
Multiple DNA Sequence Approximate Matching
Kathleen M. Kaplan, Member, ZEEE, and John J. Ksplan

Abslract- DNA matching is an important key to
understanding genomes, evolution, relationships between
organisms, and other concepts in genomics. Yet. comparing
DNA is unlike matching typed words to a dictionary of words as
there is no "true" spelling for DNA. Therefore, approximate
matching algorithms mnst be used. There are many algorithms
that can compare two DNA sequences, but when multiple
sequences are to be compared, the matching becomes more
diflicult. Comparing multiple sequences of DNA can be
performed using different known methods. These methods
include dynamic programming, star alignments, tree
alignments, and others, which are usually based on dynamic
programming. The method proposed here is a novel method to
compare all strings, not merely all strings to one, as in the star
alignment method, and it does so in a different way. The
proposed method the Kaplan Multiple Sequence Algorithm, or
KMS, separates the multi-dimensional search area so that
comparisons can be performed in parallel. This paper discusses
the problem of comparing multiple sequences and introduces
this new novel method to match multiple DNA strings.

Index Terms-Algorithms, Approximation methods,
Biomedical computing, Computation theory, Polynomial
approximation, Set theory.

I. INTRODUC~ION A dictionary contains words that are spelled correctly.
Spellcheckers assume a reliable dictionary; if a word to

be checked - the entry - is spelled differently than any word in
the reliable database, then it is assumed to he misspelled.
Suppose that there exists a database that contains words that
have no "correct" spelling, yet this is the dictionary that must
be used. This is exactly what happens when trying to compare
DNA sequences, the database contains data from some
organism, hut since all organisms are different, even
organisms of the same species, there is no "comect'' DNA.
How can an entry he checked against this unreliable
database? This constitutes the problem of approximate
(DNA) string matching.

This is a very difficult problem [I], in fact, it is NP, as can
be seen by its brute-force complexity for a dataset of two

Manusc"pt received June 18.2004.
K. M. &plan is with the Dep-eat of Systems ;md Computer Science.

How& University. Washington. DC 2WS9 USA (phone: 202-806-7286; fax:
2 0 2 - 8 0 6 4 3 1 : e-mil: kkuplan@howard.edu).

J . 1. &plan is with the United States Air Force (e-mil: 694spts.cc@R-
made.af.mi1).

strings of length n:

2>"
C(n) = - (1) &'
Thus, heuristics are needed to solve approximate string
matching problems.

In multiple string matching, more than two strings are to
be compared. The current methods for approximate string
matching are merely different versions of dynamic
programming. The algorithm most quoted in computational
biology is the Smith-Watennan algorithm, which is itself a
version of dynamic programming. One drawback with this
algorithm is that it is O(n*), and does not apply well to
multiple string matching.

The method proposed, the Kaplan Multiple Sequence
Algorithm, or KMS, is an algorithm different than dynamic
programming. The KMS algorithm has a best-case time
complexity of O(n) in theory. In practice, the KMS algorithm
is much quicker than multiple string dynamic programming
methods, and finds more matches.

11. AN EXAMPLE OF APPROXIMATE STRING
MATCHING

As an example of approximate string matching, consider
the following: given two strings, s and t, of lengths m and n
respectively, consisting of elements from the nucleotide
alphabet Z = (A, T, C, G) , let the DNA strings s and t be
assigned as in Table I .

Table 1. DNA Strings s and t
s = A G T C G G A (m = 7)
t = A G C G G C T A (n = 8)

Preserving the lefi-teright order and lengths of the
strings, a possible alignment between the two strings is seen
in Table 2.

Table 2. Alignment 1
s ' = A G T C G G - A

t ' = A G C G G C T A

The edit distance is the number of nonmatches and is 4 in
this example [2] . The symbol "-" indicates a missing
character, or indel. Indel stands for insertion or deletion. For
example, if the indel character of the string s' above is

(I * * I * I

0-7803-8728-7/04/$20.00 02004 IEEE 79

replaced with T, or in other words, T i s inserted into strings',
then a match would occur, and the edit distance would be one
less, 4 - 1 = 3. Likewise, if T is deleted from string t' the edit
distance would be 3. A substitution is indicated by a "*" and
notes where a character in one string in the alignment differs
from its corresponding character in the other string.
This alignment has 4 matches, I indel and 3 substitutions. It
longest substring of matches (LOCK) is AG, with a length of
2.

