CS709a: Algorithms and Complexity

Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming(@dri.edu

Thursdays 4:00-6:45pm
Office hours after class
(or by appointment)


mailto:dan.coming@dri.edu

Today

e Finish Project 1 Presentations
* Project 2

 Bounding Volumes
— Fitting

— Intersections



Tentative Calendar

2/12 — Paper selection due
2/19 — Paper Presenter: Joe
2/26 — Paper Presenter: Matt

— Present Project 1 in class
(Project 1 Due 2/25)

3/5 — Bounding volumes
3/12 — Nearest neighbor
3/14-22 Spring Break
3/26 — Midterm review

— Present Project 2 1n class
(Project 2 Due 3/25)

4/2 — Paper Presenters: Mark,
Scott, Cody, and Steve

4/9 — Midterm

4/16 — Present Project 3 in class
(Project 3 Due 4/15)

4/23 — Paper Presenter: Roger
4/30
5/7-13 Finals Week

— Final Projects and
Presentations Due



Project 2: Due 3/25 @11:59pm

* Adopt another team's Project 1 code and extend it

e Base functions to add:

— 1terator insert(const point t & x)
— 1terator 1nsert(iterator hint, const point t & x)
— void erase(iterator position)

— size type erase(const point t & x) // erase all
matching and report how many were erased

e Useful support functions for the above:

— 1terator find(const point t & x)

— size type count(const point t & X)



Project 2 (continued)

* Ray Cast:

template <intersect info>

bool intersect(const point t & origin, const point t &
direction, intersect info & info)

e Returns whether there was a hit before info.hit time and 1f
there was a hit, info contains the result

e template <class T> struct intersect info {
T hit time;
point t hit location;

i



Project 2 (continued)

e Nearest neighbor

— vector<iterator> find nearest(const point t & X,
size type count)

e Extra credit (5%) if these are done 1n a better way
than a for loop of calls to insert/erase:

- template <class Inputlterator> void
insert(Inputlterator first, Inputlterator last)

— void erase (iterator first, iterator last)



Project 2 (continued)

e Data

— Assume point t 1s assignable and comparable and has:

e template <class intersect info>
bool point t::intersect(const point t & ray origin,
const point t & ray direction,
T ray thickness,
intersect_info & info)

— Extra credit (10%) if your data structure can handle
non-point data - black box like point t, plus:
e T* box::get min bound(); T* box::get max bound();

e void split(T * plane normal, T plane offset,
box & left, box & right)



Project 2 (continued)

e Add unit tests and don't break existing tests
e As before:

— Documentation in code and a separate document
providing design, implementation decisions,
complexity analysis, and anything that will help the
next group add collision detection

— Presentation 1n class (20 minutes, plus time for
questions)

* Additional details TBA as necessary — ask
questions early if instructions are unclear



Project 2 (continued)

e Thinking ahead for project 3

— Project 3 will use non-point data

— Project 3 will track pair-wise intersections between
data (collision detection)



Bounding Volumes (BV)

* Objects are likely to be
non-convex
e Convex 1s easier

— Convex decomposition 3 Boney 0 tam

 Bounding Volumes

— Convex shapes

— Simple operations

(d) Bunmy (e) Dragon (f) Lamp

— Completely contain
arbitrary geometry

Fig. 24. Sample approzimations for levels 2 and 3 of the test models.

Image Bradshaw, G. and O'Sullivan, C. 2004. Adaptlve medial-axis apprOX|mat|on for sphere -tree construction. ACM Trans. Graph. 23, 1 (Jan. 2004), 1-26.




Complexity — Fitness Tradeoff

Circle/Sphere  Axis-Aligned Ellips{e|oid} = Oriented Box Discrete Oriented Convex Hull
Bounding Polytope (DOP)
Box(AABB)

Simple Complex

- e

Loose fitting Tight fitting




*/Finding a valid bounding volume 1s eas
Minimizing its area/volume can be hard

* Approximate bounding volumes

- Leave wiggle room for moving / deforming opjects

— Save build time in BVH




Axis-Aligned Bounding Box (AABB)

e Fitting minimum AABB:

— Find min/max coordinate 1n
each dimension (x, X , ...)

(e.g., by looping over points)

Ymax
— Make a box from:
x X ,..)to
(X o X )

max( max1’

Xmin

Xmax,Ymin



Oriented Bounding Box (OBB)

e So many possible orientations

* One way to fitting a good OBB;

- Find medial axes

— Consider each as a

possible major axis
for OBB



Circles and Spheres

* Alt-1: Consider circles that
intersect any three non-linear
(spheres: four non-planar) point

— Must check that it contains the
whole object

e Alt-2: Pick a center (e.g. average
point or one of the vertices from
topological skeleton)

— Farthest point defines radius




Ellips{e|oid}s

e Similar to circle/sphere — picking position

e Also have to pick an orientation and length of
major/minor axes
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Discrete Oriented Polytopes (DOP)

e Called A-DOP, where £/2 1s the number of
directions

* Generalization of AABB (4-DOP 1n 2D)

— more directions to choose from than the
dimensionality

e Fitting exactly the same
as AABB but for more
directions I

—_—
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Convex Hulls

 Composed of the extremal points of the object (in
all directions)

e Expensive to compute

e Tightext convex bounding volume possible

I

]




Separating Axis Theorem (SAT)

e Separating axis — a direction 1n which the
projection of two objects does not overlap

* Quick test: two convex objects intersect 1ff there
does not exist a separating axis for them

* Does not work on concave objects

AN L
\

Separating _ \{
Axis Separating
Line/Plane o AE Ny




Axis-Aligned Bounding Box (AABB)

e Separating axis candidates: X,y,z...

e Separating plane: box faces




Oriented Bounding Box (OBB)

e Separating axis candidates normals of box faces

e Separating plane box faces




Circles and Spheres

e Separating axis candidate: line between the centers

e Separating plane: tangent planes



Discrete Oriented Polytopes (DOP)

» Candidate separating axes: AABB, but more
directions to test than just coordinate axes

» Separating planes: polytope faces

V2



Convex Hulls

e Candidate separating axes: many, face normals

e Separating planes: hull faces

* Better to find closest points...




Next Time

* Nearest neighbor searches
 Reading: TBA
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