
Abstract— The research area of genome sequencing is
prominent in bioinformatics and computer science. Although
there are methods on genome sequencing, the process requires
continuous improvement on speed, reliability, and cost. The
sequences obtained for assembly are not truly accurate due to
machine and human handling mistakes. We need to consider a
methodology which allows for errors when the sequences are
compared for assembly. A Neural Network is designed to
work with uncertainty. This paper describes the possibility of
using a recurrent Neural Network to determine the exact
similarity between two genomic sequences. The preliminary
results show that it can be promising.

Index Terms—Bioinformatics, Sequence Assembly, Recurrent
Neural Network

I. INTRODUCTION

nderstanding the formation of living cells is an important
concept of Genomic, allowing scientists to make

necessary modifications on cells affected by deadly viruses,
for example. A genome represents a set of instructions
encoded in DNA sequences. DNA or Deoxyribonucleic acid is
a nucleic acid that contains the genetic instructions necessary
for constructing cells in living organisms. It is composed of
four nucleotides or base pairs: A, C, G, and T.

The entire genome sequence may contain several thousands
to millions of base pairs, but researchers are only able to
decode about 600 to 700 base pairs at one time from chemical
reactions [2]. To overcome this limitation, scientists have
developed a technique called “shotgun sequencing.” The
technique involves breaking up the original sequence into
smaller sets of raw sequences, sequencing them into readable
form, and putting them together using an assembler. DNA or
genome sequencing is the process of determining the order of
these broken up base pairs.

The genome sequencing process using the “shotgun
sequencing” technique can be divided up into three critical
steps: reading, assembling, and finishing, as shown in figure 1
[1].

Reading sequences is the process of feeding raw sequences
into a sequence reader and obtaining sequences stored in
chromatogram files, which are then transformed into readable
sequences of characters A, C, G, and T that represent the

nucleotides. Multiple comparisons of shotgun sequences
(reads) are needed to ensure that all regions are covered since
the genome sequence is too large to be processed in its entirety
and raw sequences are extracted in random.

Assembling is the process of putting together the sequences
by identifying the similar regions between them. The matching
regions are also known as “Contigs.” Errors in obtaining the
sequences contribute to the difficulty of similarity matching.
The imperfection can cause insertions or deletions in the
sequences, causing most applications to reject matching
sequences.

Finishing is the manual process of fiddling with the
assembled sequence to fill in any gaps in the sequence. The
efficiency is undermined by the assembling process.

Fig. 1. The genome sequencing process [1].

There are several problems with genome sequencing. The
sequence read from a machine can contain errors as shown in
figure 2. Sequence 1 and 2 are approximately similar
sequences, but sequence 1 has an insertion of the character ‘G’
and the same character is deleted in sequence 2. The data
retrieved from the laboratory can be of low quality. Repeats or
repetitive sub-sequences further complicate the process
because sub-sequences can either be combined or placed at
multiple regions as illustrated in figure 3.

Comparing two genome sequences using a
Recurrent Neural Network

Dorothy Cheung, Department of Computer Science and Engineering, University of Nevada Reno,
Reno USA

U

Fig. 2. Problems with genome sequencing. Sequence 1 and 2 are
approximately similar sequences. The symbol “-” indicates a missing
character from gene deletion or insertion. The symbol “*” indicates a
change in the sequence.

Fig. 3. Repeats in Contigs. Region I and II can be combined in
Contig A or assembled at different regions in Contig B [1].

Therefore, the goal of genome sequencing is not to put
together the exact matches of sequences, but to assemble a
sequence with some degree of certainty. Although there are
existing tools for sequence analysis, most of these applications
have low tolerance on errors [2]. Some assemblers account for
the number of matches to determine if there are repeats since
the number of times a sequence can appear is restricted by the
number of “reads.”
 There are many algorithms that can compare two genome
sequences including different variations of dynamic
programming, which solves a problem by dividing the
solutions into smaller problems [8]. The algorithm widely
mentioned is the Smith-Waterman algorithm, which accounts
for deletions and insertions of arbitrary length [5]. It has been
replaced by the BLAST (Basic Local Alignment Search Tool)
algorithm, which is faster but less accurate than Smith-
Waterman. A BLAST search allows researchers to identify
sequences from the sequence database that resemble the query
sequence. It also enables users to select a particular genome to
“BLAST” against [6].
 Other techniques include suffix tree [11], KMS algorithm
[10], fuzzy logic [1], and greedy approaches that can be faster
than dynamic programming [9].

This paper proposes using a Neuroevolution technique that
determines the exact similarity between two sequences of the
same length. A recurrent Neural Network is needed in this
application because the current outcome is affected by the
previous inputs. Training with a Genetic Algorithm (GA),
developed by Goldberg and Holland, is preferred over
Backpropagation because Backpropagation through time
requires complex calculations. The following sections describe
the procedure and summarize preliminary experimental results
that support the Neuroevolution technique.