There are many possible alignments and none is a perfect
match; they are all approximate matches. Which is better?
The best alignment is the alignment the user deems best. In
other words, the best alignment depends on the use of the
alignment.

A. Rules for Indels
Note that in approximate string matching, an alignment seen
in Table 3's first column might not be distinct in a biological
sense, and is written as Table 3's second column [3].

8

Table 3. Rewriting Information
-1 E i G x

Distance of LOCKS
Matches

4 4 2, I, I

I C ; I Rewritten as: I f 1
Also, an indel aligned with another indel, such as seen in
Table 4, contributes no information, and is not permitted

Table 4. Indel matched with indel not permitted

0
In. DYNAMIC PROGRAMMING

The most common algorithm used in approximate
string matching is Dynamic Programming (DP) [2] . DP
methods cover a range of very similar algorithms which all
follow the basic DP premise. Generalized, the DP method
would create an m by 11 matrix, D , based on the equation,

(2) D j . j = or D >.,. j - , + ~ z . {I)[::::l::;]

where wi, for I 5 i S 3, is a weighting function, defined by the
user, indicating costs of matches, substitutions, or near-
matches, of the comparison of certain elements. Min
(minimum) is used if searching for differences and max
(marimum) for similarities. Thus, Dj,j is the cost of the

alignment consisting of the first i elements of the string s and
the firstj elements of the string t . Also, the best match will be

the alignment consisting of the highest (or lowest depending
on whether the maximum or minimum is used in the
calculation of D) cost elements found by tracing back through
D.

Let the weighting function be defined as,

(3)

where - indicates an indel. Also assume the weights as
follows,

W1 = W(%-). W* = W ((Y , P) , W) = W (- , P) (4)

Then, using the same strings s and t as above, the resulting D
matrix is seen in Table 7, which is on the next page. Since
the best match consists of the alignment between both strings,
and not just subsets of both strings, the best match is given
by the trace of D[m,n] backwards to D [l , l] through the
matrix. For example. D[m,n] = D[m- l ,n - l] + 1, so D[m,n]
traces back to D[m- l ,n - l] . D[m-1.n-I] = D[m-Z,n-Z] + 1, so
D[m-1.n-I] traces back to D[m-2,n-2/. D[m-Z,n-2] = D[m-
2,n-3] + (-1.5). so D[m-2,n-2] traces back to D[m-2,n-3], and
so forth. Thus, the best match is given in the Table 7 boxed
and underlined. The alignment resulting is seen in Table 6.

Table 6. Alignment 2
s '= A G T C G - G A

t ' = A G C G G C T A

In Alignment 2, the length of the alignment is 8; the
number of substitutions is 3 and the number of indels is 1,
making the edit distance 4; the number of matches is 4; and
the LOCKS are of lengths 2, 1, and 1. These results are
represented in Table 7.

I I * * I * I

Table 7. Alignment 2 Properties
I Length I Edit I Number I Lengthof 1

80

s\t
0
A
G
T
C
G
G
A

0 0 0 G O 1
A I O O O O O O I

The diagonals are then traversed to obtain the best

Table 7. Matrix D
0 A G C G G C T A

Length Edit Number Length of
Distance of LOCKs

Matches
9 3 6 2 , 3 . 1

0
-1.5
-3.0
4.5
-6.0
-7.5
-9.0
-10.5

-1.5 -3.0 -4.5 -6.0 -7.5 -9.0 -10.5 -12.0
I 1.0 I -0.5 -2.0 -3.5 -5.0 -6.5 -8.0 -9.5

-0.5 I 2.0 I 0.5 -1.0 -2.5 -4.0 -5.5 -7.0
-2.0 0.5 I 2.0 I 0.5 -1.0 -2.5 -3.0 -4.5
-3.5 -1.0 1.5 I 2.0 I 0.5 0.0 -1.5 -3.0
-5.0 -2.5 0.0 2.5 I 3.0 I 1.5 I 0.0 -1.5
-6.5 -4.0 -1.5 1.0 3.5 3.0 I 1.5 I 0.0
-8.0 -5.5 -3.0 -0.5 2.0 3.5 3.0 I 2.5 1

