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Abslract- DNA matching is an important key to 
understanding genomes, evolution, relationships between 
organisms, and other concepts in genomics. Yet. comparing 
DNA is unlike matching typed words to a dictionary of words as 
there is no "true" spelling for DNA. Therefore, approximate 
matching algorithms mnst be used. There are many algorithms 
that can compare two DNA sequences, but when multiple 
sequences are to be compared, the matching becomes more 
diflicult. Comparing multiple sequences of DNA can be 
performed using different known methods. These methods 
include dynamic programming, star alignments, tree 
alignments, and others, which are usually based on dynamic 
programming. The method proposed here is a novel method to 
compare all strings, not merely all strings to one, as in the star 
alignment method, and it does so in a different way. The 
proposed method the Kaplan Multiple Sequence Algorithm, or 
KMS, separates the multi-dimensional search area so that 
comparisons can be performed in parallel. This paper discusses 
the problem of comparing multiple sequences and introduces 
this new novel method to match multiple DNA strings. 

Index Terms-Algorithms, Approximation methods, 
Biomedical computing, Computation theory, Polynomial 
approximation, Set theory. 

I. INTRODUC~ION A dictionary contains words that are spelled correctly. 
Spellcheckers assume a reliable dictionary; if a word to 

be checked - the entry - is spelled differently than any word in 
the reliable database, then it is assumed to he misspelled. 
Suppose that there exists a database that contains words that 
have no "correct" spelling, yet this is the dictionary that must 
be used. This is exactly what happens when trying to compare 
DNA sequences, the database contains data from some 
organism, hut since all organisms are different, even 
organisms of the same species, there is no "comect'' DNA. 
How can an entry he checked against this unreliable 
database? This constitutes the problem of approximate 
(DNA) string matching. 

This is a very difficult problem [I], in fact, it is NP, as can 
be seen by its brute-force complexity for a dataset of two 
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strings of length n: 

2>" 
C(n) = - (1) &' 
Thus, heuristics are needed to solve approximate string 
matching problems. 

In multiple string matching, more than two strings are to 
be compared. The current methods for approximate string 
matching are merely different versions of dynamic 
programming. The algorithm most quoted in computational 
biology is the Smith-Watennan algorithm, which is itself a 
version of dynamic programming. One drawback with this 
algorithm is that it is O(n*), and does not apply well to 
multiple string matching. 

The method proposed, the Kaplan Multiple Sequence 
Algorithm, or KMS, is an algorithm different than dynamic 
programming. The KMS algorithm has a best-case time 
complexity of O(n) in theory. In practice, the KMS algorithm 
is much quicker than multiple string dynamic programming 
methods, and finds more matches. 

11. AN EXAMPLE OF APPROXIMATE STRING 
MATCHING 

As an example of approximate string matching, consider 
the following: given two strings, s and t, of lengths m and n 
respectively, consisting of elements from the nucleotide 
alphabet Z = (A, T, C, G ) ,  let the DNA strings s and t be 
assigned as in Table I .  

Table 1. DNA Strings s and t 
s = A G T C G G A  ( m = 7 )  
t = A G C G G C T A (n = 8) 

Preserving the lefi-teright order and lengths of the 
strings, a possible alignment between the two strings is seen 
in Table 2. 

Table 2. Alignment 1 
s ' = A G T C G G - A  

t ' =  A G C G G C T A  

The edit distance is the number of nonmatches and is 4 in 
this example [2] .  The symbol "-" indicates a missing 
character, or indel. Indel stands for insertion or deletion. For 
example, if the indel character of the string s' above is 

( I * *  I *  I 
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replaced with T, or in other words, T i s  inserted into strings', 
then a match would occur, and the edit distance would be one 
less, 4 - 1 = 3. Likewise, if T is deleted from string t' the edit 
distance would be 3. A substitution is indicated by a "*" and 
notes where a character in one string in the alignment differs 
from its corresponding character in the other string. 
This alignment has 4 matches, I indel and 3 substitutions. It 
longest substring of matches (LOCK) is AG, with a length of 
2. 