II. METHODOLOGY

A. Data sets

The sequential input into the Neural Network consists of the
“localist encoding” of two characters from the two sequences
in comparison. This encoding scheme uses four bits and
activates a bit to identify each of the four characters {{G:
1000}, {T:0100}, {C:0010}, {A:0001}}.

The input data is generated by splicing the original DNA
sequence from the Homo sapiens (humans) calcium channel
consisting of 5909 base pairs. The gene is “CACNA1S”,
locus_tag = “BC133671” and the GeneID is “779” obtained
from GenBank [4]. The original DNA sequence needs to be
thousands of characters long to create a diversified data set.
The number of base pairs in each split may vary, but each split
should contain at least 40 base pairs. Otherwise, similar
classification can be invalid due to errors introduced in the
process of genome sequencing.

Four data sets are generated for this experiment: training,
validation, tuning test, and “hold out” test. Each data set
contains the same number of similar and dissimilar corpuses.
A corpus consists of two sequences to be compared. Due to
time constraints in running the experiment, there are 4000
corpuses for the training set and 1000 for the other sets. All
splits are 40 characters long.

B. Recurrent Neural Network

Determining similarity between two sequences takes into
account the previous activation of the hidden layer. As shown
in figure 4, a simple recurrent Neural Network is designed to
include an additional context layer, where the activation of the
hidden units from the previous feed-forward process is stored
[3]. Four input nodes are used to represent each bit of an
encoded character. A total of eight input nodes are needed to
account for both characters from the two sequences being
compared. Ten hidden and context nodes are used in this
experiment because of time constraints in training the
recurrent Neural Network. The hyperbolic tangent function is
used to squash the results within the range [-1, 1]. The output
is expected to be 0.9 if all the characters that the network has
seen thus far are the same and -0.9 otherwise. In addition, a
bias unit is added to both the input and hidden layers. The
concept is illustrated in figure 5.

Fig. 4. A simple recurrent Neural Network [3].

1

0

0

0

0

1

0

0
.
.
.

AGTCG… .

AGTCT ...

.

.

.

Hidden nodes are feed into the context
nodes, which are feed back into the

hidden nodes .

Feeding in char : G

Feeding in char : T

Output node : 1 or 0

bias: 1.0

bias : 1.0

Fig. 5. The recurrent Neural Network that compares two
sequences. Not all connections are drawn.

Training is performed after both sequences have been fed
into the Neural Network. It is done by replacing the weights
within the network. The weights are stored in a vector within
each individual. There are 30 individuals in the population.

Fitness is calculated on the same corpus for the whole
population. It is increased if the individual scores above a
threshold of +/-0.5. The sum of the squared error is also
calculated. After all individuals are evaluated the population is
ranked in the order of fitness. The worst individuals are
replaced by randomly selected parents from the current
population as illustrated in figure 6. Two points crossover is
used with a variable mutation rate adjusted in the tuning
phase. The mutation is calculated by a Gaussian distribution
with a mean of zero and a variance of one. The mean squared
error (MSE) for the best individual is calculated for each
epoch as shown in figure 7. It is recorded in the training file
for every epoch in the run.

. . .

. . .

Current population

New population

 Fig. 6. Population replacement. Individuals in grey boxes are
replaced by randomly selected parents in the current population. New
ones in light blue boxes are produced.

S1 S2 S3 . . . MSE
I1 1.189 2.175 3.651 . . . -
I2 1.056 2.955 3.250 . . . -
I3 1.952 2.005 3.150 . . . 0.710
. -

Fig. 7. An example showing the accumulated squared Error after
each sequence (S) is evaluated for each individual in the population
(I). MSE is calculated and recorded for the individual with the
highest fitness score in the population.

The best individual in the population is validated against the
performance of the best-saved individual in the same run by
comparing the MSE between them. The better of the two
individuals is saved into a data file. Validation prevents the
network from over-fitting the data set, and ensures that the
best individual is used for the tuning and “hold out” tests. The
MSE for every epoch calculated from the best individual in
the tuning and “hold out” test sets are recorded.

MSE does not determine whether the network generates the
results correctly. Accounting for the percentage of correctness
is a more accurate measurement of the network performance.

Both the number of individuals to keep during replacements
and the mutation rate are adjusted only in the tuning phase
from the first run. Initially, the number of individuals to keep
is 10, and the mutation rate is 0.5. Tuning is not allowed in
subsequent runs. The best-saved data uses a mutation rate of
0.5, and keeps the 10 best individuals.

