A Mobile Quality Assurance Application for the NRDC

Hannah Munoz, Connor Scully-Allison, Vinh Le
Scotty Strachan, Frederick C. Harris, Jr. and Sergiu Dascalu
Department of Computer Science, University of Nevada, Reno

Reno, NV, 89509, USA
hannahmunoz, cscully-allison, vle@nevada.unr.edu
scotty@dayhike.net
fred.harris, dascalus@cse.unr.edu

Abstract

In this paper we present the design, implementation,
and impacts of a cross-platform mobile application that
facilitates the collection of metadata for grassroots-
level sensor networks and provides tools for Quality
Assurance processes on remote deployment sites. Cre-
ated in close conjunction with scientists working on
environmental sensor networks and data management
experts, this paper details the software requirements,
specifications, and implementation details required to
construct such an application. In a discussion on how
this software improves on existing techniques of logging
contextual metadata and quality assurance informa-
tion, it is shown that this application represents a signif-
icant improvement over existing methods. Specifically,
the proposed application allows for the near-real time
update and centralized storage of contextual metadata.
Compared to prior methods of logging, often physical
notebooks with pen and paper or program comments
on embedded field sensors, the method proposed in
this paper allows for contextual information to be more
tightly bound to existing data sets, ensuring use of
collected data past the lifetime of a specific research
project.

keywords: Data Management, Data Science, Mobile
Application, Sensor Networks, Software Engineering,
Cross Platform Mobile Development

1 Introduction

Individual researchers and one-off projects domi-
nate the model of data collection in traditional cli-
mate/environmental research [6]. In traditional re-
search, single use data proves extremely effective at
answering a singular project’s research questions and
fulfilling research requirements attached to funding
streams. However, despite the short term success of
such a model, a clear problem arises when another

research team wishes to use this previously collected
data, or when data need to be integrated into larger
syntheses. This is the need for complete, accurate, and
usable metadata.

Due to the narrow focus of typical projects, only the
original researchers intimately know how the data was
generated. Metadata is often non-standardized, incom-
plete, and stored in temporary formats. Eventually,
over time (or given enough distance) the value of these
data are diminished to other researchers and the public.
It becomes harder to recover and ascertain contextual
information that is essential to decoding it. Methods for
uniform quality assurance and metadata collection are
being recognized as the next major challenge for data-
intensive science as collection becomes increasingly
automated and results globally disseminated [10].

This paper proposes a mobile application that man-
ages and maintains quality assurance information about
data collected from remote sensor networks. The
Quality Assurance (QA) Application described in this
paper represents a positive step forward into modern
data collection models by centralizing, modernizing,
and standardizing contextual metadata for environmen-
tal sensor systems. The QA App gives technicians
and researchers a tool for dynamic modification and
creation of contextual information relating to hundreds
of live data streams in a statewide sensor network.

In this paper, we describe the development and utility
of a cross platform quality assurance application. This
paper is structured as follows: Section 2 presents some
related works to the app developed; Section 3 details
the software specifications given for implementation;
Section 4 discusses the software design and the use cases
of the app; Section 5 discusses the implementation;
Section 6 gives some discussion on the success of
implementation and Section 7 contains our ideas for
future developments.



2 Related Work

At the broadest level, Quality Assurance refers to
the preventive maintenance and management process
employed to reduce inaccuracies in data automatically
logged by sensors [2]. Motivating work published
on the subject comes from a 2013 paper “Quantity
is Nothing without Quality: Automated QA/QC for
Streaming Environmental Sensor Data [1]. In this
paper the authors put forth a comprehensive, general-
ized set of practices to optimize QA on environmental
field sensors. They suggest that QA procedures be
automated, well documented, and complete metadata
maintained alongside data. The QA platform imple-
mented for the Nevada Research Data Center (NRDC)
was designed using these fundamental requirements to
fulfill these needs and the needs of a larger Quality
Assurance/Quality Control system.