The order of time complexity for DP is O(n'), and the space

While this is effective, it does not incorporate multiple

chosen. The remaining area of the matrix, outside of the
LOCK, which is seen below, is separated into upper and

lower quadrants indicated in bold and in boxes in Table 9.
requirement is o(n').

string matching easily.
Table 9. Matrix K s Areas

IV. MULTIPLE STRING METHODS s \ t A G C G G C T A
Current multiple string approximate matching methods are

based upon either comparing subsets of the entire set of
multiple strings or comparing one string of the set to the
remainder of the set. While these are effective, they contain
many steps and are time consuming. A good discussion of
matching multiple strings is found in [4]

G

V. PROPOSED METHOD: KMS ALGORITHM

The KMS Algorithm identifies best matches of the longest
substrings of the matches of many strings [5]. The KMS
approximate matching of two strings follows to give
background on the algorithm.

A. KMS Matching of Two Strings

such that:

K[i, ,I= {: Flkise
To find the best match, a conceptual matrix, K , is created,

(7)
I =rb l fo r 15 i 5 m,l s j 5 n,

So, that for the same two strings as above, s and f, the matrix
K is given in Table 8.

Table 8. Matrix K
s\t A G C G G C T A
A I O O O O O O I
G O I O l I O O O

Note that any bolded area does not have to be searched.
The substrings cgg, from both strings s and f, have been
assigned places in the alignment. specifically matches to each
other. Thus, the area is "LOCKed" and does not have to be
searched further.

This searching continues until:
1. The area to be searched contains no elements, or,
2. There are no matches in the area,
which, in the above example, occurs after these LOCKs are

The resulting alignment for the example above is seen in
found.

Table 10.

Table IO. Alignment 3
s'= A G T C G G - - A

t ' = A G - C G G C T A
I I I l l I

81

K[1,1..6,1..6]
Plane A

t b A C G G A
A 1 0 0 0 1
c 0 0 0 0 0
G 0 0 0 0 0
G 0 0 0 0 0
A 1 0 0 0 1
G 0 0 0 0 0

Table 14. Conceptual Matrix K
K[2,1..6,1..6]

Plane C
A A C G G A A A
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

K[4,1..6,1..6]
Plane G

t \ u A C G G A A A
A 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0
G 0 0 1 1 0 0 0
G 0 0 1 1 0 0 0
A 0 0 0 0 0 0 0
G 0 0 1 1 0 0 0

K[5,1..6,1..6]
Plane G

C G G A A A
0 0 0 0 0 1
0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 1 1 0 0 0

Comparing the results from the KMS in Table 11 with the
results from the DP in Table 7 shows that in this case, the
KMS found longer LOCKS. Note that this is only one case
and DP can be run using different weights which would
produce different results. The comparison is seen in Table
12.

Distance

2, 1, 1
K M S 2, 3, 1

B. KMS Time Complexity

The proposed algorithm searches the entire dataset, instead
of subsets of the dataset. The work can be performed in
parallel, and only small areas of the larger matrix are
searched. The best-case time complexity is Ofn), which
corresponds to the length of the longest diagonal.

C. KMS with Three Strings
Suppose that instead of 2 strings, as above, there are 3

strings, s, t, and U, consisting of elements from the nucleotide
alphabet, whereby all strings are of length n = 6. Let, the
associations of the three strings be as in Table 13.

Table 13. Three String Assignments
s = A C T G G A
t = A C G G A G
u = A C G G A A

A three-dimensional conceptual matrix, K , is formed by,

K[3,1..6,1..6]
Plane T

C G G G A
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

K[6,1..6,1..6]
Plane A

C G G G A
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0

1,
0, otherwise

if s[i] = t [j] = u[kI
K[i , j , k] =

where 1 5 i, j , k 5 n. If the conceptual matrix is subdivided
into planes designated by string s, i.e., planes A, C, T, G, G,
A, the matrix is seen in Table 14.

In order to find the LOCK, the diagonals of the matrix
have to be traversed. The diagonals of the three dimensional
matrix start at all positions where there is a one in the index,
i.e., K[l,l,l], K[1,1,2], K[1,1,3],etc. Someoftbediagonals
follow in Table 15, where the bold point is the starting point
of the diagonal, and the points along the diagonal are given
in order.

