends in large part on detecting and
correctly resolving repeat regions. Resolving misas-
semblies in the finishing phases can be costly.

Information about clone mates, combined with
knowledge about the distribution of clone sizes, may
help assembly programs to put some classes of
repeats together correctly. If a repeat is shorter than
the length of a clone insert, mate-pair information
is enough to separate the individual repeat copies
because each read within the repeat has an anchor-
ing clone mate in the nearby nonrepetitive region.

Finishing
In practice, imperfect coverage, repeats, and

sequencing errors cause the assembler to produce
not one but hundreds or even thousands of contigs.
The task of closing the gaps between contigs and
obtaining a complete molecule is called finishing.
First, a program called a scaffolder uses clone-mate
information to order and orient the contigs with
respect to each other into larger structures called
scaffolds. Within a scaffold, pairs of reads span-
ning the gaps between contigs determine the order
and orientation of contigs, as Figure 1b shows.
Note that the physical DNA molecule has an eas-
ily determined direction, even though the textual
representation of DNA as a string of A, C, T, or G
characters appears to be directionless.

The gaps between contigs belonging to the same
scaffold are called sequence gaps. Although they
represent genuine gaps in the sequence, researchers
can retrieve the original clone inserts spanning the
gap and use a straightforward “walking” technique
to fill in the sequence.

Determining the order and orientation of the
scaffolds with respect to each other is more diffi-
cult. The gaps between scaffolds are called physi-
cal gaps because the physical DNA that would span
them is either not present in the clone inserts or
indeterminable due to misassemblies. Filling these
gaps involves a large amount of manual labor and
complex laboratory techniques.

ASSEMBLY ALGORITHMS
Researchers first approximated the shotgun

sequence assembly problem as one of finding the
shortest common superstring of a set of sequences:
Given a set of input strings {s1, s2, ...}, find the short-
est string T such that every si is a substring of T.

While this problem has been shown to be NP-hard,
there is an efficient approximation algorithm. This
greedy algorithm starts by computing all possible
overlaps between the strings and assigning a score to
each potential overlap. The algorithm then merges
strings in an iterative fashion by combining those
strings whose overlap has the highest score. This pro-
cedure continues until no more strings can be merged.

While it can be argued that the shortest super-
string problem does not correctly model the assem-
bly problem, the first successful assembly algo-
rithms applied the greedy merging heuristic in their
design. For example, TIGR Assembler,4 Phrap,5 and
CAP36 followed this paradigm.

Greedy algorithms are relatively easy to imple-
ment, but they are inherently local in nature and
ignore long-range relationships between reads,
which could be useful in detecting and resolving
repeats. In addition, all current implementations of
the greedy method require up to one gigabyte of
RAM for each megabase of assembled sequence,
assuming the genome was sequenced at 8X cover-
age. This limits their applicability on currently
available hardware to organisms with genomes of
32 Mbp or less. Such organisms include bacteria
and a few single-celled eukaryotes, but not plants,
mammals, or other multicellular organisms.

These limitations spurred the development of
new algorithms. Two approaches exploit tech-
niques developed in the field of graph theory: one
that represents the sequence reads as graph nodes
and another that represents them as edges.

Overlap-layout-consensus
The first approach, overlap-layout-consensus,7

constructs a graph in which nodes represent reads,
and edges indicate that the corresponding reads
overlap. Each contig is represented as a simple

rpt1Brpt1A

I

I II

II

III

III

Figure 2. Repeat
sequence. The top
represents the cor-
rect layout of three
DNA sequences. The
bottom shows a
repeat collapsed in
a misassembly.

50 Computer

path—that is, a path through the graph that
contains each node at most once.

An assembler following this paradigm
must first build the graph by computing all
possible alignments between the reads. A sec-
ond stage cleans up the graph by removing
transitive edges and resolving ambiguities.
The output of this stage comprises a set of
nonintersecting simple paths in this refined
graph, each such path corresponding to a
contig. A final step generates a consensus
sequence for each contig by constructing the
multiple alignment of the reads that is con-
sistent with the chosen path.

Full information about each read in the
input is only necessary for the overlap and the con-
sensus stages. The graph-refinement stage stores
only a limited amount of information about each
overlap, such as its coordinates and length. This
allows a memory-efficient implementation.

