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Abstract— We proposed a genetic algorithm (GA) approach
to solve the genome sequencing problem. The main contribution
of this work is to add two ideas to improve the efficiency of the
algorithm - (1) a Chromosome Reduction Step (CRed) method
to shorten the length of the chromosome and thereby the search-
space, and (2) Chromosome Refinement Step (CRef) is a greedy
heuristics to locally improve the fitness of chromosomes. The
algorithm will bring out longer and longer contigs with shorter
and shorter gaps, as it continues running. At any stage the
user can view the result, stop it when the output serves her/his
purpose, or continue for getting longer contigs. We ran the
proposed algorithm on part of the Wolbachia project work,
and compared the results.

I. INTRODUCTION

At present, many research groups are dedicated to analyze
genomes of various living objects, and DNA sequencing
of the whole genome is the primary goal. The length of
genomes to investigate are ever growing, from small viruses
(a few thousand nucleotides) to large mammals (~ 3 giga
nucleotides), whereas a DNA sequence up to a length of only
102 nucleotides could be read. The prevailing methods is to
fragment the whole genome, read the ends of fragments, and
then use a computer program to assemble them in proper
order to infer the whole genome sequence. This is a NP-
hard problem[1]. Several deterministic algorithms based on
graph-theory, and greedy heuristic algorithms are proposed.
But they are computationally intensive. The main motivation
of this work is to find an efficient fragmentation assembly
algorithm that could run on cheap computers, yet able to find
nearly correct draft sequences.

Due to exponential growth in computing power, many
biological problems, which were too complex, now came
within the computational limits. Due to sophisticated in-
struments, the biological activities of the living organisms
are now getting available in bits and pieces of information
and the field which tries to join those pieces of information
together and explicate it, is called Bioinformatics [2] [3].
Problems like homology search, clustering of the of gene
expression data, research on the 3-D structure of proteins,
the genome sequence, are to name a few. Many of the
problem involved in Bioinformatics are string matching or
sequencing problems, which are NP-complete and require
high end computers and long execution time. The main

0-7803-9487-9/06/$20.00/©2006 IEEE

motivation of this work is to propose an efficient algorithm
for assembling DNA fragments.

A. Genome Preliminaries

A genome is formed by a sequence of four types of
molecules, called nucleotides or bases, namely A (adenine),
T (thymine), C (cytosine) and G (guanine) [4] [5]. Proteins
are responsible for different functions of living organisms,
and are formed by a sequence of amino acids. The 20 amino
acids are again coded by triple-bases called codons, e.g.,
AAA is for Lysine, GAA for Glutamic [5] etc.. Thus the
codons are words of length 3 formed by the alphabet set
{A, T, C, G}. Only 20 out of 4> = 64 possible codes
are used, and many codes map to the same amino acid,
like AAA and AAG both map to Lysine, ACA, ACG, ACT,
and ACC all map to Threonine. The DNA sequence is thus
responsible for producing different proteins, and therefore is
at the root of functioning of a living organisms. Decoding
genome sequence is thus vital to understand the function as
well as malfunction of living things. The genome sequence
information is vital for medical, agricultural and many other
research area.

