
CS709a: Algorithms and Complexity
Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming@dri.edu

Thursdays 4:00-6:45pm
Office hours after class

(or by appointment)

mailto:dan.coming@dri.edu


Today

● Overview of spatial data structures
● Groups for Project 1
● Paper presentation schedule



Spatial Data Structures

● Object-space vs World/Image space
● Examples:

– Regular / Irregular Grid

– Range Tree

– Quadtree / Octree

– kd-tree / Binary Space Partition (BSP)-Tree

– Bounding Volume Hierarchy



Object vs. World Space



Range Search on Point Data
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Range Search (61, 14) to (89, 71)
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Brute Force Range Query
function RangeSearch(real mins[], real maxs[]
                                    int d, city_type results[])
  for each city in Cities
    for i = 0 to d – 1
      if city.x[i] >= mins[i] AND city.x[i] <= maxs[i]
        results.push_back(city);
      fi
    end
  end
end



Regular Grids
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Regular Grids
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Range Search on Regular Grids
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Sparse Matrix Representation
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Memory Access Comparison

1 1

1 1

1

1 3

Matrix as ND Array

1 1

1 1

1

1 3

Matrix as Lists



Irregular Grids
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Irregular Grids
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Range Search on Irregular Grids
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Multidimensional Range Trees
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Multidimensional Range Trees
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Range Trees
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Multidimensional Range Trees
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Multidimensional Range Trees
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Multidimensional Range Trees
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Range Query on Multidimensional 
Range Trees
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Range Query on Multidimensional 
Range Trees
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Range Query on Multidimensional 
Range Trees
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Range Query on Multidimensional 
Range Trees
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Range Query on Multidimensional 
Range Trees
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Split On Points or Between Points?
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Split On Points or Between Points?
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● Radius search, neighbor search...



Split On Points or Between Points?
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● Empty space culling – Ray Tracing



Quadtrees
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Quadtrees
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Quadtrees

(5, 45)
Denver

(35, 42)
Chicago

(62, 77)
Toronto

(82, 65)
Buffalo

(85, 15)
Atlanta

(90, 5)
Miami

(52, 10)
Mobile

(27, 35)
Omaha

(0,0)

(100,100)(0,100)

(100,0)

(89, 6)   
Tampa   

Tree Data Structure

2 3 4



Quadtrees

(5, 45)
Denver

(35, 42)
Chicago

(62, 77)
Toronto

(82, 65)
Buffalo

(85, 15)
Atlanta

(90, 5)
Miami

(52, 10)
Mobile

(27, 35)
Omaha

(0,0)

(100,100)(0,100)

(100,0)

(89, 6)   
Tampa   

Tree Data Structure

2

1 2 1 3



Quadtrees
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Range Search on Quadtrees
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Range Search on Quadtrees
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Range Search on Quadtrees
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Range Search on Quadtrees
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Range Search on Quadtrees
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Octrees

Image source: http://en.wikipedia.org/wiki/File:Octree2.png

● Simply an extension of Quadtrees to 3D
● 2x number of children per split as Quadtrees



Octrees 
● Practical case: 

volume rendering
● (a) data
● (c) shows only leaf 

nodes, tightly fit the 
data



Splitting Heuristics

● Object space vs world space?
● What have we been using?



An Object-Space Split Heuristic
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An Object-Space Split Heuristic
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An Object-Space Split Heuristic
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Range Search
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Range Search
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Range Search
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Range Search
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Split Heuristics

● Can make the tree...
– Shallower

– Faster to traverse

● But how to compute where to make splits?
– Extensive discussion in the book



kd-Trees
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kd-Trees
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kd-Trees

(5, 45)
Denver

(35, 42)
Chicago

(62, 77)
Toronto

(82, 65)
Buffalo

(85, 15)
Atlanta

(90, 5)
Miami

(52, 10)
Mobile

(27, 35)
Omaha

(0,0)

(100,100)(0,100)

(100,0)

(89, 6)   
Tampa   

Tree Data Structure

Using median split, alternating directions

4 5



kd-Trees
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kd-Trees

(5, 45)
Denver

(35, 42)
Chicago

(62, 77)
Toronto

(82, 65)
Buffalo

(85, 15)
Atlanta

(90, 5)
Miami

(52, 10)
Mobile

(27, 35)
Omaha

(0,0)

(100,100)(0,100)

(100,0)

(89, 6)   
Tampa   

Tree Data Structure

Using median split, alternating directions

2 2 2

1 2



Range Query on kd-Trees
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Range Query on kd-Trees
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Range Query on kd-Trees
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Range Query on kd-Trees
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Range Query on kd-Trees
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kd-Tree Splitting Heuristic
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kd-Tree Splitting Heuristic
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Paper Presentation Order?
Week 5-13

Joe, Matt, Ray, Mark, Scott, Cody, 
James, Steve, Roger



Spatial Data Structures for Project 1

● Range Tree – Joe and Ray
● Regular / Irregular Grid – Roger and Steve
● Quadtree / Octree – Mark and Scott
● kd-tree / Binary Space Partition (BSP)-Tree – 

Cody and Matt
● Bounding Volume Hierarchy - James



Next time

● Additional operations on spatial data structures
● Reading – skim research papers
● Select paper to present
● Presentation on UnitTest++
● Meeting time changed: 4:00-6:45 SEM 257
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