Not surprisingly, recent WGSS assemblers use
this approach.4,8 The overlap-layout-consensus
technique has the additional value of encoding
other relationships between reads, such as clone-
mate information, which an assembler can use in
correctly assembling repetitive areas.

Eulerian path
The second graph-theoretical approach to shot-

gun sequence assembly uses a sequencing-by-
hybridization (SBH) technique.9 The idea is to create
a virtual SBH problem by breaking the reads into
overlapping n-mers, where an n-mer is a substring
of length n from the original sequence. Next, the
assembler builds a directed deBruijn graph in which
each edge corresponds to an n-mer from one of the
original sequence reads. The source and destination
nodes correspond respectively to the n − 1 prefix
and n − 1 suffix of the corresponding n-mer. For
example, an edge connecting the nodes ACTTA and
CTTAG represents the 6-mer ACTTAG. Under this
formulation, the problem of reconstructing the orig-
inal DNA molecule corresponds to finding a path
that uses all the edges—that is, an Eulerian path.

In theory, the Eulerian path approach is com-
putationally far more efficient than the overlap-
layout-consensus approach because the assembler
can find Eulerian paths in linear time while the
problems associated with the overlap-layout-con-
sensus paradigm are NP-complete.7 Despite this
dramatic theoretical difference, the actual perfor-
mance of existing algorithms indicates that over-
lap-layout-consensus is just as fast as the SBH-
based approach.

HANDLING REPEATS
If genomic data included no repeats, an assem-

bler could use any assembly algorithm to put all
the pieces together correctly, even in the presence of
sequencing errors. The repeats found in real
genomes can, however, prohibit correct automated
assembly, at least solely from information con-
tained in the original reads.

For example, a large tandem repeat found in the
bacterium Streptococcus pneumoniae consists of a
24-bp unit that is repeated in identical and nearly
identical copies, in tandem, for a stretch covering
approximately 14,000 bp. Given that individual
reads have an average length of 600 bp and that all
reads obtained from this region are identical, no
assembler can determine a unique tiling across this
repeat. The resulting assembly is likely to contain a
reconstruction of a 600-bp section of the repeat in
which all the reads have collapsed on top of each
other—similar to the situation in Figure 2. In this
particular case, clone mates also fail to resolve the
problem because the largest clone insert for this pro-
ject covered only 10 kbp.

This example highlights several issues that
assembly programs must address. First, they must
identify repeats, preferably during the assembly
process, to avoid mistakes caused by overcollaps-
ing repeat copies. Detecting such misassemblies is
much more difficult after assembly is completed,
and the misassemblies can lead to incorrect genome
reconstructions.

Second, assemblers must attempt to correctly
assemble as many repeats as possible to reduce the
amount of human labor involved in completing the
genome. For short repeats, this step can be as sim-
ple as using anchored reads, meaning those having
mates in the unique areas surrounding the repeat.
In more complex repeats, the assembler must be
able to use additional information obtained
through laboratory experiments.

Detecting repeats
A simple solution to the repeat-detection prob-

lem identifies the pileup caused by a misassembly.
Because the reads come from a random sampling of
the genomic DNA, typically with 8X coverage of
the genome, areas covered by a significantly large
number of reads indicate an over-collapsed repeat.
Most assemblers use variations on this simple idea.

Although the idea is useful, it assumes that the
reads are sampled uniformly at random from the
genome. In reality, certain areas tend to be poorly
represented or absent from the sample—for exam-
ple, if the insert is toxic to the laboratory organism

Detecting
misassemblies is

more difficult after
assembly is

completed, and
the misassemblies

can lead to
incorrect genome
reconstructions.

July 2002 51

into which it was cloned—while other areas are
overrepresented. In addition, low-copy repeats,
which appear only two to three times in a genome,
may escape detection because they do not appear to
be statistically oversampled.

While statistical methods can provide a rough fil-
ter, assembly programs must use other techniques
to accurately separate out the repeats. As an exam-
ple, the recently developed assembly program
Euler9 detects repeats by finding complex areas, or
tangles, in the graph constructed during assembly.
Researchers can use the information contained in
the tangle to guide experiments to resolve the
repeat. Assemblers that simply mask out repeats—
another common strategy—lose this information
and must obtain it by other means.

