
CS709a: Algorithms and Complexity
Focus: Spatial Data Structures and Algorithms

Instructor: Dan Coming
dan.coming@dri.edu

Thursdays 4:00-6:45pm
Office hours after class

(or by appointment)

mailto:dan.coming@dri.edu

Today

● Finish Project 1 Presentations
● Project 2
● Bounding Volumes

– Fitting

– Intersections

Tentative Calendar
● 2/12 – Paper selection due

● 2/19 – Paper Presenter: Joe

● 2/26 – Paper Presenter: Matt

– Present Project 1 in class
(Project 1 Due 2/25)

● 3/5 – Bounding volumes

● 3/12 – Nearest neighbor

● 3/14-22 Spring Break

● 3/26 – Midterm review

– Present Project 2 in class
(Project 2 Due 3/25)

● 4/2 – Paper Presenters: Mark,
Scott, Cody, and Steve

● 4/9 – Midterm

● 4/16 – Present Project 3 in class
(Project 3 Due 4/15)

● 4/23 – Paper Presenter: Roger

● 4/30

● 5/7-13 Finals Week

– Final Projects and
Presentations Due

Project 2: Due 3/25 @11:59pm

● Adopt another team's Project 1 code and extend it
● Base functions to add:

– iterator insert(const point_t & x)

– iterator insert(iterator hint, const point_t & x)

– void erase(iterator position)

– size_type erase(const point_t & x) // erase all
matching and report how many were erased

● Useful support functions for the above:
– iterator find(const point_t & x)

– size_type count(const point_t & x)

Project 2 (continued)

● Ray Cast:

template <intersect_info>

bool intersect(const point_t & origin, const point_t &
 direction, intersect_info & info)

● Returns whether there was a hit before info.hit_time and if
there was a hit, info contains the result

● template <class T> struct intersect_info {

T hit_time;

point_t hit_location;

};

Project 2 (continued)

● Nearest neighbor
– vector<iterator> find_nearest(const point_t & x,

size_type count)

● Extra credit (5%) if these are done in a better way
than a for loop of calls to insert/erase:
– template <class InputIterator> void

insert(InputIterator first, InputIterator last)

– void erase (iterator first, iterator last)

Project 2 (continued)

● Data
– Assume point_t is assignable and comparable and has:

● template <class intersect_info>
bool point_t::intersect(const point_t & ray_origin,

const point_t & ray_direction,
T ray_thickness,
 intersect_info & info)

– Extra credit (10%) if your data structure can handle
non-point data - black box like point_t, plus:

● T* box::get_min_bound(); T* box::get_max_bound();
● void split(T * plane_normal, T plane_offset,

box & left, box & right)

Project 2 (continued)

● Add unit tests and don't break existing tests
● As before:

– Documentation in code and a separate document
providing design, implementation decisions,
complexity analysis, and anything that will help the
next group add collision detection

– Presentation in class (20 minutes, plus time for
questions)

● Additional details TBA as necessary – ask
questions early if instructions are unclear

Project 2 (continued)

● Thinking ahead for project 3
– Project 3 will use non-point data

– Project 3 will track pair-wise intersections between
data (collision detection)

Bounding Volumes (BV)

● Objects are likely to be
non-convex

● Convex is easier

→ Convex decomposition
● Bounding Volumes

– Convex shapes

– Simple operations

– Completely contain
arbitrary geometry

Image: Bradshaw, G. and O'Sullivan, C. 2004. Adaptive medial­axis approximation for sphere­tree construction. ACM Trans. Graph. 23, 1 (Jan. 2004), 1­26.

Complexity – Fitness Tradeoff

c

Axis­Aligned
Bounding

Box(AABB)

Circle/Sphere Ellips{e|oid} Oriented Box Discrete Oriented
Polytope (DOP)

Convex Hull

Simple

Loose fitting

Complex

Tight fitting

Fitting Bounding Volumes

● Finding a valid bounding volume is easy
● Minimizing its area/volume can be hard
● Approximate bounding volumes

– Leave wiggle room for moving / deforming objects

– Save build time in BVH

Axis-Aligned Bounding Box (AABB)

● Fitting minimum AABB:
– Find min/max coordinate in

each dimension (x
0
, x

1
, ...)

(e.g., by looping over points)

– Make a box from:
(x

min0
, x

min1
, ...) to

(x
max0

, x
max1

, ...)

Xmin

Ymax

Xmax,Ymin

Oriented Bounding Box (OBB)

● So many possible orientations
● One way to fitting a good OBB:

– Find medial axes

– Consider each as a
possible major axis
for OBB

● Could we have done better?

Circles and Spheres

● Alt-1: Consider circles that
intersect any three non-linear
(spheres: four non-planar) points
– Must check that it contains the

whole object

● Alt-2: Pick a center (e.g. average
point or one of the vertices from
topological skeleton)
– Farthest point defines radius

Ellips{e|oid}s

● Similar to circle/sphere – picking position
● Also have to pick an orientation and length of

major/minor axes

Discrete Oriented Polytopes (DOP)

● Called k-DOP, where k/2 is the number of
directions

● Generalization of AABB (4-DOP in 2D)
– more directions to choose from than the

dimensionality

● Fitting exactly the same
as AABB but for more
directions

k-DOPs

4-DOP

8-DOP

16-DOP

Convex Hulls

● Composed of the extremal points of the object (in
all directions)

● Expensive to compute
● Tightext convex bounding volume possible

Separating Axis Theorem (SAT)

● Separating axis – a direction in which the
projection of two objects does not overlap

● Quick test: two convex objects intersect iff there
does not exist a separating axis for them

● Does not work on concave objects

Separating
Axis Separating

Line/Plane

Axis-Aligned Bounding Box (AABB)

● Separating axis candidates: x,y,z...
● Separating plane: box faces

Oriented Bounding Box (OBB)

● Separating axis candidates normals of box faces
● Separating plane box faces

Circles and Spheres

● Separating axis candidate: line between the centers
● Separating plane: tangent planes

Discrete Oriented Polytopes (DOP)

● Candidate separating axes: AABB, but more
directions to test than just coordinate axes

● Separating planes: polytope faces

Convex Hulls

● Candidate separating axes: many, face normals
● Separating planes: hull faces
● Better to find closest points...

Next Time

● Nearest neighbor searches
● Reading: TBA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