B. The Problem of Fragment Assembly

Gel electrophoresis is the common laboratory method for
reading a DNA sequence. It can read on an average of a mere
500 to 800 base pairs from a larger sequence. But our quest to
know genome sequence is ever-increasing, both in varieties
of organisms and the length of the genome. Most commonly
used and cost effective process to find genome sequence is
shotgun sequencing [1] [6] [7]. The basic principle is to
first clone the target sequence into multiple copies, then
break them into fragments of nearly equal lengths, read
the sequences at both ends of the fragments, and finally
reassemble them in proper order to recover the target genome
[6] [7]. Computer science comes in picture in the last step of
assembling the fragments. The shotgun sequencing approach
was first introduced by Fred Sanger in 1982 [8], and was
thought to be able to sequence to a maximum of 30 Kbps to
50 Kbps. In fact, during 80’s it (shotgun sequencing) could
successfully sequence up to 10 Kbps, and by 1990 it could
sequence segments up to 40 Kbps.
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In 1995, Fleischmann et al. [9] could assemble the
~1,800 Kbps long H. Influenzae bacterium, and in 2000
Myers et al. [10] was able to assemble ~130 Mbps long
Drosophila genome. By 2001, Lander et al. [11] presented
an initial sequencing of human genome of ~3.5 Gbps length.
This was possible, not because electrophoresis can now read
longer base pairs, but due to new innovative algorithms
to assemble fragments and improved hardware to crunch
them. During last decade many assembling algorithms were
proposed, the important ones being TIGR assembler [12],
Consed [13], CAP3[14], ARACHNE [15], AMASS [16],
EULER [17], RECOMB [18], Phrap [19], 454 [20]. A good
survey of many of these algorithms is available at [7]. During
last ten years a few works were reported [21] [22] [23]
to use genetic algorithm [24] to solve fragment assembling
problem. Our work is also based on genetic algorithm. The
main contribution of this work is to add two ideas to improve
the efficiency of the algorithm - (1) a Chromosome Reduction
Step (CRed) to shorten the length of the chromosome and
thereby the search-space, and (2) Chromosome Refinement
Step (CRef) to locally improve the fitness of chromosomes
by some greedy mutation. Results are compared with that
obtained from Wolbachia genome project [25].

The paper is organized in the following sections. In
section 2, shotgun sequencing and problems of the existing
techniques are briefly explained. Section 3 is devoted to the
proposed algorithm. In section 4, we explain the three exper-
iments we did and their corresponding results. Conclusion is
in section 5.

Il. SHOTGUN SEQUENCING METHOD AND ITS PRESENT
STATUS

A. Shotgun Sequencing

As already mentioned, even today it is possible to read
only a length of 500 to a maximum of 1000 base pairs by
electrophoresis method. To decode a long DNA sequence
we need to fragment it, read the individual fragments and
then assemble. This is called shotgun sequencing, and is the
basis of all sequencing strategies. Initially it was thought that
the only way to read large genomes is to divide the whole
genome into large pieces called BACs (bacterial artificial
chromosomes), which are then mapped to the genome. Shot-
gun sequence is to be used to sequence each BAC. It is a
two step hierarchical process.

In contrast, WGSS (whole genome shotgun sequence)
endeavors to do the sequencing directly from the fragments,
skipping the BAC step. It was thought to be computationally
too heavy, and difficult due to repeat stretches in the genome.
Yet, in 2000 Myers et al. successfully sequenced the fruit fly
drosophila genome of length ~125 Mbps using WGSS [10].
and WGS was established as a general technique.

Though the base sequence deciphered by WGSS might
contain gaps, and the accuracy is lower than clone-by-clone
shotgun sequencing by using BACs genome map, Yet, in
many genome researches, rough or partial information of
base sequences might be good enough. With that in mind

WGSS was used in the determination of draft human genome
in 2001 by Celera Genomics [26]. In Japan too, WGSS
was used to decode genome of Silkworm by Mita in 2004
[27], and the genome of Aspergillus oryzae was decoded by
Machida in 2005 [28]. Our target is similar. The algorithm
will bring out longer and longer contigs with shorter and
shorter gaps, as it continues running. The user can view
the result, stop it when the output serves her/his purpose, or
continues for getting longer contigs. Moreover our algorithm
gets more and more efficient with generations due to CRed
and CRef operations.

B. Outline of WGSS

The whole process of WGSS is divided into two - one
is the biological part of cloning, fragmenting, and reading,
and the other one is the computational part of assembling
the fragments.