III. RESULTS AND ANALYSIS

 Typically 31 runs should be produced for the results to be
statistically significant. However due to time constraints, only
17 runs with 150 epochs each are presented in this paper. A
different randomly generated seed is used for each of the 17
independent runs.

Data from all the training and validation sets are shuffled to
prevent bias ordering of the data. Both the number of
individuals to keep and the mutation rate are adjusted every
10th epoch after the first during the tuning phase. In order to
save running time, the best-saved network is only tested every
10th epoch after the first.

The median performer of the 17 independent runs is
determined by the histogram of the test performance from all
runs as shown in figure 8. Frequency on the y-axis represents
the number of runs that fall within a particular error range on
the x-axis. The median performer is used to plot each of the
three leaning curves in figures 9, 10, and 11. The initial
randomized network is tested as epoch zero in the learning
curves for the training, validation, and test sets.

The statistics and graphs for this experiment are generated
by R, which is a language and environment for statistical
computing and graphics [7].

The MSE is expected to drop after running more epochs for
all three learning curves because the network should be able to
make better generalizations from progressive trainings. Since
only the best-saved individual from the run is used for testing,
the test curve is flat on several intervals.

Fig. 8. Histogram of the performance of the recurrent Neural
Network on comparing two sequences. The diagram shows the
frequency for the mean squared errors from all 17 runs. The statistics
from R are summarized as follows:
Min. 1st Qu. Median Mean 3rd Qu. Max
0.4793 0.6508 0.8197 0.8463 1.0160 1.3190

Standard deviation: 0.2532
Variance: 0.0641

The t test from R shows the 95% confidence interval for the true
mean of the error distribution falls within [0.7161, 0.9765].

Fig. 9. Training curve for the recurrent Neural Network.

Fig. 10. Validation curve for the recurrent Neural Network.

Fig. 11. Test curve for the recurrent Neural Network.

IV. CONCLUSION

 Although many algorithms exist for genome sequence
assembly, finding a more efficient algorithm is needed to
assemble genome sequences that are thousands or millions of
base pairs long. The process searches for overlapping regions
among the set of sequences, and constructs the original
sequence by combining these regions. As a result, it is critical
to generate accurate sequence comparisons. This paper
proposes using the Neuroevolution technique to compare two
sequences of the same length. The preliminary results show
that this technique is promising, but further modifications need
to be made to account for the percentage of correctness. If the
percentage of correctness increases during subsequent
trainings, the network is expected to improve generalization
on sequence similarity.

V. FUTURE WORK

The technique proposed in this paper is preliminary. It
needs to account for the percentage of correctness. The work
can be extended to handle comparisons between multiple
sequences, and to account for more complex data sets
including:

1) Sequences with deletions and insertions that should be
classified as similar.

2) Sequences of different lengths.
3) Repetitive sequences.

Future modifications to the network include adjusting the
number of hidden and context nodes, and refining the genetic
parameters in the tuning phase. Furthermore, training can be
done by Backpropagation instead of a GA.

ACKNOWLEDGMENT

I would like to thank Sara Nasser for her tutorial on
bioinformatics and inputs on sequence alignment.

REFERENCES

[1] Sara Nasser, Gregory L. Vert, Monica Nicolescu, Multiple Sequence
Alignment using Fuzzy Logic, 2006.

[2] Mihai pop, Steven L. Salzberg, Martin Shumway, Genome Sequence
Assembly: Algorithms and Issues, 2002.

[3] Jeffrey L. Elman, Finding Structure in Time. Cognitive Science, 14, pp.
179-211, 1990.

[4] Homo sapiens calcium channel from GenBank of NCBI,
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=13
4152371, Accessed April, 2007.

[5] Smith T. Waterman M, Identification of Common Molecular
Subsequences, Journal of Molecular Biology 1981, 174, 195-197.

[6] NCBI / BLAST Home page, http://www.ncbi.nlm.nih.gov/BLAST/,
Accessed May, 2007.

[7] R, http://www.r-project.org/, Accessed May, 2007.
[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford

Steins, Introduction to Algorithms, Second Edition, 2001, pp. 321-324.
[9] Zheng Zhang, Scott Schwartz, Lukas Wagner, Webb Miller, A Greedy

Algorithm for Aligning DNA sequences”, Journal of Computational
Biology, vol7, pp. 203-214, 2000.

[10] Kaplan K. M, and Kaplan J. J., Multiple DNA sequence approximate
matching, Computational Intelligence in Bioinformatics and
Computational Biology, vol. 7, pp. 79-86, 2004.

[11] Niko Välimäki, Wolfgang Gerlach, Kashyap Dixit and Veli Mäkinen,
Compressed suffix tree – a basis for genome-scale sequence analysis,
Bioinformatics vol. 23, number 5, pp. 629-630, 2007.