The NRDC is an Nevada-based organization dedi-
cated to the, “storage, retrieval, and analysis of research
data that is relevant to the needs and interests of the
state of Nevada” [8]. Conceived as part of a NSF Track
1 project, the NRDC represents the collaborative efforts
of top Nevada-based research institutions, including the
University of Nevada Reno, the University of Nevada

GetLocation

==gxtend==

>

Field Technician

:\Logln

Las Vegas and the Desert Research Institute [7, 9.
It presently supports the data sets of five projects
and works actively with external research networks to
disseminate and preserve data for continued research.

References to the considerations of a Quality Assur-
ance system for the NRDC appear in early literature
proposing practices and architecture for its predecessor
project NCCP [6]. These works present Quality Assur-
ance and Quality Control (QC) as crucial elements of
any large scale environmental research project. They
also impress upon the reader a need for a standardized
and centralized set of tools which enable universal
comprehension of data being collected. From this
specific need to improve on existing QA practices, a
quality assurance application was conceived.

3 Software Specifications

The QA App was developed with many functional
and nonfunctional requirements in mind. These re-
quirements were decided on after extensive talks with
our data management expert. The functional require-
ments detailed in Table 1, informed the core functional
elements of the QA application. Using an agile

s<include==
SyncToServer

—

nputRelated
Data

==gxtend==

InputData

o O
p W A

TakePhoto

==gxtend==

EditSyncedData
:@‘—

Admin Technician
»|{ EditLocalData

Figure 1: The Use Case diagram of the QA App



development method, these requirements went through
several iterations before settling into the current list.

Table 1: Functional requirements.

Functional Requirements Description

Input Data The user shall be able to
enter new data into the
QA app.

The user shall be able to
upload data to a secure
database.

The user shall be able to
download entries from the
database to their mobile
device and view previous
data entries.

The user shall be able to
edit previous entries and
upload the change data
to the database.

The user shall be able to
move between different
screens of the app, and
input data.

The user will be able to
authenticate themselves
to access secure
functionalities.

The user, with proper
authorization levels, shall
be able to delete data
stored on the database.
The user will be able to
launch the device’s
camera and upload a
photo from their photo
gallery on their device.
The user shall be able to
save data locally on their
device to upload it to the
server at a later point

Upload Data

Read Data

Edit Data

Navigate Data

User Authentication

Delete Server Data

Upload Photos

Save Unsynced Data

The nonfunctional requirements detail the needs of
the system to be multiplatform and perform logins
with an SSH certificate. This set of requirements
informed development by cementing the software and
architecture used to implement the app and indicate
how it should interface with the backend server.

4 Software Design

Using the functional requirements detailed in Section
3, a series of use cases were constructed and mapped
in a use case diagram, found in Figure 1. This

process informed the principal design phase of this
applications construction and was frequently referenced
or tweaked alongside the software specifications through
the implementation phase. The description of each Use
Case follows:

e Logln

Field technicians must log into the app. Once
logged in, technicians are given a list of projects
they are associated with. This helps reduce the
amount unnecessary data downloaded. Techni-
cians can also add new entries and upload them
to the server. Admin technicians, once verified
through the log in, are given the ability to edit
or delete entries already synced to the server.

— SyncToServer
Connects to the server and uploads new data
entries found on the phone. Then, downloads
new data found on the server. The app can
manually be synced by pressing the synchro-
nization icon on the header bar on the front

page.

e InputData
Allows the user to input new data. Opens a blank
template for whichever dataset they are choosing
to input. Once finished, it is saved to local memory
until synced to the server.

— TakePhoto
Opens the phone’s camera app to take a
picture that can be uploaded alongside the
data set, like the System in Figure 2. Not
every data set can have a photo.