There are many possible alignments and none is a perfect 
match; they are all approximate matches. Which is better? 
The best alignment is the alignment the user deems best. In 
other words, the best alignment depends on the use of the 
alignment. 

A. Rules for Indels 
Note that in approximate string matching, an alignment seen 
in Table 3's first column might not be distinct in a biological 
sense, and is written as Table 3's second column [3]. 

8 

Table 3. Rewriting Information 
-1 E i G x  

Distance of LOCKS 
Matches 

4 4 2, I, I 

I C ; I Rewritten as: I f 1 
Also, an indel aligned with another indel, such as seen in 
Table 4, contributes no information, and is not permitted 

Table 4. Indel matched with indel not permitted 

0 
In. DYNAMIC PROGRAMMING 

The most common algorithm used in approximate 
string matching is Dynamic Programming (DP) [ 2 ] .  DP 
methods cover a range of very similar algorithms which all 
follow the basic DP premise. Generalized, the DP method 
would create an m by 11 matrix, D ,  based on the equation, 

(2 )  D j . j =  or D >.,. j - , + ~ z .  {I)[ ::::l::;] 

where wi, for I 5 i S 3, is a weighting function, defined by the 
user, indicating costs of matches, substitutions, or near- 
matches, of the comparison of certain elements. Min 
(minimum) is used if searching for differences and max 
(marimum) for similarities. Thus, Dj,j is the cost of the 

alignment consisting of the first i elements of the string s and 
the firstj elements of the string t .  Also, the best match will be 

the alignment consisting of the highest (or lowest depending 
on whether the maximum or minimum is used in the 
calculation of D) cost elements found by tracing back through 
D. 

Let the weighting function be defined as, 

(3) 

where - indicates an indel. Also assume the weights as 
follows, 

W1 = W(%-). W* = W ( ( Y , P ) ,  W )  = W ( - , P )  (4) 

Then, using the same strings s and t as above, the resulting D 
matrix is seen in Table 7, which is on the next page. Since 
the best match consists of the alignment between both strings, 
and not just subsets of both strings, the best match is given 
by the trace of D[m,n] backwards to D [ l , l ]  through the 
matrix. For example. D[m,n] = D[m- l ,n - l ]  + 1, so D[m,n] 
traces back to D[m- l ,n - l ] .  D[m-1.n-I] = D[m-Z,n-Z] + 1, so 
D[m-1.n-I] traces back to D[m-2,n-2/. D[m-Z,n-2] = D[m- 
2,n-3] + (-1.5). so D[m-2,n-2] traces back to D[m-2,n-3], and 
so forth. Thus, the best match is given in the Table 7 boxed 
and underlined. The alignment resulting is seen in Table 6. 

Table 6. Alignment 2 
s '= A G T C G - G A  

t ' = A G C G G C T A  

In Alignment 2, the length of the alignment is 8; the 
number of substitutions is 3 and the number of indels is 1, 
making the edit distance 4; the number of matches is 4; and 
the LOCKS are of lengths 2, 1, and 1. These results are 
represented in Table 7. 

I I * *  I * I  

Table 7. Alignment 2 Properties 
I Length I Edit I Number I Lengthof 1 
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s\t 
0 
A 
G 
T 
C 
G 
G 
A 

0 0 0  G O 1  
A I O O O O O O I  

The diagonals are then traversed to obtain the best 

Table 7. Matrix D 
0 A G C G G C T A 

Length Edit Number Length of 
Distance of LOCKs 

Matches 
9 3 6 2 , 3 .  1 

0 
-1.5 
-3.0 
4.5 
-6.0 
-7.5 
-9.0 
-10.5 

-1.5 -3.0 -4.5 -6.0 -7.5 -9.0 -10.5 -12.0 
I 1.0 I -0.5 -2.0 -3.5 -5.0 -6.5 -8.0 -9.5 

-0.5 I 2.0 I 0.5 -1.0 -2.5 -4.0 -5.5 -7.0 
-2.0 0.5 I 2.0 I 0.5 -1.0 -2.5 -3.0 -4.5 
-3.5 -1.0 1.5 I 2.0 I 0.5 0.0 -1.5 -3.0 
-5.0 -2.5 0.0 2.5 I 3.0 I 1.5 I 0.0 -1.5 
-6.5 -4.0 -1.5 1.0 3.5 3.0 I 1.5 I 0.0 
-8.0 -5.5 -3.0 -0.5 2.0 3.5 3.0 I 2.5 1 

