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Abstract

The multiple genome sequence alignment problem

falls in the domain of problems that can be parallelized to

address large sequence lengths. Although there is

communication required for the computation of the

aligned sequences, the proper distribution can reduce the

overall problem to a set of tasks to be solved

independently and then merged. A parallel algorithm for

the alignment of multiple genome sequences is described.

The algorithm is experimentally evaluated in a distributed

Grid environment that provides very scalable and low

cost computation performance. The Grid environment is

evaluated with respect to a traditional cluster

environment and results are compared to evaluate the

effectiveness of a Grid environment for large

computational biology.

1. Introduction

Biological sequence alignment is very important for

the analysis of the genome and protein structures [15].

Multiple genome sequence alignment is particularly

important as it shows the relationships among the

structures being aligned. This problem draws the attention

of the researchers as it becomes extremely

computationally intensive for sequences of very large

size.

Many different approaches have been used to align

genome sequences. There are methods using the

Needleman and Wunsch [10] algorithm to find the

optimal alignment of sequences and then to search for the

global alignment among all the sequences. But aligning

all the sequences can take a significant amount of time

and thus there are methods that forego optimal results,

reducing computation time in exchange for finding only a

near optimal [18] alignment. There is also a need to find a

local alignment among multiple sequences when the

sequences have some common regions to share but they

are different otherwise. There are many different

approaches to find the local multiple alignments [7].

For multiple sequence alignment, many algorithms are

used that rely on the comparison of pairwise sequence

alignment [13]. The double dynamic method can be used

for multiple sequence alignments [16] reducing some

complexity of other algorithms. There are some

algorithms that consider the structure of the sequences for

alignment [14]. Multiple sequence alignment can be done

globally or locally but the optimal algorithm to align

multiple sequences becomes very computationally

intensive with more than three sequences [1]. The

multiple sequence alignment algorithms often forego

optimal algorithms for less computationally intensive

solutions that can get near optimal results. In this paper, a

simple approach to find out the multiple sequence

alignments among different sequences is described which

uses the basic pairwise algorithm [11] [3]. The

computation time is reduced by introducing parallelism to

distribute work evenly among processors while

minimizing communication latency between the

processors.

Taylor [13] uses a very basic algorithm for global

alignment among sequences, comparing the pairwise

alignment among the sequences using the basic dynamic

programming algorithm and then finding global

alignment among the sequences depending on the score

of the pairwise alignments. Although suboptimal

alignment algorithms are used by many applications to

avoid the excessive computation time required by optimal

global alignment, the algorithm in this paper is designed

to handle computation intensive tasks.

The Grid environment has been chosen for an

experimental environment as it shows promise in terms of

computationally intensive jobs. It provides the user with a

service-oriented view [5] that accesses the power of the

distributed resources with minimum concern to the user

about the structure of the architecture. Tests of a grid-

enabled cluster with its grid middleware layer show
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comparable performance to the performance of a non-

grid-enabled cluster. Moreover, the computational grid

environment allows for larger sequences to be aligned

and compared than can be accommodated by the shared

memory environment that was tested. The studies show

that the grid is very promising for computation intensive

problems like the computational biology problems.

The paper is organized in the following manner:

section 2 describes the grid environment in general and

the specific environment used; section 3 describes the

multiple sequence alignment problem which covers the

basic algorithm and the parallel algorithm as well; section

4 covers the experimental results; and the paper is

concluded in section 5.

2. The grid environment

The Grid environment is a very promising one in

distributed computing because of its enormous

computation and resource sharing capability and for the

user level abstraction in accessing resources without

having any actual knowledge of those resources once the

user is connected to the grid. Also the Grid environment

has a major advantage of being robust and scalable.

According to the definition of Ian Foster and Carl

Kesselman [4] “A Computational grid is a hardware and

software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high-end

computational capabilities”

The Grid protocol architecture defines protocols of

how Virtual Organization (VO) users negotiate, establish

and manage sharing relationships [3]. Developers of

applications for VOs have certain requirements for the

Grid environment. VO interoperability across

organizational unit boundaries is a major aspect to

consider as it indicates how a service would be defined

across distributed resources and the set of protocols to

invoke that particular service. The Grid service oriented

view has many advantages like allowing a standard

interface definition mechanism and simplified

virtualization [5]. Although there is the overhead of the

Grid protocols in the distributed environment, from the

user’s point of view the grid environment is very

convenient for large applications that require a greater

amount of resources than may be available in the local

organization.