1) Biological Part: The basic shotgun procedure starts
with a large number of copies of DNA whose sequence we
need to find out. The genome is then physically cut into a
large number of random fragments. Fragments that are too
large or too small are then discarded. The length of short
fragments are about 2kbp, and the long ones are about 10kbp.
The fragments are then inserted into the DNA of a bacterial
virus (phage), called vector. Typically one vector contains
one fragment. The fragments are called inserts and the set
of inserts with similar size, a library. Next, a bacterium is
infected with a single vector, which generates clones of the
vector as well as the insert (the fragment) within it. Then, the
base pair at both ends of all the fragments are read with DNA
sequencer as shown in Fig.1. Only about 500 to 1000 bp
can be read using present sequencer technology. This read
length depends on the passing speed in the capillary of the
sequencer. But even done meticulously a read length of more
than 1000 bp is not possible. The base sequence at both ends
of fragment read by the sequencer is called read, and the pair
of reads from two ends is called mate-pairs. This procedure
is shown in Fig. 1.

Splitting into
shorter fragments,
DNA sequencer === =
1AGTCT, 1 GGTTC,
> 1Gai
N/ | e aca
Sequencing fragments with decoded base
Target genome Vector DNA reads sequence at both ends

Fig. 1. Shotgun sequencing

With large number of clones of the vectors, finally the
total base pair reads of fragments is several times than the
number of bases of the original genome. Here, we use a
term Coverage which is a measure of redundancy of the
fragment data, and is defined as the number of bases read
from fragments as a ratio of the length of the source DNA
[29].
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It is considered that, to be able to reconstruct the original
genome, the coverage should be set around 8 to 10 (de-
scribed as 8X~ 10X). If coverage is high, the probability
of covering original genome is higher and the accuracy is
improved. However, the number of fragments and therefore
the computational complexity also increase. In practice, to
sequence large genomes, hundreds of thousands to tens of
millions of fragments are used for assembly. Even then some
parts of the original genome may not be reconstructed, as this
is after all a stochastic process.

2) Computational Part: To sequence the Original DNA,
we first identify overlapping sections by comparing the
already read base sequences at both ends of the fragments, as
shown in Fig.2. Long ranges of base sequences without gaps,
obtained by assembling, are called contigs. Fig.2 shows two
contigs formed. Here, it is presumed that two overlapping
read, one a prefix of a fragment and the other the suffix,
originate from the same region of the genome. This is how-
ever not always true as there could be repetitive sequences
in the original genome.

mate pairs
[ fragments L—p—l

AGCTCAT GATATA] U
h TACGTETA “TCAGGA]|
! TACGCTT Frrialcc H

1
1 1
1 | CTCATEGA AddrTdd ! CGAGATA | [écatird |
1 1
1 . : 1
! ATGAAG rTcicred | !
! 1 1 losccac I A Gic G 4] !
1 P |
! [ :
ACCTCATGAAGATATACCTTCCTGG| [6TTGACCAGATACGTTAAGGGATCTAGGA}
contig "T contig 1

gap

Fig. 2. Formation of contigs

The existing techniques compare all fragments for overlap
detection using distributed processing with a large number
of high performance computers. Celera Genomics in human
genome project reported that “Computing the set of all
overlaps took roughly 10,000 CPU hours with a suite of four-
processor Alpha SMPs with 4 gigabytes of RAM. This took
4 to 5 days in elapsed time with 40 such machines operating
in parallel” [26]. Obviously, such computational support is
still too expensive.

The position and distance between contigs are determined
from the mate pair of fragments (Fig.3). Subset of contigs
with known order and orientation are grouped together and
this process is called scaffolding. This is done by construct-
ing a graph in which the nodes correspond to contigs, and
a directed edge links two nodes when mate-pairs bridge the
gap between them. Most of the recent assemblers include a
scaffolding step. A rough frame of original genome sequence
is made by this scaffolding process. After all contigs are
oriented and ordered correctly, we can close gaps between
two contigs. This process is called gap closer or finishing.