Table 15. Diagonals of Table 14
K[l,l,ll+K[2,2,21+ K[3,3,31+ K[4,4,41+ K15,5,51+
K[6,6,61
K[1,1,21+ K[2,2,31+ K[3,3,41+ K[4,4,51+ K[5,5,61
K[1,1,31+ K[2,2,41+ K[3,3,51+ K[4,4,61

K[1,2,11+ K[2,3,21+ K[3,4,31+ K[4,5,41+ K[5,6,51
K[1,2,2]+ K[2,3,3]+ K[3,4,4]+ K[4,5,51+ K[5,6,61
K[1,2,31+ K[2,3,41+ K[3,4,51+ K[4,5,61
KI1,2,41+ KI2,3,51+ K13.4.61
KI1,2,51+ Kt2,3,61
K[1,2,61

K[6,6,11

82

Table 16. Conceptual Matrix K with Shaded Boxes Representing Area to Search

K[1,1..6,1..6]
Plane A

K[2,1..6,1..6]
Plane C

K[3,1..6,1..6]
Plane T

t\u A C G G A A A C G G A A A C G G G A
A 0 0 1 1 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K[4,1..6,1..6] K[5,1..6,1..61 K[6,1..6,1..6]
Plane G Plane G Plane A

t\u A C G G A A A C G G A A A C G G G A
A 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 Om1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
G 0 0 1 1 0 0 0 0 1mo 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 om1
G 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

All of these diagonals, 91 in all, must he searched, and
the LOCK of all will be noted. The LOCK found is
underlined and boxed, and the remaining area is in bold
and shaded in a vertical pattern in Table 16, on the
following page. A conceptual view of the process is given
in figure I , also on the following page.

Note that only one remaining area, the area from
K[I , l , I l to K[3,2,2/, or the upper area, is to be searched.
If the matrix consisted of more planes, i.e., if n was
greater, then the area from K[7,6,6] to [n,n,n], or the
lower area, would have to be searched as well. At any level
in the recursion of the algorithm, the remaining area can

only be separated into two areas, the upper and lower,
regardless of R or n.

The searching in an area continues until there are no
elements, or there are no matches in a given area.

The diagonals to be searched next, in the example
above, start at points K[i,j,k] where one of i, j , or k, is the
index of the starting point of the area. These diagonals are
seen in Table 17, with the starting points in bold.

83

Table 17. Diagonals of Table 16
K[l,l,i]+ K[2,2,2] K[2,1,11+ Kc3.2.21 K13,1,11
K[1,1,21 K[2JJl K[3,1,21
K[1,2,11 K[ZJJl K[3,2,11
K[1,2,21

Thus, there are only IO diagonals to be searched in this
area, which all range in length from 1 to 2. The resulting
alignment is seen in Table 18.

Table 18. Alignment 4
s ' = A C T G G A -

t ' = A C - G G A G

u ' = A C - G G A A

1 1 - I l l -
1 1 - I l l -

Table 19 shows the properties of alignment 4 of Table 18.

Table 19. Alignment 4 Properties
I Alignment I Edit I Length of 1

Length I Distance I LOCKS
7 I 2 I 3 , 2

D. KMS Adding More Strings
For R number of strings, the same argument as above,

where R = 3, holds. For example, suppose the strings are
str[l], str[3], ..., str[R], all of length n. The diagonals to
be searched start at positions K [1 , 1 , ..., 11, K11.1, ..., 21, ...,
K[n,n, ..., I]. Each diagonal is traversed and the LOCK is
noted. The remaining area is then searched until there is
no area remaining, or there is no LOCK in that area.