The order of time complexity for DP is O(n'), and the space 

While this is effective, it does not incorporate multiple 

chosen. The remaining area of the matrix, outside of the 
LOCK, which is seen below, is separated into upper and 

lower quadrants indicated in bold and in boxes in Table 9. 
requirement is o(n'). 

string matching easily. 
Table 9. Matrix K s  Areas 

IV. MULTIPLE STRING METHODS s \ t A G C G G C T A  
Current multiple string approximate matching methods are 

based upon either comparing subsets of the entire set of 
multiple strings or comparing one string of the set to the 
remainder of the set. While these are effective, they contain 
many steps and are time consuming. A good discussion of 
matching multiple strings is found in [4] 

G 

V. PROPOSED METHOD: KMS ALGORITHM 

The KMS Algorithm identifies best matches of the longest 
substrings of the matches of many strings [5].  The KMS 
approximate matching of two strings follows to give 
background on the algorithm. 

A. KMS Matching of Two Strings 

such that: 

K[i, ,I= {: Flkise 
To find the best match, a conceptual matrix, K ,  is created, 

(7) 
I =rb l fo r  15 i 5 m,l s j 5 n, 

So, that for the same two strings as above, s and f, the matrix 
K is given in Table 8. 

Table 8. Matrix K 
s\t A G C G G C T A 
A I O O O O O O I  
G O I O l I O O O  

Note that any bolded area does not have to be searched. 
The substrings cgg, from both strings s and f, have been 
assigned places in the alignment. specifically matches to each 
other. Thus, the area is "LOCKed" and does not have to be 
searched further. 

This searching continues until: 
1. The area to be searched contains no elements, or, 
2. There are no matches in the area, 
which, in the above example, occurs after these LOCKs are 

The resulting alignment for the example above is seen in 
found. 

Table 10. 

Table IO. Alignment 3 
s'= A G T C G G - - A 

t ' = A G - C G G C T A  
I I  I l l  I 
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K[1,1..6,1..6] 
Plane A 

t b  A C G G A  
A 1 0 0 0 1  
c 0 0 0 0 0  
G 0 0 0 0 0  
G 0 0 0 0 0  
A 1 0 0 0 1  
G 0 0 0 0 0  

Table 14. Conceptual Matrix K 
K[2,1..6,1..6] 

Plane C 
A A C G G A A  A 
1 0 0 0 0 0 0  0 
0 0 1 0 0 0 0  0 
0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0  0 
1 0 0 0 0 0 0  0 
0 0 0 0 0 0 0  0 

K[4,1..6,1..6] 
Plane G 

t \ u A C G G A A  A 
A 0 0 0 0 0 0  0 
c 0 0 0 0 0 0  0 
G 0 0 1 1 0 0  0 
G 0 0 1 1 0 0  0 
A 0 0 0 0 0 0  0 
G 0 0 1 1 0 0  0 

K[5,1..6,1..6] 
Plane G 

C G G A A  A 
0 0 0 0 0  1 
0 0 0 0 0  0 
0 1 1 0 0  0 
0 1 1 0 0  0 
0 0 0 0 0  1 
0 1 1 0 0  0 

Comparing the results from the KMS in Table 11 with the 
results from the DP in Table 7 shows that in this case, the 
KMS found longer LOCKS. Note that this is only one case 
and DP can be run using different weights which would 
produce different results. The comparison is seen in Table 
12. 

Distance 

2, 1, 1 
K M S  2, 3, 1 

B. KMS Time Complexity 

The proposed algorithm searches the entire dataset, instead 
of subsets of the dataset. The work can be performed in 
parallel, and only small areas of the larger matrix are 
searched. The best-case time complexity is Ofn), which 
corresponds to the length of the longest diagonal. 