scaffold

=== =T — === == =

1 1 1

contig 1 | | contig 2 | [ contig 3 ]
[T 1 [T [ } ‘ —
[T || CTT 1 I
s o s ——— fragments
N B | 1 CITCT CTT 1
N I | LEJ N I i —

mate-pairs

Fig. 3. Scaffolding

The finally obtained base sequence that is nearest to the
original genome sequence is called consensus sequence. And
the above mentioned procedure based on contig formation
and scaffolding to form consensus sequence is called overlap-
layout-consensus paradigm. Many of important assemblers
are using this paradigm. For example, Celera assembler [26]
employs scaffolding algorithm based on graph theory using
mate pairs. TIGR assembler [12] employs greedy algorithm
where two fragments with largest overlap scoring are merged
together and this is repeated until no more merges can be
done.

C. Issues with Shotgun Sequencing

Most of the existing assemblers are owned by large-scale
research facilities. They are distributed processing systems
consisting of a large number of interconnected high perfor-
mance computers. To deploy, or even to rent such a system is
enormously costly. Though some of the assembling softwares
are available to the public [13] [14][15][19], in most of the
cases those algorithms® user interfaces are unclear and it
is hard to transport programs to one’s own system. Many
of the algorithms use exhaustive or computationally inten-
sive heuristics, involving number of comparisons increasing
exponentially with the number of fragments. Moreover the
fragment assembly process goes through several phases and
number-crunching is required at each phase.

On the other hand, the need for genome sequencing is
felt more and more strongly at every small medical research
centers, drug development centers, agricultural research cen-
ters etc.. To help in progress of their researches we need
an efficient fragment assembling algorithm, which could run
on an ordinary PC. Moreover, on many occasions what one
needs is only a partial sequencing, and not the sequence of
the whole genome.

Genetic Algorithm (GA) is already a proven robust al-
gorithm for graph searching and many other exponential
combinatorial NP-hard problems. There are a whole bunch of
works on multiple alignment technique, that use evolutionary
or generic algorithm [30] [31]. But very few works used
GA to solve the whole genome assembly problem [22][23].
Our proposed GA approach is standard genetic algorithm like
the one proposed by Parsons et al. [21]. However, the main
contribution of this work is to add two ideas to improve the
efficiency of the algorithm - (1) a Chromosome Reduction
Step (CRed) to shorten the length of the chromosome and
thereby the search-space, and (2) Chromosome Refinement
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Step (CRef) to locally improve the fitness of chromosomes
(a type of greedy algorithm). Moreover, the user can con-
sult with the intermediate result after every few thousand
generations of GA run. Depending on the quality of the
results and her/his requirements, the genetic search may
either be stopped or be allowed to continue to run. With
further generations the efficiency of genetic search improves
due to CRed and CRef steps.

I1l. PROPOSED TECHNIQUE USING GENETIC ALGORITHM

We proposed method for genome sequencing using GA.
The basics of GA [32] is omitted here as it is well known.
As our proposed technique is a specialized setup in fragment
assembly, we emphasize the relevant aspects only.

A. The Style of GA Chromosome

Though binary or continuous value is used as genes of
GA chromosome in general, we directly used fragments as
genes for fragment assembly. First, the test genome string
is cloned and cut at random locations imitating the process
done in WGSS. The fragments are labeled in serial numbers,
1to N, and the read information are stored in a Table. Here,
N is the total number of fragments. The chromosome of GA,
composed of all these fragments as its gene, is constructed.
Thus the chromosome is actually a permutation of numbers 1
to N. The information of each gene, i.e., the base sequences
of both ends of fragments are known.The fragments come
in random sequences in different chromosomes. The base
sequence of a fragment is not cut on the way of genetic
operations like crossover, because crossover and mutation
are done at the boundary of fragments.