— GetLocation
Uses the phone’s GPS to fill out latitude
and longitude coordinates, such as the Site
in Figure 3. Only two types of data sets need
GPS location.

e ReadData
All users must be able to view the data, regardless
of whether or not they are logged in. This is so
users who are not a part of the project, but are
interested in the data, can view it. To read the
data, users need only to navigate to their desired
object and click on the name.

e EditLocalData
Users are allowed to edit entries that have not yet
been synced to the server. Users can navigate to
unsynced data entries and select the edit button to
change them.

e EditSyncedData
Admin technicians are allowed to edit data already



synced to the server. If an admin is logged in, they
can edit entries by navigating to it and clicking
the "Edit” button. If the user is not an admin,
this button will be greyed out. The changes will
be uploaded the next time the app is synced to the
server.

e DeleteLocalData
Users are allowed to delete entries that have not yet
been synced to the server. Users can navigate to
unsynced data entries and select the delete button
to remove them.

e DeleteSyncedData

Admin technicians are allowed to delete data en-
tries already on the server. If an admin is logged
in, they can delete entries by navigating to it and
clicking the ”Delete” button. If the user is not an
admin, this button will be greyed out. The changes
will be uploaded the next time the app is synced
to the server.

4 System

Power

Negligible

Installation Location
Sheep Range

Scotty Strachan v

Figure 2: An example of inputting data with a picture
from the phone’s camera.

5 Implementation

Currently, the NRDC QA Application is comprised of
a front end system developed in the Ionic Framework,
and a back end comprised of essential and indepen-
dent web services communicating through a centralized
hub [5]. The data transferred between the two are
stored inside a Microsoft Virtual Environment with

Microsoft SQL Server 2012 as the primary database
management. These two main components together al-
low for a seamless interface between the main databases
and the client application.

For the front end system, the QA application was
completed with the Ionic Framework [4]. This frame-
work utilized HTML and CSS as a wrapper to ma-
nipulate mobile elements of the interface, as well as
Javascript to apply functionality. Once completed, the
HTML, CSS, and Javascript are then compiled into the
appropriate codebase. In addition to the actual lan-
guages, a wide collection of libraries and modules were
used in various development stages of the application.
Primarily, Googles AngularJS was used as a structural
framework for the Javascript codebase and allowed for
a more object-oriented approach to manipulation of
the HTML and interaction with microservice APIs[3].
Node Packet Manager (NPM) and Bower were used as
the main package managers for this application. They
ensured libraries, assets, and utilities were regularly
updated and organized.

Organization of the QA app follows a pattern rep-
resentative of the hierarchical organization of existing
sensor networks managed by the NRDC and associ-
ated institutions. At the top level the application
presents the user with a selection of Site Networks, a
representation of several data collection sites connected
by their similarity of purpose or project associations.
From there the user selects a site associated with that
network, a system associated with that site, and a

< Rockland Info

Name
Rockland

Latitude
39.5399894714

Longitude
-119.813751221

GET GPS LOCATION

Altitude
183.479995728

Alias
Rockland Summit

Notes

Rockland Summit weather station for
Walker Basin Hydroclimate Project

Figure 3: An example of retrieving latitude and
longitude coordinates from the phone’s GPS.



deployment associated with that system, ending with a
hardware component associated with that deployment.
This workflow of ”tunneling” down into atomic compo-
nents gives data scientists a logical means of narrowing
down the exact sensor network element they seek by
leveraging their knowledge of existing infrastructure.

At any point in the navigation of the sensor network
hierarchy, a user can add a new entry to the list of
displayed entries or view the details of existing ones.
Whether choosing to display or create, the user will be
greeted with the same page. If displaying data about
an existing item, the page will be populated with data
about the selected element. If the user chooses to create
a new item, the form fields on this page are blank and
ready for input.

On the element creation screen, visible in Figure 2,
the user inputs information into blank form fields that
expand or contract to fit the size of the input data. The
user can also choose to upload a related picture or get
their location via their phone’s GPS. This functionality
enables field technicians to upload accurate location
data about sites they are working on with the touch of a
button. Once all necessary information in entered, the
new metadata entry can be saved locally. And, once the
user is done adding new entries, they can upload them
en masse to the server for storage in the database.

On the view screen the user is presented with a
few different options compared to the creation screen.
Principally she can no longer save an entry, only edit
or delete with proper permissions, and there appears
a floating orange icon in the bottom right corner
visible in Figure 3. From the submenu which this
button populates, users can add two different types of
metadata about an entry, a document and a service
entry. Documents allow users to add related files to
a metadata entry. Service Entries are entered when
scientific equipment is repaired or replaced.