When a given index i is I, the number of diagonals
which must be searched is,

(n - l y n R - l (9)
for i = I to R. Thus, the total number of diagonals to be
searched in the first level is,

R

,=I
(n - ~ j ' - ' n ~ - ' . (10)

Above, the number of diagonals to be searched is stated to
be 91. As n = 6 and R = 3, this is shown as follows,

(11)
3

(6 -I)'-' 63-r = 91.
,=I

How many diagonals must be searched in the
subsequent levels? Suppose that the area to be searched is
in the range K [i , , i , ,..., i R] to K [j , , j , ,..., j ,] . Also,

suppose k q = j , - i 4 + I , f o r q = I ... R.Asisabove ,one

of the indices of the diagonal to be searched must be i, ,

where p is an element of { I,,,,R). If the first index is i l ,

i.e., K[i,,s,, ..., s R] where sq E ,..., j , } , for q = 2..R,

there are k, choices for each q = 2..R. Thus, the subtotal

is.
R
I Ikq . (12)

q=2

When the second index is i , , then there are k , -1

choices for the first index, and k , choices for each q =

L R . The subtotal for this part is.

q=3

When the third index is i , , there are k , -1 choices for

eachp = 1..2, and k , choices for each q = 4..R. This

subtotal, for when the third index is i , , is,
2 R

(I I [k , - I l l (I l k ,) . (14)
,=I F 4

Again, there is a pattern developing. When a given index
r, for r = 2..(R-I), is i , , the number of diagonals which
must be searched is,

R
(s [k , -I])(II k q) . (15)

Thus, the total number of diagonals to be searched at any
level is,

,=I ,='+I

(16)
Above, the number of diagonals to be searched is 10, in the
area from K [I , I , I] to KL3.2.21. Again, as n = 6 and R = 3,
this can be seen in Table 20.

Table 20. uantities to be Searched

3- I + 1=3
2-1+1=2

1 2 2-1+1=2

The calculation for the number of diagonals to be searched
is seen in equation 17.

=2(2)+2(2)+2(1)=10
Thus, at level 0, where the area is in the range

K [I , l , _ _ _ , I] to K[n,n, n], the total number of diagonals to
be searched is the sum of (n - 1Y-l nR-(r+l)+l , which is the

same result as above.
After the diagonals are traversed, the algorithm

84

continues. The LOCK is noted and the area is separated
into upper and lower sections, and only those areas are
searched.

Suppose the LOCK is found starting at K[x.x. ..., x] and
ending at K[y,y, ...,y I . The remaining areas are then in the
ranges K[l ,I ,..., I] to K[x- l ,x - l , ..., x-11, for the upper area,
and K[y+l.y+J ,..., y + l] to K[n,n ,..., n] , for the lower area.
These areas are searched and the LOCKS noted. The
areas are then separated as above. This algorithm is
recursive and continues until the area to be searched is
outside of the matrix range. or there are no matches in a
given area.

E. KMS Time Complexity
NOI all elements of the matrix mnst be searched, though,

as diagonals of length less than or equal to the length of
the current LOCK found are not searched. In the worst-
case, the total number of elements in the matrix, nR , is
searched in the first level. In the best-case, the longest
diagonal contains all matches, and only n elements are
searched.

In the worst-case at the second level of recursion, there

is one area with (n - k)R elements. In the worst-case at the

third level, there is one area with (n-(k+k-l))R
elements, and so on.

Again, a pattern is developing. Thus, the worst-case
number of elements is,
G

(n- ik + ci)R
i=I

where ci is a specific constant for each i in 1,...,&).
Thus, the time complexity, T(n), range is,

n$T(n)<nR+# (19)

F. KMS Parallelism
Since the diagonals are traversed separately, all

diagonals can be traversed in parallel. Also, the areas are
separated and searched independently. Thus, the area at
each level can be searched in parallel.

G. KMS Space Requirements
If the cardinality of the alphabet, Z, is less than n (the

number of elements in the strings) then the space required
is not an n R matrix, but a nZR-l matrix. For n > Z , this

concept saves n by (nR-' -ZR- ') space, which can be
considerable for large n and small Z.

H. KMS String Lengths
The examples in this section used strings of equal length,

n, for convenience only. Strings of various lengths could
be approximately matched using this algorithm, with
similar results.

VI. RELATEDWORK
Extensive searches have been performed to find similar

mulitple string matching algorithms similar to the KMS
algorithm. None was found.

