
CS709a: Algorithms and Complexity
Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming@dri.edu

Thursdays 4:00-6:45pm
Office hours after class

(or by appointment)

mailto:dan.coming@dri.edu


Today

● Presentation on UnitTest++
● Calendar
● More details for Project 1
● Additional operations on spatial data structures
● Research paper selections?



Tentative Calendar
● 2/12 – Paper selection due

● 2/19 – Paper Presenter: Joe

● 2/26 – Paper Presenter: Matt

– Present Project 1 in class 
(Project 1 Due 2/25)

● 3/5 – Paper Presenter: Ray

● 3/12 – Paper Presenter: Mark

– Present Project 2 in class 
(Project 2 Due 3/11), 

● 3/14-22 Spring Break

● 3/26 –  Paper Presenter: Scott

● 4/2 – Paper Presenter: Cody

– class day likely to be moved

– Present Project 3 in class 
(Project 3 Due 4/1)

● 4/9 – Paper Presenter: James

● 4/16 – Paper Presenter: Steve

● 4/23 – Paper Presenter: Roger

● 4/30

● 5/7-13 Finals Week

– Final Projects and 
Presentations Due



Project 1 – More details

● Template - <int dimensions, class point_t, class T>

– point_t must have an operator[ ] to get dimension x_i
● Basic operations:

– constructor(const point_t& min, const point_t&max)

– copy constructor and operator=, destructor

– bool empty() const, void clear()

– max_depth() const (1 if grid)

– build(std::InputIterator<point_t> first,                  
std::InputIterator<point_t> last)



Project 1 – More details

● Data structure specific, consider how to specify grid 
spacing, splitting heuristic, etc..

● Queries (set results, return the number found)

– Inclusive and non-inclusive versions

– int range_search_inclusive(const point_t& min, 
const point_t& max, 
std::vector<point_t>& results)const

– int radius_search_noninclusive(const point_t& center, 
const T & radius, 
std::vector<point_t>& results)const



Project 1 Datasets on Course Website
Computational Fluid Dynamics Wing Simulation Range Search Result



More Query Operations

● Single search, single result: Ray trace
● Single search, multiple result: Range search
● Multiple search, single result: Nearest of all pairs
● Multiple search, multiple result: All pairs within 

some distance of each other (collision detection)



Ray Trace on Point Data



Ray Trace on Point Data
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Split On Points or Between Points?
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● Empty space culling – Ray Tracing



Ray-Plane Intersection

● Plane P: p . n = d
● Ray: o + t r
● Intersection:

(o + t r) . n = d

o . n + t r . n = d

t = (d - o . n) / (r . n)

r

P

n

   p

       o



Brute Force Ray Trace
function RayTrace(Point origin, Point direction

                   real &r_time, hit_data & r_hit

  for each city in Cities

    for i = 0 to d – 1

      real time; hit_data hit;

      if(RayTrace(origin, direction, city, time, hit)

        if(time < rtime)

          rtime = time;

          r_hit = hit;

        fi

      fi

    end

  end

end
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Is there a repeating access pattern? Why?
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Multidimensional Range Trees
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Some data not at leaves



Intersection Against Bounding 
Volume Instead of Planes
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Test both enter and exit times from bounding volumes, why?
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Next Time

● Paper Selections Due
● More operations on spatial data structures
● Read: Chapter 1, Section 6 and 7 (pages 90-163)
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