fragments

ontimization with GA

Initial population
uation

arranging
randomly

(T ‘C‘iA‘ch‘romosomes

1 1
1 1
1 1
<> ‘ [[TTTTTTITTITT]
1 1
::CJHHHHHHHHHHH\
1 ! H
- ! : P
' v LTI TITTTITITTIT I I I XTI
1 [_Crossover ] ! }
' ! detgctjon of oyerlap
1 [ Mutation | ' b
[y ! 1 p—,—E

|—I-I—|l|—|-| comparing

[ |||I

1 | fragments
contigs’

Fig. 4. Chromosomes of GA for fragments assembly

B. Evaluation Function

For the evaluation, i.e., fitness calculation, the similarity
of base pairs of the adjoining gene (actually the genome
fragments) in the individual chromosomes, are calculated.

n—2
Fitness (c) = Z similarity (i,i + 1) (2)
i=0

The sum total of the similarity is the fitness of an individ-
ual as illustrated in Fig.4. In Eq.(2), ¢ is a chromosome, i
and 7 + 1 are adjoining fragments and » is the total number
of gene in the chromosome. To calculate the similarity
we use Smith-Waterman algorithm [33] that detects a local
alignment by dynamic programming.

C. Selection

Initially the fitness did not show a considerable disparity
in chromosomes because of the random permutation of the
fragments. Therefore we use ranking method in GA selection.
We also use elitist preservation.

D. Crossover and Mutation

If we allow same gene (here genome fragment) to appear
multiply in the chromosome, then due to high degree of
match and consequently high fitness, the whole chromo-
some will be flooded with same fragments. We therefore
do not allow multiple copies of the same fragment. To
ensure that, we used order-based crossover (OX) often used
for solving TSP [32]. In OX, offspring 1 directly copies
genes from parent 1 from the crossover point to the end
of the parent 1 chromosome. From the beginning of the
offspring 1 chromosome, the rest of the genes are copied
from parent 2 preserving the sequential relative order, thus
skipping the genes already copied from parent 1. Offspring 2
is constructed similarly. Here, two point crossover is also
possible, but we did one point crossover in our experiments.
Reciprocal exchange was used for Mutation. Simply speaking
two genes are selected at random and swapped over.

E. Chromosome Reduction Step

Through generations, chromosomes bring individual frag-
ments with high similarity to adjacent positions by evaluation
function and selection. We use this tendency to form contigs
efficiently and reorganize array of genes in the chromosome
in two stages, filtering stage and combining stage. We called
this Chromosome Reduction Step (CRed) :

Filtering stage : First of all, we set a parameter T
which decides at what intervals the filtering would be ex-
ecuted, i.e., filtering takes place every time the generations
number is a multiple of T';. The genes (fragments) which
are contained within contigs already formed in the best
chromosome are marked. Those fragments are deleted from
all the chromosomes as well as gene-table. Corresponding
contigs are stored in “contig pool”. We need to set up 7'y
value properly because if we set up T’y low, filtering will
start even when long contigs are not yet formed inside the
best chromosome. Then filtering computation will be a waste.
Thus, an alternative could be initiating the filtering stage
only when reasonably long new contigs are formed in the
best chromosome. In our experiment, for simplicity, we fixed
Ty. The individual chromosomes are now composed of the
remaining genes, and the genetic search continues. Number
of genes in the chromosome decreases gradually every time
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filtering is done, making the genetic search more efficient.
When decreasing until the length of the chromosome reaches
ratio r. set in advance, combining stage is happened.

Combining stage : When a new contig is added to the
contig pool, we try to combine it with the existing fragments
(or contigs), if possible, to make longer contigs. Once a
longer contig is formed, further genes (genome fragments)
could be shed off from the chromosomes the way it is done
in the filtering stage. As the contigs become longer and
chromosomes shorter we can run GA more efficiently. After
every combining stage, the user could check whether the
available results are good enough (long enough) for her/his
purpose. If not, the genetic search continues. The flow of
the algorithm is shown in Fig.5, where g is the number of
generation.

