
CS709a: Algorithms and Complexity
Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming@dri.edu

Thursdays 4:00-6:45pm
Office hours after class

(or by appointment)

mailto:dan.coming@dri.edu


Today

● Finish Project 1 Presentations
● Project 2
● Bounding Volumes

– Fitting

– Intersections



Tentative Calendar
● 2/12 – Paper selection due

● 2/19 – Paper Presenter: Joe

● 2/26 – Paper Presenter: Matt

– Present Project 1 in class 
(Project 1 Due 2/25)

● 3/5 – Bounding volumes

● 3/12 – Nearest neighbor

● 3/14-22 Spring Break

● 3/26 – Midterm review

– Present Project 2 in class 
(Project 2 Due 3/25)

● 4/2 – Paper Presenters: Mark, 
Scott, Cody, and Steve

● 4/9 – Midterm

● 4/16 – Present Project 3 in class 
(Project 3 Due 4/15)

● 4/23 – Paper Presenter: Roger

● 4/30

● 5/7-13 Finals Week

– Final Projects and 
Presentations Due



Project 2: Due 3/25 @11:59pm

● Adopt another team's Project 1 code and extend it
● Base functions to add:

– iterator insert(const point_t & x)

– iterator insert(iterator hint, const point_t & x)

– void erase(iterator position)

– size_type erase(const point_t & x) // erase all 
matching and report how many were erased

● Useful support functions for the above:
– iterator find(const point_t & x)

– size_type count(const point_t & x)



Project 2 (continued)

● Ray Cast:

template <intersect_info> 

bool intersect(const point_t & origin, const point_t &  
    direction, intersect_info & info)

● Returns whether there was a hit before info.hit_time and if 
there was a hit, info contains the result

● template <class T> struct intersect_info {

T hit_time;

point_t hit_location;

};



Project 2 (continued)

● Nearest neighbor
– vector<iterator> find_nearest(const point_t & x, 

size_type count)

● Extra credit (5%) if these are done in a better way 
than a for loop of calls to insert/erase:
– template <class InputIterator> void 

insert(InputIterator first, InputIterator last)

– void erase (iterator first, iterator last)



Project 2 (continued)

● Data
– Assume point_t is assignable and comparable and has:

● template <class intersect_info> 
bool point_t::intersect(const point_t & ray_origin, 

const point_t & ray_direction, 
T ray_thickness,
 intersect_info & info)

– Extra credit (10%) if your data structure can handle 
non-point data - black box like point_t, plus:

● T* box::get_min_bound();  T* box::get_max_bound();
● void split(T * plane_normal, T plane_offset,

box & left, box & right)



Project 2 (continued)

● Add unit tests and don't break existing tests
● As before:

– Documentation in code and a separate document 
providing design, implementation decisions, 
complexity analysis, and anything that will help the 
next group add collision detection

– Presentation in class (20 minutes, plus time for 
questions)

● Additional details TBA as necessary – ask 
questions early if instructions are unclear



Project 2 (continued)

● Thinking ahead for project 3
– Project 3 will use non-point data

– Project 3 will track pair-wise intersections between 
data (collision detection)



Bounding Volumes (BV)

● Objects are likely to be 
non-convex

● Convex is easier

→ Convex decomposition
● Bounding Volumes

– Convex shapes

– Simple operations

– Completely contain 
arbitrary geometry

Image: Bradshaw, G. and O'Sullivan, C. 2004. Adaptive medial­axis approximation for sphere­tree construction. ACM Trans. Graph. 23, 1 (Jan. 2004), 1­26.



Complexity – Fitness Tradeoff

c

Axis­Aligned
Bounding

Box(AABB)

Circle/Sphere Ellips{e|oid} Oriented Box Discrete Oriented
Polytope (DOP)

Convex Hull

Simple

Loose fitting

Complex

Tight fitting



Fitting Bounding Volumes

● Finding a valid bounding volume is easy
● Minimizing its area/volume can be hard
● Approximate bounding volumes

– Leave wiggle room for moving / deforming objects

– Save build time in BVH



Axis-Aligned Bounding Box (AABB)

● Fitting minimum AABB:
– Find min/max coordinate in 

each dimension (x
0
, x

1
, ...)  

(e.g., by looping over points)

– Make a box from:
(x

min0
, x

min1
, ...) to 

(x
max0

, x
max1

, ...)

Xmin

Ymax

Xmax,Ymin



Oriented Bounding Box (OBB)

● So many possible orientations
● One way to fitting a good OBB:

– Find medial axes

– Consider each as a 
possible major axis
for OBB

● Could we have done better?



Circles and Spheres

● Alt-1: Consider circles that 
intersect any three non-linear 
(spheres: four non-planar) points
– Must check that it contains the 

whole object

● Alt-2: Pick a center (e.g. average 
point or one of the vertices from 
topological skeleton)
– Farthest point defines radius



Ellips{e|oid}s

● Similar to circle/sphere – picking position
● Also have to pick an orientation and length of 

major/minor axes



Discrete Oriented Polytopes (DOP)

● Called k-DOP, where k/2 is the number of 
directions

● Generalization of AABB (4-DOP in 2D)
– more directions to choose from than the 

dimensionality

● Fitting exactly the same  
as AABB but for more 
directions



k-DOPs

4-DOP

8-DOP

16-DOP ....



Convex Hulls

● Composed of the extremal points of the object (in 
all directions)

● Expensive to compute
● Tightext convex bounding volume possible



Separating Axis Theorem (SAT)

● Separating axis – a direction in which the 
projection of two objects does not overlap

● Quick test: two convex objects intersect iff there 
does not exist a separating axis for them

● Does not work on concave objects

Separating
Axis Separating

Line/Plane



Axis-Aligned Bounding Box (AABB)

● Separating axis candidates: x,y,z...
● Separating plane: box faces



Oriented Bounding Box (OBB)

● Separating axis candidates normals of box faces
● Separating plane box faces



Circles and Spheres

● Separating axis candidate: line between the centers
● Separating plane: tangent planes



Discrete Oriented Polytopes (DOP)

● Candidate separating axes: AABB, but more 
directions to test than just coordinate axes

● Separating planes: polytope faces



Convex Hulls

● Candidate separating axes: many, face normals
● Separating planes: hull faces
● Better to find closest points...



Next Time

● Nearest neighbor searches
● Reading: TBA
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