Because the cloning process generates reads in
pairs from opposite ends of clone inserts, assemblers
can use information about clone mates to help detect
areas that have been incorrectly assembled due to
repeats. Such areas usually contain many instances
of clone mates that were assembled either too close
or too far from each other, or whose relative orien-
tation is incorrect. This information must be used
with care, however, since clone length estimates are
usually imprecise, especially for larger clones.

The difficult problem here is finding outliers in a
data set whose distribution is unknown. The most
reliable information comes from the relative orien-
tation of the sequencing reads, which can nearly
always be tracked correctly. When repeats are
widely separated in the genome, clone-pairing data
can resolve them effectively for reads whose mates
are anchored in the neighboring nonrepetitive areas.

Although some repeats are identical, it is more
common to find some differences in them. These
differences sometimes provide enough information
for the assembler to distinguish the copies from one
another. In the absence of sequencing errors, a sin-
gle nucleotide difference between two copies of a
repeat is enough to distinguish them.

Researchers have developed several techniques
to correct sequencing errors during repeat resolu-
tion—for example, see the work of John Kececioglu
and Jun Yu.10 All current techniques are based on
finding statistically significant clusters of reads,
where the clusters are based on shared differences
in the reads. This approach assumes that sequenc-
ing errors are independent and, therefore, that an
identical position difference in multiple reads is
likely to be a real difference typical of that copy of
the repeat. For example, if four reads contain an A
in position 200 and four other reads contain a G
in that position, then the assembler can infer with

high confidence that the first four reads come
from one copy of the repeat, while the sec-
ond four represent a different copy.

One drawback of this approach is the need
for relatively deep coverage to detect true dif-
ferences between repeat copies. If a repeat
region is difficult to clone—a common phe-
nomenon—the coverage of that repeat will
be low. Moreover, true polymorphisms, such
as those between different copies of nearly
identical chromosomes—for example, each
human chromosome occurs in two copies—or from
nonclonal source DNA further complicate this
problem.

Unresolved repeats
Even using all these information sources, an

assembler cannot resolve every repeat. Humans
must intervene to finish some complex areas. The
basic technique for this task is to separate out the
reads coming from distinct repeat copies. In
directed sequencing experiments, researchers
amplify stretches of DNA anchored in unique areas
around the repeat. If we consider each copy of the
repeat in isolation from the others, an assembly
program can put the genome together by holding
these repeat contigs together. Assembling a mixture
of contigs and reads, while guaranteeing that the
contigs will not break up in the process, is known
as a jumpstart assembly. Only TIGR Assembler cur-
rently supports this capability.

SCAFFOLDING SOFTWARE
The scaffolding process groups contigs together

into subsets with a known order and orientation.
Researchers generally infer relationships between
contigs from clone-mate information. Most recent
assemblers include a scaffolding step.3,8,11 Moreover,
the Human Genome Project BAC collections were
ordered and oriented through scaffolding.12,13

To reformulate the scaffolding problem in graph-
theoretic terms, we can construct a graph in which
the nodes correspond to contigs, and a directed
edge links two nodes when mate pairs bridge the
gap between them. In this case, each pair of reads
implies a particular orientation and spacing of the
contigs to form a correct pair (see Figure 1b).

The scaffolding program must now solve three
problems:

• Find all connected components in the defined
graph.

• Find a consistent orientation for all nodes in
the graph, where nodes are connected by two

The difficult problem
in using clone mates
is finding outliers in

a data set whose
distribution is

unknown.

52 Computer

edge types: those requiring the two nodes to
have the same orientation and those forcing
the two nodes to have different orientations.
We call the latter reversal edges. A consistent
orientation of all the nodes is possible only if
all undirected cycles contain an even number
of reversal edges. Because errors in the pair-
ing data or misassemblies can invalidate this
condition, we must solve an optimization
problem: Find the smallest number of edges
that must be removed so that no cycle has an
odd number of reversal edges. This opti-

mization problem is NP-complete.
• Given the length estimates of the edges, embed

the graph on a line or—for some bacterial and
archaeal genomes—on a circle, such that the
least number of constraints is invalidated. This
problem is a special case of the optimal linear
arrangement problem, which is also NP-com-
plete.