The grid described here uses the Globus Toolkit, built

on the Open Grid Services Architecture (OGSA) which is

open source software that allows users to share

computational and other resources without sacrificing

local autonomy. OGSA includes software services and

libraries for resource monitoring, discovery and

management and takes care of the security issues. This

toolkit gives users an abstraction for accessing the

different grid-enabled resources.

Grid communication is complicated as it has to

address the heterogeneity of the environment and a

potentially large variety of protocols. A special

communication library called the Nexus is used which

allows multi-method communication with a single API

for a wide range of protocols. Using Nexus [3], a grid

enabled Message Passing Interface, MPICH-G2 [17] has

been used in the experiments described here.

Resource management in Globus uses a higher level

resource management services layer on top of the local

resource management services. There are three main

components of the resource management system – the

extensible resource specification language (RSL), the

interface to the local resource specification tools, and a

co-allocator.

The RSL provides a common interchange language to

describe various resources. It provides the skeletal syntax

used to define complex resource descriptions. It is used to

specify which resource to access when a job is submitted

to the grid. There are different built-in functions of the

toolkit to simplify the job submission and execution

(globus-job-submit, globus-job-run) and to check the

status (globus-job-status). These functions have been

used to launch the specific grid-enabled applications

described in this paper.

3. Multiple sequence alignment

Multiple genome sequence alignment is important in

biological sequence computations where several genome

sequences are aligned rather than only two based on some

limited criterion. Multiple sequence alignment can be

done globally or locally but an optimal algorithm to align

multiple sequences can become very computation

intensive when there are more than three sequences. That

is why most multiple genome sequence alignment

solutions work with heuristic algorithms, trading off

improved speed for somewhat reduced optimality of the

result. Local and global sequence alignment algorithms

are discussed here, the basic method being an optimal

algorithm using comparison of a sequence with every

other sequence. This computation intensive task is

distributed among different processors in a shared

memory environment or a grid environment so that the

computation speed is retained while achieving more

optimal results.

3.1. Basic pairwise sequence alignment algorithm

The method described here for multiple genome

sequence alignment is based on pairwise sequence

alignment algorithm [1]. The sequence alignment of

genome structures is different from usual string sequence

matching as genomes may allow a mismatch, a change of

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



symbol, or a gap to occur between two sequences, and yet

still be considered a sequence match. A match or a

mismatch is taken into account by a score assigned to

each pair of sequences to be matched [9].

Using this algorithm, the optimal result can be easily

found from the previously computed partial results. A two

dimensional array SM is required to store the partial

results. SM has height and width according to the length

of the sequences to be matched. Every match in the

sequence is given an individual score of 1 and a mismatch

is given –1. The total score of the two sequences is

considered. An element in SM[x,y] can be generated as

shown by the following recurrence relation where ss

indicates the substitution score indicating a match or

mismatch and gp is the gap penalization.

SM[x, y] = max +

+

+

0

],1[

]1,1[

]1,[

ssyxSM

ssyxSM

gpyxSM

The Similarity Matrix SM is built following the stated

recurrence equation where every element needs its

neighbor elements to be computed prior to it. The

maximum score is considered as the best score when

creating the matrix.

3.2. Basic multiple sequence alignment algorithm

The significance matrix is a two dimensional matrix

consisting of the pairwise sequence comparison scores of

the genome sequences [13]. The pairwise alignment can

be computed using any of the existing sequence

alignment algorithms. This significance matrix is used to

find the best alignment among multiple sequences.

In this method, the best pairwise alignment score is

chosen from the significance matrix as the starting point

of the algorithm. Then the next best pair of alignments is

found which includes one sequence of the previous pair.

This process continues, extending the connection in both

directions from the original best pair, until all the

sequences are linked. There will be a unique ordered list

among the genome sequences unless there is a tie in the

pairwise alignment score.

It should be mentioned that if the sequences A, B, C

are compared for multiple genome sequence alignment,

there may be alignment between sequences A, B and

between B, C having the two best scores, creating the

chain of A, B and C. However the relation resulting from

the alignment process does not have the transitive

property in regards A, C alignment.
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Figure 1. Basic algorithm for multiple sequence

alignment [13]

Figure 1 shows a significance matrix with five

separate sequences to be compared for alignment. The

highest matching pair of the sequences is ISCHT with

ISRBT (4.40) and so ISCHT and ISRBT are considered

as the starting points of the alignment. Then the next best

alignments are found, ISCHT with ISLAT (4.13) and

ISRBT with ISLAT (4.29) and the latter is chosen due to

its higher score. The two new ends of the list (ISCHT,

ISLAT) are then considered and the next two best scores

are chosen in the same manner, treating each of the ends

as new starting points. ISCHT with ISBYT (2.76) and

ISLAT with ISBYT (2.78) are considered, and the

sequence ISBYT is chosen as the next best pair for its

alignment score with ISLAT (2.78). Again the two ends

(ISCHT, ISBYT) are considered and finally ISBSTF is

chosen as the next best alignment among those remaining.

