CS709a: Algorithms and Complexity

Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming(@dri.edu

Thursdays 4:00-6:45pm
Office hours after class
(or by appointment)


mailto:dan.coming@dri.edu

Today

* Overview of spatial data structures
e Groups for Project 1

» Paper presentation schedule



Spatial Data Structures

* Object-space vs World/Image space

e Examples:

- Regular / Irregular Grid

— Range Tree

— Quadtree / Octree

— kd-tree / Binary Space Partition (BSP)-Tree

— Bounding Volume Hierarchy



Object vs. World Space
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Brute Force Range Query

function RangeSearch(real mins[], real maxs|]
int d, city type results[])
for each city in Cities
fori=0tod-1
If city.x[i] >= mins[i] AND city.x[i1] <= maxsl|i]
results.push back(city);
fi
end
end
end
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Range Search on Regular Grids
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Sparse Matrix Representation

Matrix as ND Array Matrix as Lists

J

S SENS
i




Memory Access Comparison

Matrix as ND Array Matrix as Lists
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Range Search on Irregular Grids
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Range Query on Multidimensional
Range Trees
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Range Query on Multidimensional
Range Trees
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Range Query on Multidimensional
Range Trees
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Range Query on Multidimensional
Range Trees
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Range Query on Multidimensional
Range Trees
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Range Search on Quadtrees
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Octrees

e Practical case:
volume rendering

e (a) data

e (¢) shows only leaf
nodes, tightly fit the
data




Splitting Heuristics

* Object space vs world space?

 What have we been using?
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Range Search
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Split Heuristics

e Can make the tree...

— Shallower

— Faster to traverse
e But how to compute where to make splits?

— Extensive discussion 1in the book
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Range Query on kd-Trees
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Range Query on kd-Trees
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Range Query on kd-Trees
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Range Search on the New kd-Tree
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Range Search on BSP Trees
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Range Search on BSP Trees
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Range Search on BSP Trees
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Range Search on BSP Trees
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Paper Presentation Order?
Week 5-13

Joe, Matt, Ray, Mark, Scott, Cody,
James, Steve, Roger



Spatial Data Structures for Project 1

 Range Tree — Joe and Ray
e Regular / Irregular Grid — Roger and Steve
e Quadtree / Octree — Mark and Scott

e kd-tree / Binary Space Partition (BSP)-Tree —
Cody and Matt

* Bounding Volume Hierarchy - James



Next time

Additional operations on spatial data structures
Reading — skim research papers
Select paper to present

Presentation on UnitTest++
Meeting time changed: 4:00-6:45 SEM 257
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