Initial population

Chromosome

Combining stage

'I Restructure of chromosomes |

Refinement
Step (CRef)

(A

Chromosome Reduction Step (CRed)

Fig. 5. Algorithm including CRed and CRef

F. Heuristic Method — Chromosome Refinement Step

The CRed step does not take care of scaffolding. Instead
of depending on genetic search alone, we add a heuristic step
to facilitate scaffolding efficiently. This is a simple and fast
heuristic named CRed as explained below.

When two fragments A and B are sequentially positioned
in a chromosome due to overlap, the following overlap
patterns are possible as shown in Fig.6.

1) overlap at the tail-part of fragment A and the beginning
of fragment B

2) overlap at the tail-part of two fragments

3) overlap at the beginning of two fragment

4) overlap at the beginning of fragment A and the end of
fragment B.

5) overlap at both beginning and end (not shown in Fig.6).

If two fragments have overlap of type 4, we swap the
positions of the two fragments. With this, the positions of

fragment A fragment B
Pl |
. | | hd | | | |
GA chromosome - L. -

patternl_________ pattern2 _________
A \: : A .
;o b o
1 e — e i
N B- ) ’/I N B- . 1

pattern3 _________ patternd _________
COA b A5
¢ EEmEm Vo ==
1 i | [ F | H
N B __ s B )

Fig. 6. Matching pattern of two fragments

fragments in chromosome are arranged to correspond to their
positions in the original genome. This refinement of greedy
mutation takes place every T'; generations, and operate only
on best n, chromosomes. These two steps of CRed and
CRef improve both the efficiency and quality of result of
our genetic search.

IV. EXPERIMENTS AND RESULT
A. Experimental Set-up

The initial experiments to test the validity of our proposed
algorithms were done on genomes created artificially. The
test cases were scaled down, so that we can complete test
runs in quick intervals. In our experiments, we used lower
values (around 4X) of coverage. This made the assembling
task much more difficult. But on the other hand, due to less
number of fragments the execution time of the algorithms
was shorter.

1) Preliminary Experiment: This is the first set of toy
experiments we did to test the possibility of solving genome
sequencing problem using genetic algorithm, the way we
approached. First, a genome of 1,000 bp a random sequence
of A, C, G, T was constructed. We then made 10 clone
copies, each of which were fragmented to 10 pieces of length
100 bp + 4, where ¢ had uniform distribution from —20 bp
to +20 bp. Thus 100 such fragments were created. Due to
short length of the fragments, we had groups that contain ten
fragments with high similarity. The total bases of reads is 8X
of original DNA, where each read was set at 40bp. These
approximately 100 fragments were arranged at random to
form a chromosome of GA, and the genes (fragments) inside
the chromosomes were optimally ordered using Simple GA.
We set the probability of crossover and mutation at 0.5 and
0.005.

2) Results: After 30,000 generations, fragments with high
similarity were assembled together, and we succeeded to
form contigs covering 98% of the original DNA on an
average in each of the 20 trials. Table | shows the number,
length, and other information about contigs.

On many occasions two or more contigs with large com-
mon base sequences remain in the chromosomes separated.
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TABLE |
RESULT OF PRE-EXPERIMENT

Average | Max | Min
Number of contigs 22 25 18
Length of contigs 79 134 41
Total size 1872 1968 | 1722
Percent genome covered 98 100 89
Error 1 2 0

It is possible to solve it by running many more generations
of GA, but it would take long time. It would be much more
efficient to merge them manually. We used this experience
to add the CRed step in our proposed algorithm.

We scaled down our experiment size, and therefore our
read size was also short. It is felt that with longer read lengths
the efficiency would improve. In summary, if some of the
domain knowledge is used to tune the chromosomes, the GA
would be an efficient way for fragment sequencing.