Although, there are better alignments among pairs of

sequences, the chain of sequence needs to consider a pair

that has at least one member at the end. For example,

when considering the chain having two ends (ISCHT,

ISLAT), it is seen that ISBYT aligns best with the

sequence ISRBT having a score of 2.80, but ISRBT is not

one of the ends. ISBYT’s alignment (2.78) with ISLAT

determines the connectivity of the chain.

3.3. Parallel algorithm for multiple sequence

alignment

For the multiple sequence alignment algorithm the

basic improvement is achieved by introducing parallelism

to divide the workload among several processors. The

individual processors are responsible for pairwise

alignment of several sequences and this computation does

not have any inter-dependency between processors. Thus

by carefully dividing the workload, the individual

processor load is reduced and the overall performance of

the algorithm is improved.

The searching for the best score is also improved as

individual processors need to search the best score only
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from the data it computed. In the basic multiple sequence

alignment program each sequence must be compared with

all the other sequences in order to find out the best

alignments. For a single processor implementation, as the

number of sequences increases, the searching time

increases. Parallelization of the searching reduces the

number of sequences to be searched by a single processor

as the load is divided among different processors.

The parallel algorithm divides the sequences among

the processors with respect to the corresponding

significance matrix. Each processor searches for its local

best alignment pair from the starting point that includes a

sequence from that pair. Then the processors

communicate to find a global maximum before searching

for the next best pair. The aligned sequence is generated

in the same way as it was done in the basic algorithm.

Although there is a communication overhead to determine

the global maximum, the searching time improves by

operating in parallel on different processors.

There are three major steps in the parallel algorithm

for multiple sequence alignment. The first step finds out

the starting point from which the sequence will be

aligned. An index is set with each sequence which

indicates the number of comparisons of a particular

sequence. This index can have the maximum value of 2

so that a particular sequence can be compared in two

directions with other sequences but not more than that. In

the second step each processor finds out the local

maximum score of pairwise alignment and the highest

value along with the matching sequences that has at least

one of the sequence previously selected sequences. Then

the global maximum of the local maximum scores is

determined and all the processors are notified about the

new pairwise sequences. Steps two and three repeat

making sure that a chain has been created including all

the sequences that are unique (unless there is a tie for the

score values of the sequences).

3.4. Data structure and program formulation

The underlying data structure used here is very simple

and similar to the sequential program for multiple

genome alignment. The sequences to be aligned are

distributed among the processors and every processor is

responsible for pairwise alignment of its own particular

genome sequences. To distribute the workload evenly, the

matrix of sequences (columns and rows of sequences) is

distributed among different processors. Sequences are

divided among the processors in the grid like manner

shown in Figure 2.

The parallelism is increased as every processor is

responsible for its individual pairwise alignment task

without any dependencies on the task of another

processor. The processors can perform the pairwise

alignment of sequences in parallel. Every processor keeps

the list of sequences to be aligned and another array used,

which indicates whether or not a particular sequence has

been chosen for the multiple genome sequence alignment.

There is another important data structure list that keeps

the alignment of multiple genome sequences.
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Figure 2. Parallel load distribution among

processors for multiple sequence alignment

After the processors finish the pairwise sequence

alignments, the multiple genome sequence alignment

process starts. For the first iteration, each processor looks

for its best pairwise alignment score. The master

processor selects the best score and broadcasts this best

pair to all other processors. The list and the used lists are

updated accordingly. Then the consecutive sequences are

chosen from among the sequences that are in the same

row or column of the previous sequence. Every processor

that has sequences that are in the same row or column or

both of the previous sequences, searches for its best

alignment and lets the master processor know. This

procedure continues until all the sequences are included

in the list.

To implement this, a parallel program has been written

using the Message Passing Interface (MPI). MPI_Reduce

reduces the values of different processors to a final one

depending on the desired operation needed. It obtains the

global maximum values from the local maximums among

the processors comparing the pairwise scores. To reduce

the communication overhead, the indices of the sequences

compared are also reduced in the same message – the

indices are contained in the score of the significance

matrix as a negligible weight (kept as decimal points.)

This does not affect the reduce instruction unless there is
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a tie. When there is a tie, the order is not important so the

global maximum is obtained correctly.