C. KMS with Three Strings 
Suppose that instead of 2 strings, as above, there are 3 

strings, s, t, and U, consisting of elements from the nucleotide 
alphabet, whereby all strings are of length n = 6. Let, the 
associations of the three strings be as in Table 13. 

Table 13. Three String Assignments 
s = A C T G G A  
t = A C G G A G  
u = A C G G A A  

A three-dimensional conceptual matrix, K ,  is formed by, 

K[3,1..6,1..6] 
Plane T 

C G G G A  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

K[6,1..6,1..6] 
Plane A 

C G G G A  
0 0 0 1 1  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 1 1  
0 0 0 0 0  

1, 
0, otherwise 

if s[i] = t [ j ]  = u[kI 
K[i ,  j ,  k ]  = 

where 1 5 i, j ,  k 5 n. If the conceptual matrix is subdivided 
into planes designated by string s, i.e., planes A, C, T, G, G, 
A, the matrix is seen in Table 14. 

In order to find the LOCK, the diagonals of the matrix 
have to be traversed. The diagonals of the three dimensional 
matrix start at all positions where there is a one in the index, 
i.e., K[l,l,l], K[1,1,2], K[1,1,3],etc. Someoftbediagonals 
follow in Table 15, where the bold point is the starting point 
of the diagonal, and the points along the diagonal are given 
in order. 

Table 15. Diagonals of Table 14 
K[l,l,ll+K[2,2,21+ K[3,3,31+ K[4,4,41+ K15,5,51+ 
K[6,6,61 
K[1,1,21+ K[2,2,31+ K[3,3,41+ K[4,4,51+ K[5,5,61 
K[1,1,31+ K[2,2,41+ K[3,3,51+ K[4,4,61 

K[1,2,11+ K[2,3,21+ K[3,4,31+ K[4,5,41+ K[5,6,51 
K[1,2,2]+ K[2,3,3]+ K[3,4,4]+ K[4,5,51+ K[5,6,61 
K[1,2,31+ K[2,3,41+ K[3,4,51+ K[4,5,61 
KI1,2,41+ KI2,3,51+ K13.4.61 
KI1,2,51+ Kt2,3,61 
K[1,2,61 

K[6,6,11 
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Table 16. Conceptual Matrix K with Shaded Boxes Representing Area to Search 

K[1,1..6,1..6] 
Plane A 

K[2,1..6,1..6] 
Plane C 

K[3,1..6,1..6] 
Plane T 

t\u A C G G A A  A C G G A A  A C G G G A  
A 0 0 1 1  0 0 0 0  0 0 0 0  
C 0 0 0 0  0 0 0 0  0 0 0 0  
G 0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0  
G 0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0  
A 1 0 0 0 1 1  0 0 0 0 0 0  0 0 0 0 0 0  
G 0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0  

K[4,1..6,1..6] K[5,1..6,1..61 K[6,1..6,1..6] 
Plane G Plane G Plane A 

t\u A C G G A A  A C G G A A  A C G G G A  
A 0 0 0 0 0 0  0 0 0 0 0 0  1 0 0 0 1 1  
c 0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0  
G 0 Om1 0 0 0 0 1 1 0 0  0 0 0 0 0 0  
G 0 0 1 1 0 0  0 0 1mo 0 0 0 0 0 0 0  
A 0 0 0 0 0 0  0 0 0 0 0 0  1 0  0 om1 
G 0 0 1 1 0 0  0 0 1 1 0 0  0 0 0 0 0 0  

All of these diagonals, 91 in all, must he searched, and 
the LOCK of all will be noted. The LOCK found is 
underlined and boxed, and the remaining area is in bold 
and shaded in a vertical pattern in Table 16, on the 
following page. A conceptual view of the process is given 
in figure I ,  also on the following page. 