While the last two problems are difficult from a
theoretical standpoint, simple heuristics can easily
handle the instances encountered in practice.
Moreover, in practice we can relax the optimality
criteria. During the finishing phase, for example, a
linear embedding of the contigs is not necessary. In
fact, ambiguities in the graph can highlight possi-
ble misassemblies, and finishing teams can use this
information in designing experiments to confirm a
particular embedding of the graph.

The complexity of scaffolding stems specifically
from the presence of errors in the data. Again, sim-
ple heuristics can reduce the effect of such errors.
For example, we can reduce errors caused by data
tracking problems or misassemblies by requiring at
least two sources of linking information between
contigs or by ignoring links anchored in repeat areas.

For any but the smallest genomes, it is unlikely
that a single scaffold will hold all contigs. Thus we
will need additional information to order and ori-
ent the scaffolds themselves. Two common sources
of such information are physical maps and com-
parisons to related organisms.

Physical mapping encompasses a variety of lab-
oratory techniques for characterizing a set of mark-
ers along a DNA strand. Markers include known
genes and short, unique sequences of a few hun-
dred nucleotides, called tags, that researchers have
fluorescently tagged and mapped to an approxi-
mate point on a chromosome. Determining the lay-
out of these markers before sequencing provides an
independent information source for scaffolding
software. Using contigs created by an assembler,

researchers can simulate the mapping experiment
computationally by searching for the tag locations
in the contig sequence. The comparison between
the electronic map and the physical map also pro-
vides ordering information that the scaffolding pro-
gram can use.

The sequence of a closely related organism is
another source of scaffolding information. For
example, by aligning the scaffolds from a prelimi-
nary assembly of the mouse genome to the human
genome, we can obtain the likely order of the
mouse contigs. Of course, this information will be
incorrect where major genome rearrangements
have occurred in the evolutionary divergence of the
two species. This technique therefore works best
with a very closely related genome that has been
sequenced to completion.

The sources of linking information used to con-
struct scaffolds vary in quality. In particular, the
error in determining the length of inserts, and thus
the distance between clone mates, increases with
the insert size. Physical map data is inherently error
prone. Finally, large-scale genome rearrangements
can affect the homology data. TIGR has developed
Bambus, a scaffolder that factors our confidence in
the linking information into hierarchically con-
structed scaffolds. The algorithm first builds a set
of scaffolds based on the highest confidence links,
then incorporates the lower confidence informa-
tion to combine each scaffold into a larger struc-
ture. This hierarchical method reduces the effect of
incorrect linking data, while still using all the infor-
mation sources.

ASSESSING ASSEMBLY QUALITY
Correcting misassemblies is expensive, especially

if they go undetected until the late stages of a
sequencing project. Assemblers highlight prob-
lematic areas by outputting the confidence level in
each base of the consensus. Because this simple
quality-control method is an inherently local mea-
sure, it fails to capture larger scale phenomena,
such as whole DNA sections that are incorrectly
spliced together. The assembly pipeline must there-
fore contain a validation module that uses addi-
tional information to determine the contig quality.

Finding errors in assemblies is easy when the
complete sequence is already known, and we can
use known benchmark data sets to fine-tune assem-
bly software. These data sets, either artificially gen-
erated or representing real sequencing reads from
completed projects, provide both the correct con-
sensus sequence and the exact location of all reads
in the true DNA sequence. Such information lets

Ambiguities in
a graph can

highlight possible
misassemblies
that finishing

teams can
investigate.

July 2002 53

us detect both local errors in the consensus base
calls and large-scale rearrangements, such as rever-
sals and insertions, in the genome assembly.

We can apply some of these ideas to the challenge
in real practice: finding assembly errors when the
true layout is unknown. For example, physical
maps provide markers that we can use to validate
large contigs. Similarly, we can use the sequence of
a closely related organism to confirm areas that we
do not expect to have significantly diverged. In the
absence of any other types of information, clone
mates have been used to detect assembly errors.14

Areas of the genome that violate the orientation
and distance constraints imposed by the clone
mates indicate potential misassemblies.