Some algorithms used a matrix similar to the one
proposed above, but the methods used to interpret the
matrix were non-existent or unlike the KMS algorithm.
Church and Helfman, for example, display lines of text
similar to a matrix, but decipher the information
differently [6] . Other matrix using algorithms include
Maize1 and Lenk, Ham, et. al., Gibbs and McIntyre, and
Novotny, but again, even though these algorithms use
matrices that look akin to the KMS algorithm, the matrices
and algorithms are not the same [7][8][9][10]. Many other
references have been explored, but again, no similar
method has been uncovered [4] [1 1 I[121 [131 [141 [1 SI [1 61.

Although no approximate string matching algorithm
similar to the method proposed was found, an exact string
matching algorithm which uses similar techniques was
discovered. Takefuji, Tanaka, and Lee describe a solution
for exact matches where an m(n-m+l) neural network
array is used [17]. This algorithm is similar to the KMS
algorithm in that an array is used. The algorithm does not
traverse the diagonals in the same way described above.

VII. CONCLUSION
The KMS has been shown to find approximate matches

in multiple strings. The searching in this algorithm can be
performed in parallel. The algorithm is different than
current methods that rely upon dynamic programming.
KMS has a lower b u n d of n, which makes it an attractive
multiple DNA sequencing method.

REFERENCES

[I 1

I21

131

[41

151

161

171

D. Sankoff and I. Kmsk?l. Time Warps, Suing Edits. and
Macromolecules: The Theory and h c t i c e of Sequence
Comparison. Addison-Wesley Fublishing Co., Inc.. pp. 3-8. 1983.
2. Galil and K Park. An -raved a l p o f i h for approximate suing
matching. SIAM Joumal on Computing. vol. 19, no. 6. pp. 989-
999. Dec. 1990.
M. Water". Mathematical Methods for DNA Sequences. CRC
k s , 1989.
I. SeNbal and I. Meidanis. lnuoduction to computational molecular
biology. Bmku'Cole Publishing Company. 1997.
K Kaplan. An Approximate Suing Matching Algonthm With
Exlension to Higher Dimensions. UMI Microfilm. 1995.
K Church and J . Helhnan. Dotplot: A Pmg" for Exploring Self-
Similarity in Millions of Lines of Text and Code. American
Swtistical Assoicvtion 2. no. 2, pp. 153.174. March 1993.
A. Gibbs and G. McIntyre. The Dia- a Method far Comparing
Sequences. Europe Joumal of Biochemisuy 16 (1970): 1-1 1.

85

181 R. H a , P. Hagblam and P. Gudsson. Twedimensiod graphic
analysis ofDNA squence homologies. Nucleic Acids R e m h IO,
no. 1. pp. 365-374. 1982.
I. Maize1 and R. Le&. E h c e d Graphic Analysis of Nucleic Acid
and hot& Sequences. Proceedins of the National Academy of
Sciences 78. no. 12, pp. 7665-7669. December 1981.

Homology. Nucleic AcidsResearch IO. DO. I . pp. 127-131. 1982.
I. Am. Computer Algorithms: Suing Pattern Matching Strategies.
EEE Computer Society Press, 1994.
T. Carmen, C. Leiserson. and R. Rivest. Intradudion in
AlgoCthms. The MIT Press. 1993.
L. Flora. B. Walenz, md S . Hannenhalli, editors. Currents in
Compuwtional Molecular Biology. 2002.

[9]

[IO] 1. Novorny. Mauix Program to Analyze Structure

[I 11

[121

[I31

[I41 K. Kaplan. An Annotated Bibliography: Shing Matching and
Genomic Information. Instilute for Infomtion Science and
Computer Science (GW-IIST-95-05). pp. 1-18. July 1995.
S. Istrail, M. Waterman. E. Lander, and P. Pevmer, editors. Jnumal
of Compuwtiond Biology. Selected P a p from RECOMB 2001.
Mary Ann Lie&, Inc. Publishers, vol. 9, no. 2.2002.
G. Myers, S. Hannenhalli. S. Isnail. P. Pevmer. and M. Waterman.
editon. RECOMB 2002, Proceedings of the Sixth Annual
lntemationd Conference an Computational Biology. ACM. April
18-21.2002.
Y. Takekefuji. T. T d a . and K Lee. A Parallel String S w c h
Algodthm IEEE Transactions an Systems Man. and Cybemetics
22. no. 2, pp. 332-336. MarcUApril 1992.

[I51

[I61

[I71

86