Note that only one remaining area, the area from 
K[I , l , I l  to K[3,2,2/, or the upper area, is to be searched. 
If the matrix consisted of more planes, i.e., if n was 
greater, then the area from K[7,6,6] to [n,n,n], or the 
lower area, would have to be searched as well. At any level 
in the recursion of the algorithm, the remaining area can 

only be separated into two areas, the upper and lower, 
regardless of R or n. 

The searching in an area continues until there are no 
elements, or there are no matches in a given area. 

The diagonals to be searched next, in the example 
above, start at points K[i,j,k] where one of i, j ,  or k, is the 
index of the starting point of the area. These diagonals are 
seen in Table 17, with the starting points in bold. 
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Table 17. Diagonals of Table 16 
K[l,l,i]+ K[2,2,2] K[2,1,11+ Kc3.2.21 K13,1,11 
K[1,1,21 K[2JJl K[3,1,21 
K[1,2,11 K[ZJJl K[3,2,11 
K[1,2,21 

Thus, there are only IO diagonals to be searched in this 
area, which all range in length from 1 to 2. The resulting 
alignment is seen in Table 18. 

Table 18. Alignment 4 
s ' = A C T G G A -  

t ' = A C - G G A G  

u ' = A C - G G A A  

1 1 - I l l -  
1 1 - I l l -  

Table 19 shows the properties of alignment 4 of Table 18. 

Table 19. Alignment 4 Properties 
I Alignment I Edit I Length of 1 

Length I Distance I LOCKS 
7 I 2 I 3 , 2  

D. KMS Adding More Strings 
For R number of strings, the same argument as above, 

where R = 3, holds. For example, suppose the strings are 
str[l], str[3], ..., str[R], all of length n. The diagonals to 
be searched start at positions K [ 1 , 1 ,  ..., 11, K11.1, ..., 21, ..., 
K[n,n, ..., I]. Each diagonal is traversed and the LOCK is 
noted. The remaining area is then searched until there is 
no area remaining, or there is no LOCK in that area. 

When a given index i is I, the number of diagonals 
which must be searched is, 

( n - l y n R - l  (9) 
for i = I to R. Thus, the total number of diagonals to be 
searched in the first level is, 

R 

,=I 
(n - ~ j ' - ' n ~ - ' .  (10) 

Above, the number of diagonals to be searched is stated to 
be 91. As n = 6 and R = 3, this is shown as follows, 

(11) 
3 

(6  -I)'-' 63-r = 91. 
,=I  

How many diagonals must be searched in the 
subsequent levels? Suppose that the area to be searched is 
in the range K [ i , , i ,  ,..., i R ]  to K [ j , , j ,  ,..., j , ] .  Also, 

suppose k q = j , - i  4 + I , f o r  q = I  ... R.Asisabove ,one  

of the indices of the diagonal to be searched must be i, , 

where p is an element of { I,,,,R). If the first index is i l ,  

i.e., K[i,,s,, ..., s R ]  where sq E ,..., j , } ,  for q = 2..R, 

there are k, choices for each q = 2..R. Thus, the subtotal 

is. 
R 
I Ikq .  (12) 

q=2 

When the second index is i , ,  then there are k ,  -1 

choices for the first index, and k ,  choices for each q = 

L R .  The subtotal for this part is. 

q=3 

When the third index is i , ,  there are k ,  -1 choices for 

eachp = 1..2, and k ,  choices for each q = 4..R. This 

subtotal, for when the third index is i , ,  is, 
2 R 

( I I [ k ,  - I l l (  I l k , ) .  (14) 
,=I F 4  

Again, there is a pattern developing. When a given index 
r, for r = 2..(R-I), is i ,  , the number of diagonals which 
must be searched is, 

R 
( s [ k ,  -I])( II k q ) .  (15) 

Thus, the total number of diagonals to be searched at any 
level is, 

,=I ,='+I 

(16) 
Above, the number of diagonals to be searched is 10, in the 
area from K [ I , I , I ]  to KL3.2.21. Again, as n = 6 and R = 3, 
this can be seen in Table 20. 

Table 20. uantities to be Searched 

3- I +  1=3 
2-1+1=2 

1 2  2-1+1=2 

The calculation for the number of diagonals to be searched 
is seen in equation 17. 