Most reported measures of assembly quality are
aggregate measures, such as the number and sizes
of contigs. They assume that an assembly consist-
ing of a few large contigs is better than one com-
posed of many small contigs. This assumption is
partly true, in that the number of contigs indicates
the number of gaps, which in turn correlates with
the amount of work needed to finish the genome.
Aggregate size measures do not, however, account
for the possibility of misassemblies, and they are
therefore only marginally useful. If anything, an
assembler can generate large contig sizes at the
expense of misassemblies.

To demonstrate these concepts, we performed a
series of tests on the genome of Wolbachia, an
endosymbiotic bacterium found in the Drosophila
fruit fly and other insects. We recently completed
this genome at TIGR, so we had a “true” DNA
sequence to which we could compare assembly
results. We assembled this genome from the origi-
nal shotgun reads using Phrap, TIGR Assembler,
and Celera Assembler. We ran all assemblers with
their default settings. We verified the assemblies by
aligning the resulting contigs to the finished
sequence. Table 1 summarizes the results.

According to the number and length of contigs,
Phrap appears to produce the best output, followed
closely by TIGR Assembler. The Phrap assembly
contains about one-fourth as many contigs as
Celera Assembler’s, and its contigs are about four
times larger on average. In addition, the total size
of these contigs (1.26 Mbp) matches the actual size
of the Wolbachia genome (1.26 Mbp).

In contrast, if we look at the proportion of the
sequence covered by correct assemblies, the Celera
Assembler’s output spans more than 99 percent of all
bases, while the TIGR Assembler contigs cover just
over 93 percent, and Phrap covers barely 36 percent.

These results lead to a couple of conclusions.

First, Phrap and TIGR Assembler appear to have
misassembled some repeats, which explains the lack
of coverage. At the same time, the small length of
the Celera Assembler’s contigs, combined with their
large total size, lead us to believe that it failed to
combine many contigs that should have been
assembled together. Closer examination—and sim-
ilar experience with many other genomes—indi-
cates that this usually results from poor quality data
at the ends of sequences.

To get Celera Assembler to combine more con-
tigs, we performed an additional step of more
aggressively trimming poor quality data from the
ends of the input sequences. The fourth row in
Table 1 indicates that this technique closed a num-
ber of gaps, yielding larger contigs overall. At the
same time, the coverage of the genome decreased,
indicating a potential drawback to the technique.

These observations correlate with our under-
standing of the assembly algorithms used by the
three programs. TIGR Assembler and Phrap are
more tolerant of incorrect data at the sequence ends,
which allows them to create bigger contigs. At the
same time, their handling of clone-mate informa-
tion is less sophisticated than Celera Assembler’s.
In particular, TIGR Assembler uses a greedy
approach that lets it walk through a repeat, occa-
sionally violating clone-link constraints.

The Phrap program simply does not take these
constraints into consideration, leading to the over-
collapse of repeat regions. Closer analysis verified
the hypothesis that all the misassemblies presented
in Table 1 correlated with repeats in the Wolbachia
genome.

T he ultimate goal of genome sequencing is the
complete DNA sequence of an organism. A
good assembler can aid the human effort

involved in the finishing phase. An assembler

Table 1. Comparison of shotgun sequence data from the Wolbachia genome
project.

Number Average Percent
of contig Total genome Number of

Assembler contigs length size covered misassemblies

Phrap 56 22.4 kbp 1.26 Mbp 36.0 14
TIGR Assembler 76 16.8 kbp 1.28 Mbp 93.1 2
Celera Assembler 220 6.3 kbp 1.39 Mbp 99.1 1
Celera Assembler 101 12.5 kbp 1.26 Mbp 98.4 0
trimmed data

54 Computer

designed for finishing should use multiple sources
of information, such as data from finishing exper-
iments in the laboratory; it should also let the
human experts put restrictions on the assembly,
such as regions that need to be held together or
repeats that should be kept separate. Better qual-
ity-control tools are essential, and defining quality
measures that make it possible to evaluate assem-
bly algorithms is a first step toward their improve-
ment. This issue is particularly critical for in-
complete genomes, such as the various and con-
stantly changing versions of the draft human
genome sequence. Assemblers that can report
“weak” areas in the assembly and highlight poten-
tial misassembly sites are essential not only for the
subsequent analysis of assembly data but also for
guiding the efforts of finishing experts. Moreover,
well-defined objective quality measures will pro-
vide an additional level of validation even in the
case of completely finished genomes. �

Acknowledgments
The authors are supported in part by grants from

the National Science Foundation and the National
Institutes of Health.