The master processor, considered to be the processor

with id 0 (processor0), controls the global issues. After

receiving the local maximums from individual nodes,

processor0 updates the multiple genome alignment list

and informs the other processors about the final decision.

3.5. Multiple genome alignment in grid

The multiple genome alignment problem can be a

suitable application for the grid environment. The

algorithm described divides the workload independently

among the processors and requires minimal

communication between processors. The grid

environment is a distributed environment where the

resources may be loosely coupled. Minimal

communication among the processing elements is

necessary in order to get good performance, especially

when there are additional overhead for communication

among the grid middleware components.

The grid-enabled application works in the same way

as it does in a shared memory or non-grid cluster

environment except for the fact that the Globus Toolkit

handles the job submission process and communication

details. The Message Passing Interface (MPI) version

compatible with the grid environment is called MPICH-

G2. It enables a user to use the services from Globus

Toolkit, like startup and security, to couple machines of

different locations and architectures [17]. MPICH-G2

supports multi-protocol communication selecting TCP for

communication related to inter-machine messaging and

vendor supplied MPI for intra-machine messaging.

4. Experimental results

The multiple sequence alignment algorithm described

above distributes a large amount of computation across

the processors and requires minimal communication at

the end of each iteration. This algorithm was studied in

three different distributed environments including a single

cluster environment, a single cluster grid environment

(that used the same cluster but with the grid software

layer), and a multi cluster grid environment that includes

multiple grid-enabled clusters.

In the single cluster case, homogenous machines were

used: a Beowulf cluster of eight nodes, each having four

550MHz Pentium III processors with 512 MB of RAM.

The single cluster grid was the same environment as the

single cluster environment except it had the grid software

Globus Toolkit 3.0 installed. The multi cluster grid

environment included only the head nodes of three

individual grid-enabled clusters, each having four

550MHz Pentium III processors with 512 MB of RAM.

The program results running under the Grid or the Cluster

environment include the communication time used along

with the computation time. The genome sequences used

were selected from the NCBI website [19] from which a

dataset of 150 sequences was used with sequences

varying from 5 thousand to 15 thousand in length.
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Figure 3. Computation time with varying number

of elements per processor in different

environments

The experiment in Figure 3 was run using 9

processors in each environment with computation time

measured as varying loads were given to the processors in

the different environments. An interesting result is

observed: for a larger job, multiple clusters show better

performance despite the added communication overhead

between the clusters. This result may signify that there is

intra-cluster bus communication overhead in a single

cluster that is favorably offset when the work is

distributed between clusters. It is noted that the multiple

clusters were in two different buildings and connected by

100 Mbit/second network.
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Figure 4. Computation time using different

number of processors in different environments

Figure 4 shows the computation time using different

numbers of processors in the three different

environments. The results indicate that the when the

number of processors were increased, the multi cluster
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grid environment retained good performance. Note that

there were only 9 processors in the multi cluster

environment compared with to up to 32 processors on the

single cluster and single cluster grid environment. This 9

processor limit in the multi cluster environment was due

to the particular cluster configurations studied – other

configurations are possible that would remove this limit.
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Figure 5. Speed up for different number of

processors in different environments

Figure 5 shows the speed up that corresponds to the

computation time of Figure 4. Speed-up is measured as

the time on a single processor divided by the time on

multi processor for the same application. A much better

speed up is shown for increasing number of processors in

multi cluster grid environment although the numbers of

processors used was limited to a total of 9 due to

configurations studied.

A possible reason for the results obtained from the

comparison of the multi cluster grid environment with the

single cluster and the single cluster grid environments

may be the architecture of the multi cluster grid. It may be

the case that the multi cluster environment provides

additional local buses. Therefore if communication is

mostly on the local buses, the single cluster environment

(with a single bus) incurs delays from contentions. The

experiment results point out interesting research ideas for

launching computation intensive applications in multi

cluster environments, and investigating performance

factors such as having suitable high speed network

connections among the clusters, or latency issues in

distributed algorithm performance.

5. Conclusions

The multiple genome alignment algorithm revealed

interesting phenomenon when it was run in different

distributed environments. The multi cluster grid

environment shows better performance compared to the

single cluster and single cluster grid environment. From

this result it appears that the grid environment may play

an important role for computation intensive applications

while still supporting all the protocols (and overheads) for

communication. The environment is further useful for its

scalability – resources can be added according to the need

of the application without the intervention of the user.

Where the memory space is limited in a shared memory

environment and the scalability is therefore constrained,

the grid environment can provide both memory and

scalability, and do so by taking care of lower level details.
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