=2(2)+2(2)+2(1)=10 
Thus, at level 0, where the area is in the range 

K [ I , l , _ _ _ ,  I] to K[n,n ...., n], the total number of diagonals to 
be searched is the sum of (n - 1Y-l nR-(r+l)+l , which is the 

same result as above. 
After the diagonals are traversed, the algorithm 
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continues. The LOCK is noted and the area is separated 
into upper and lower sections, and only those areas are 
searched. 

Suppose the LOCK is found starting at K[x.x. ..., x] and 
ending at K[y,y, ...,y I .  The remaining areas are then in the 
ranges K[l ,I  ,..., I] to K[x- l ,x - l ,  ..., x-11, for the upper area, 
and K[y+l.y+J ,..., y + l ]  to K[n,n ,..., n] ,  for the lower area. 
These areas are searched and the LOCKS noted. The 
areas are then separated as above. This algorithm is 
recursive and continues until the area to be searched is 
outside of the matrix range. or there are no matches in a 
given area. 

E. KMS Time Complexity 
NOI all elements of the matrix mnst be searched, though, 

as diagonals of length less than or equal to the length of 
the current LOCK found are not searched. In the worst- 
case, the total number of elements in the matrix, nR , is 
searched in the first level. In the best-case, the longest 
diagonal contains all matches, and only n elements are 
searched. 

In the worst-case at the second level of recursion, there 

is one area with (n - k)R elements. In the worst-case at the 

third level, there is one area with (n-(k+k-l))R 
elements, and so on. 

Again, a pattern is developing. Thus, the worst-case 
number of elements is, 
G 

(n-  ik + ci )R 
i=I 

where ci is a specific constant for each i in 1,...,&). 
Thus, the time complexity, T(n), range is, 

n$T(n)<nR+# (19) 

F. KMS Parallelism 
Since the diagonals are traversed separately, all 

diagonals can be traversed in parallel. Also, the areas are 
separated and searched independently. Thus, the area at 
each level can be searched in parallel. 

G. KMS Space Requirements 
If the cardinality of the alphabet, Z,  is less than n (the 

number of elements in the strings) then the space required 
is not an n R  matrix, but a nZR-l matrix. For n > Z , this 

concept saves n by (nR-' -ZR- ' )  space, which can be 
considerable for large n and small Z.  

H. KMS String Lengths 
The examples in this section used strings of equal length, 

n, for convenience only. Strings of various lengths could 
be approximately matched using this algorithm, with 
similar results. 

VI. RELATEDWORK 
Extensive searches have been performed to find similar 

mulitple string matching algorithms similar to the KMS 
algorithm. None was found. 

Some algorithms used a matrix similar to the one 
proposed above, but the methods used to interpret the 
matrix were non-existent or unlike the KMS algorithm. 
Church and Helfman, for example, display lines of text 
similar to a matrix, but decipher the information 
differently [6] .  Other matrix using algorithms include 
Maize1 and Lenk, Ham, et. al., Gibbs and McIntyre, and 
Novotny, but again, even though these algorithms use 
matrices that look akin to the KMS algorithm, the matrices 
and algorithms are not the same [7][8][9][10]. Many other 
references have been explored, but again, no similar 
method has been uncovered [4] [ 1 1 I[ 121 [ 131 [ 141 [ 1 SI [ 1 61. 

Although no approximate string matching algorithm 
similar to the method proposed was found, an exact string 
matching algorithm which uses similar techniques was 
discovered. Takefuji, Tanaka, and Lee describe a solution 
for exact matches where an m(n-m+l) neural network 
array is used [17]. This algorithm is similar to the KMS 
algorithm in that an array is used. The algorithm does not 
traverse the diagonals in the same way described above. 

VII. CONCLUSION 
The KMS has been shown to find approximate matches 

in multiple strings. The searching in this algorithm can be 
performed in parallel. The algorithm is different than 
current methods that rely upon dynamic programming. 
KMS has a lower b u n d  of n, which makes it an attractive 
multiple DNA sequencing method. 
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