CS709a: Algorithms and Complexity

Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming(@dri.edu

Thursdays 4:00-6:45pm
Office hours after class
(or by appointment)

mailto:dan.coming@dri.edu

Today

e Finish Project 1 Presentations
* Project 2

 Bounding Volumes
— Fitting

— Intersections

Tentative Calendar

2/12 — Paper selection due
2/19 — Paper Presenter: Joe
2/26 — Paper Presenter: Matt

— Present Project 1 in class
(Project 1 Due 2/25)

3/5 — Bounding volumes
3/12 — Nearest neighbor
3/14-22 Spring Break
3/26 — Midterm review

— Present Project 2 1n class
(Project 2 Due 3/25)

4/2 — Paper Presenters: Mark,
Scott, Cody, and Steve

4/9 — Midterm

4/16 — Present Project 3 in class
(Project 3 Due 4/15)

4/23 — Paper Presenter: Roger
4/30
5/7-13 Finals Week

— Final Projects and
Presentations Due

Project 2: Due 3/25 @11:59pm

* Adopt another team's Project 1 code and extend it

e Base functions to add:

— 1terator insert(const point t & x)
— 1terator 1nsert(iterator hint, const point t & x)
— void erase(iterator position)

— size type erase(const point t & x) // erase all
matching and report how many were erased

e Useful support functions for the above:

— 1terator find(const point t & x)

— size type count(const point t & X)

Project 2 (continued)

* Ray Cast:

template <intersect info>

bool intersect(const point t & origin, const point t &
direction, intersect info & info)

e Returns whether there was a hit before info.hit time and 1f
there was a hit, info contains the result

e template <class T> struct intersect info {
T hit time;
point t hit location;

i

Project 2 (continued)

e Nearest neighbor

— vector<iterator> find nearest(const point t & X,
size type count)

e Extra credit (5%) if these are done 1n a better way
than a for loop of calls to insert/erase:

- template <class Inputlterator> void
insert(Inputlterator first, Inputlterator last)

— void erase (iterator first, iterator last)

Project 2 (continued)

e Data

— Assume point t 1s assignable and comparable and has:

e template <class intersect info>
bool point t::intersect(const point t & ray origin,
const point t & ray direction,
T ray thickness,
intersect_info & info)

— Extra credit (10%) if your data structure can handle
non-point data - black box like point t, plus:
e T* box::get min bound(); T* box::get max bound();

e void split(T * plane normal, T plane offset,
box & left, box & right)

Project 2 (continued)

e Add unit tests and don't break existing tests
e As before:

— Documentation in code and a separate document
providing design, implementation decisions,
complexity analysis, and anything that will help the
next group add collision detection

— Presentation 1n class (20 minutes, plus time for
questions)

* Additional details TBA as necessary — ask
questions early if instructions are unclear

Project 2 (continued)

e Thinking ahead for project 3

— Project 3 will use non-point data

— Project 3 will track pair-wise intersections between
data (collision detection)

Bounding Volumes (BV)

* Objects are likely to be
non-convex
e Convex 1s easier

— Convex decomposition 3 Boney 0 tam

 Bounding Volumes

— Convex shapes

— Simple operations

(d) Bunmy (e) Dragon (f) Lamp

— Completely contain
arbitrary geometry

Fig. 24. Sample approzimations for levels 2 and 3 of the test models.

Image Bradshaw, G. and O'Sullivan, C. 2004. Adaptlve medial-axis apprOX|mat|on for sphere -tree construction. ACM Trans. Graph. 23, 1 (Jan. 2004), 1-26.

Complexity — Fitness Tradeoff

Circle/Sphere Axis-Aligned Ellips{e|oid} = Oriented Box Discrete Oriented Convex Hull
Bounding Polytope (DOP)
Box(AABB)

Simple Complex

- e

Loose fitting Tight fitting

*/Finding a valid bounding volume 1s eas
Minimizing its area/volume can be hard

* Approximate bounding volumes

- Leave wiggle room for moving / deforming opjects

— Save build time in BVH

Axis-Aligned Bounding Box (AABB)

e Fitting minimum AABB:

— Find min/max coordinate 1n
each dimension (x, X , ...)

(e.g., by looping over points)

Ymax
— Make a box from:
x X ,..)to
(X o X)

max(max1’

Xmin

Xmax,Ymin

Oriented Bounding Box (OBB)

e So many possible orientations

* One way to fitting a good OBB;

- Find medial axes

— Consider each as a

possible major axis
for OBB

Circles and Spheres

* Alt-1: Consider circles that
intersect any three non-linear
(spheres: four non-planar) point

— Must check that it contains the
whole object

e Alt-2: Pick a center (e.g. average
point or one of the vertices from
topological skeleton)

— Farthest point defines radius

Ellips{e|oid}s

e Similar to circle/sphere — picking position

e Also have to pick an orientation and length of
major/minor axes
PR TN

\

TN

A

Discrete Oriented Polytopes (DOP)

e Called A-DOP, where £/2 1s the number of
directions

* Generalization of AABB (4-DOP 1n 2D)

— more directions to choose from than the
dimensionality

e Fitting exactly the same
as AABB but for more
directions I

—_—

k-DOPs

4-DOP

8-DOP \I
16-DOP 'K%

P |

)

Convex Hulls

 Composed of the extremal points of the object (in
all directions)

e Expensive to compute

e Tightext convex bounding volume possible

I

]

Separating Axis Theorem (SAT)

e Separating axis — a direction 1n which the
projection of two objects does not overlap

* Quick test: two convex objects intersect 1ff there
does not exist a separating axis for them

* Does not work on concave objects

AN L
\

Separating _ \{
Axis Separating
Line/Plane o AE Ny

Axis-Aligned Bounding Box (AABB)

e Separating axis candidates: X,y,z...

e Separating plane: box faces

Oriented Bounding Box (OBB)

e Separating axis candidates normals of box faces

e Separating plane box faces

Circles and Spheres

e Separating axis candidate: line between the centers

e Separating plane: tangent planes

Discrete Oriented Polytopes (DOP)

» Candidate separating axes: AABB, but more
directions to test than just coordinate axes

» Separating planes: polytope faces

V2

Convex Hulls

e Candidate separating axes: many, face normals

e Separating planes: hull faces

* Better to find closest points...

Next Time

* Nearest neighbor searches
 Reading: TBA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