References
1. F. Sanger et al., “Nucleotide Sequence of Bacterio-

phage Lambda DNA,” J. Molecular Biology, vol.
162, no. 4, 1982, pp. 729-773.

2. R.D. Fleischmann et al., “Whole-Genome Random
Sequencing and Assembly of Haemophilus Influenzae
Rd,” Science, vol. 269, no. 5223, 1995, pp. 296-512.

3. E.W. Myers et al., “A Whole-Genome Assembly of
Drosophila,” Science, vol. 287, 2000, pp. 2196-2204.

4. G.G. Sutton et al., “TIGR Assembler: A New Tool
for Assembling Large Shotgun Sequencing Projects,”
Genome Science and Technology, 1995, vol. 1, pp.
9-19.

5. P. Green, “Phrap Documentation: Algorithms,”
Phred/Phrap/Consed System Home Page; http://www.
phrap.org (current June 2002).

6. X. Huang and A. Madan, “CAP3: A DNA Sequence
Assembly Program,” Genome Research, vol. 9, no. 9,
1999, pp. 868-877.

7. J.D. Kececioglu and E.W. Myers, “Combinatorial
Algorithms for DNA Sequence Assembly,” Algorith-
mica, vol. 13, 1995, pp. 7-51.

8. S. Batzoglou et al., “Arachne: A Whole-Genome
Shotgun Assembler,” Genome Research, vol. 12, no.
1, 2002, pp. 177-189.

9. P.A. Pevzner, H. Tang, and M.S. Waterman, “An

Eulerian Path Approach to DNA Fragment Assem-
bly,” Proc. Nat’l Academy of Science USA, vol. 98,
no. 17, 2001, pp. 9748-9753.

10. J. Kececioglu and J. Yu, “Separating Repeats in DNA
Sequence Assembly,” Proc. 5th Ann. Int’l Conf.
Computational Biology (RECOMB), ACM Press,
New York, 2001, pp. 176-183.

11. P.A. Pevzner and H. Tang, “Fragment Assembly with
Double-Barreled Data,” Bioinformatics, vol. 17,
suppl. 1, 2001, pp. S225-S233.

12. W.J. Kent and D. Haussler, “Assembly of the Work-
ing Draft of the Human Genome with GigAssem-
bler,” Genome Research, vol. 11, 2001, pp. 1541-
1548.

13. D.H. Huson, K. Reinert, and E. Myers, “The Greedy
Path-Merging Algorithm for Sequence Assembly,”
Proc. 5th Ann. Int’l Conf. Computational Biology
(RECOMB), ACM Press, New York, 2001, pp. 157-
163.

14. D.H. Huson et al., “Comparing Assemblies Using
Fragments and Mate Pairs,” Proc. Workshop Algo-
rithms in Bioinformatics, BRICS, Aarhus, Denmark,
2001, pp. 294-306.

Mihai Pop is a bioinformatics scientist at the Insti-
tute for Genomics Research in Rockville, Mary-
land. His research interests include DNA se-
quencing and closure techniques and sequence
assembly algorithms and applications. Pop received
a PhD in computer science from the Johns Hop-
kins University. Contact him at mpop@tigr.org.

Steven L. Salzberg is the senior director of Bioin-
formatics at the Institute for Genomic Research.
He is also a research professor in both the com-
puter science and biology departments at Johns
Hopkins University. His research interests include
gene finding, genome sequence alignment, genome
archaeology, and evolution. He developed one of
the first computational gene-finding systems in the
mid-1990s. Salzberg received a PhD in computer
science from Harvard University. He is a member
of the AAAS and the ACM. Contact him at
salzberg@tigr.org.

Martin Shumway is a software manager at the
Institute for Genomic Research, with interests in
measurement. He received an MSc in computer sci-
ence from Colorado State University and is a mem-
ber of the IEEE. Contact him at shumwaym@
tigr.org.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