B. Performance Comparison of the Proposed Algorithm with
Standard GA

From the experiments discussed in the previous sec-
tion 1.1, we added steps for heuristic tuning of chromosome
as stated in section lll. In this section we compare the
performances and see the improvements of the proposed
algorithm. In the previous experiment, though fragments
were grouped together it was difficult to put them in proper
order just by crossover and selection. If the fragments with
high similarity are combined as contigs, and then contigs
are mutually compared, the efficiency of fragment assembly
would improve. In the Chromosome Reduction Step we do
combine fragment to form contigs manually. Moreover we
do add greedy mutation to locally sequence fragments to
improve sequencing efficiency.

1) Experimental Set-up: As before, we scaled down the
actual problem so that run time is reduced. The test genome
data were of length 10,000 bp, consisting of a random array
of four bases A, G, C, T. The length of fragments were
set from 300 bp to 500 bp. We used 20 cloned genomes.
Therefore, there were about 500 fragments. “read” was set
to 40bp. The total bases of read was only 4X of the original
test DNA. These values were decided referring to [27] and
[21]. The crossover probability and the mutation probability
were set to 0.5 and 0.01 respectively. We ran the GA up to
100,000 generations. Moreover, the parameter 7'y, at which
CRed was initiated, was set at 100.

2) Experimental Results: To evaluate our algorithm, we
used the ratio of the contig, the longest length that had been
finally obtained, and the original test DNA. The number of
contig where a wrong base sequence had been constructed
was counted as error. The above values, the obtained numbers
of contigs, and their lengths are shown in Table.ll. Both
SGA and the proposed GA were ran for equal number of
generations.
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Fig. 7. SGA vs Proposed GA

By genetic reassembling, we were able to form longer
sequence contigs as shown in Fig.7. Fragments with high
similarity were gradually as the generation advanced. Espe-
cially, it shows that the proposed GA performs much better
than SGA. Finally, we obtained contigs that covered about
70% of the original genome. Once a good chromosome is
formed, its information is used to improve the quality of
the rest of the chromosomes by detecting fragments which
are no more necessary. This is achieved with filtering stage.
However, our proposed GA still lacks the power and is
scarcely able to form scaffolds. The maximum length of
contig was 262 bp, and this corresponds to only 2.62%
of original DNA. Yet, many contigs of similar sizes were
obtained. Though further generation would produce longer
contigs, we felt that we need to incorporate some means to
facilitate scaffolding to quickly amalgamate contigs.

C. Experiment using The Data of Wolbachia Genome Se-
quence

We used Wolbachia genome sequence which is a real
genome data. The actual genome sequence has more tandem
repeats, but we used a smaller test genome data. We verified
that it is possible to assemble fragments by the proposal
technique for real genome sequence data. We compared the
results obtained by our algorithm with the results using
existing assemblers in Wolbachia genome project.

1) Wolbachia Genome Project: Wolbachia is a kind of
bacteria and first microscopical organism monitored for hori-
zontal gene transfer to multicellular organism. It has attracted
attention of many researchers because it would be helpful
in revealing the evolution of virus. Table.lll is the results
from existing assemblers in Wolbachia genome project. The
genome size was 1.26 Mbp. The result of total size of Celera
assembler using trimmed data is the nearest to the actual
value and error was zero. However TIGR assembler could
form the longest average contigs [25].

2) Experimental Set-up: We use only a small part of
Wolbachia genome sequence to reduce computation time. It
was registered in GenBank of NCBI and decoded by TIGR
assembler. The part used by us is “rpoBC”, which is a gene
that codes for protein and the number of bases is 8,514 bp.
The details are shown in Table.IV.
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TABLE Il
RESULTS OF COMPARISON OF SGA WITH PROPOSED ALGORITHM

SGA Proposed GA

Average | Max Min | Average | Max Min
Number of contigs 97 129 67 172 210 165
Length of contigs 76 122 51 130 262 54
Total size 31659 | 35282 | 28623 | 19679 | 26121 | 17682
Percent genome covered 58 62 46 65 71 62
Error 4 8 0 6 9 4

TABLE IlI

COMPARISON OF SHOTGUN SEQUENCE DATA FROM THE Wolbachia GENOME PROJECT [25]

Assembler TIGR Assembler | Celera Assembler | Celera trimmed data
Number of contigs 76 220 101
Average contig length 16.8kbp 6.3kbp 12.5kbp
Total size 1.28Mbp 1.39Mbp 1.26Mbp
Percent genome covered 93.1 99.1 98.4
Error 2 1 0

TABLE IV

FURTHER DETAILS ABOUT Wolbachia GENOME DATA

Wolbachia endosymbiont of Drosophila melanogaster
whole genome rpoBC
NCBI RefSeq. : NC_ 002978 gene ID : 2738525
GenBank : AE017196 Locus tag : WD0024
Length : 1,267,782 bp Length : 8,514 bp

We made 20 copy this genome sequence and splited
fragments of length 300 bp to 500 bp. Thus, the average
fragment length are about 400 and “read” is set to 40 bp.
Thus the coverage is 4X. The GA is run for 1,000,000
generations. The crossover rate and the mutation rate, are set
to 0.5 and 0.01 respectively. T’y is set to 100 in filtering stage.
CRef takes place at 100 generations (7's = 100), just after
filtering stage is executed and operates top 10 chromosomes
(ns = 10).

3) Results: The results of experiment using Wolbachia
rpoBC genome data are shown in Table.V.

TABLE V
RESULTS OF EXPERIMENT USING Wolbachia GENOME DATA

Average Max Min
Number of contigs 163 181 156
Length of contigs 158 301 52
Total size 18512 24557 | 15987
Percent genome covered 67 82 58
Error 8 13 5

Because we extended the number of generation, the contig
length and the proportion of genome covered was improved
than the previous experiments with 30,000 generation. How-
ever, the error is increased because the real-life genome
has many tandem repeats. This problem could be solved

by incorporating domain knowledge in the algorithm. In
addition, fragments that remains in the chromosome after
filtering stage, could be used for scaffolding and sequencing
contigs. This is not yet incorporated in our algorithm. Yet, the
results in Fig.8 shows that fitness of chromosome increases
even after 1,000,000 generations. We can therefore expect to
achieve better results if the algorithm is run further.
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Fig. 8. Transition of fitness

Table.VI shows the comparison of the ratio of average con-
tig length. We compared ratios of the average contig length
to the length of the original genome. Our proposed technique
could form long contigs on an average (though the results
are based on experiments of different complexities). Even
though our algorithm has obvious scope of improvements, it
is able to deliver good results and is expected to be an useful
tool.

As already mentioned, due to lack of adequate compu-
tational support, we scaled down the problem, and reduced
the “read” length as well as coverage. This hampered the
progress of search as well as the quality of the result.
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TABLE VI
COMPARISON OF THE RATIO OF AVERAGE CONTIG LENGTH

average contig length (%)
Proposed technique 1.86
TIGR assembler 1.33
Celera assembler 0.5
Celera trimmed data 0.99

conditions of the actual genome analysis by the limit of our
experimental environment.

V. CONCLUSION

We proposed a genetic algorithm based approach to as-
semble DNA fragments to find the genome sequence. To
improve the efficiency of GA for fragment assembly, we
added two ideas, Chromosome Reduction step (CRed) and
Chromosome Refinement step (CRef). As a result, both the
speed and quality of result of assembling improved. We could
obtain 80% of the Wolbachia genome sequence. The ratio of
average contig-lengths compared to the whole genome length
were higher.

There are scopes of improvement of our algorithm by
incorporating:

« scaffolding either in GA itself, or execute it a separately

at regular intervals along with combining stage.

« strategy to avoid errors due to tandem repeats.

For the above two, we can use knowledge and strategies
already existing in other assembling algorithms like Celera
[26].

In addition, the CRef heuristic strategy proposed here
is very simple. Many modifications are possible leading
to better efficiency. Another positive aspect of the genetic
approach is that, one can always view the intermediate result
and decide whether to continue further for better results or
not.
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