6 Discussion

The successful implementation of the QA application
changes the face of quality assurance in the field signifi-
cantly for existing projects in the NRDC. The inclusion
of a dedicated application impacts the workflow of
sensor technicians and researchers by substantially aug-
menting current data management capabilities. Data
stewards performing QA on sensor networks benefit
from this application in several ways over traditional
methods: uniform data entry, centralized QA data
storage with synchronization and a usable interface
facilitating the utility of the above benefits.

The problem of uniform an accurate data entry
naturally occurs in any system reliant upon human

interaction as the primary interface between a means of
measurement and the means of logging. This problem
is further exacerbated when technicians are deployed
to remote areas, often equipped with only a notebook.
It can be very hard to meaningfully restrict metadata
and service logging, as different people are going to
include different data that they find relevant to a
QA expedition. The use of form fields significantly
normalizes data input by restricting users to only give
information deemed necessary and sufficient to detail
the quality assurance practices performed. An example
of these forms can be seen in Figure 4. In the case of
non-structured data, the option to attach documents
is provided. This enables a diversity of data input

methods.
< Dynagage Sap Flow Sensor Info

Name
Dynagage Sap Flow Sensor

Manufacturer
Dynamax

Model
SGA2-WS

Serial Number
135972

Vendor
Dynamax

Supplier
UNR

Installation Details

Figure 4: An example data entry page containing info
about a single data sensor. The floating action button
in the lower right hand corner provides the option to
add a service entry when clicked.

Originally QA data collected and maintained by
technicians was held in a decentralized heterogeneous
collection of notebooks, spreadsheets and program com-
ments. This proved problematic internally, as audits
and reviews of quality assurance processes could not be
effectively performed in a timely manner. Externally,
this lack of centralized QA data damages the integrity
of collected data, as logs are not comprehensively tied
to data streams. This limits the re-usability of collected
data. With a central repository and dedicated backend
infrastructure, the QA App significantly improves the
maintenance of QA and metadata logs by providing a
centralized, organized database to store this informa-
tion and bind it to existing data streams. With the



frontend mobile component automatically syncing with
remote servers, users need not worry about any logistics
of storing and formatting QA data for future use. Users
now only need to perform expected maintenance and
installation and fill out the form fields detailing their
work.

Finally, the interface provides users with a sim-
ple straightforward medium to quickly access to the
forms required by technicians. Visually reminiscent of
Google’s material design, this application takes cues
from public facing software to provide a refined interface
to encourage smoother adoption of this app among
unskilled mobile technology users. Large buttons
and clickable lists simplify use for technicians wearing
gloves when performing maintenance on sites in high
elevations or in colder months.

7 Future Work

Work on the Quality Assurance Application will
continue in the interest of expanding the present func-
tionality detailed. First and foremost, with multiple
technicians using this application at the same time
its possible that different notes and modifications may
be made to the same metadata entry. The user may
not want work stored locally on their phone to be
overwritten with a synchronization with the central
database. A merge conflict option should be given to
the user. Accordingly, it’s of paramount importance
that this functionality get added to the application
as its adoption increases and the potential for such
conflicts increases.

In addition to handling data conflicts, further work
will be done to help audits and administration of QA
practices. Presently actions performed on the applica-
tion are primarily user agnostic. They are performed
with no considerations or limitations based upon the
present user of the app. This can be problematic when
it is necessary to track down the specific user who
performed a given preventative maintenance on a given
piece of equipment. A paper trail can prove immensely
useful to any project on the scale of those which the
NRDC helps maintain.

Outside of internal growth of the application itself,
the data collected and maintained by the Quality
Assurance Application will be used to provide increased
functionality to a companion quality control web ap-
plication. QA and QC are often referred as nearly
the same entity in discussions of data management.
Where QA is concerned with ensuring that data streams
have little opportunity to fail in their logging through
constant maintenance and monitoring, QC is concerned
with handling data that has been logged in error and

attempting to correct those mistakes. The data stored
via this QA app can be used to give context to any
errors that might be discovered by a automated quality
control service.

8 Acknowledgement

This material is based in part upon work sup-
ported by The National Science Foundation under
grant number IIA-131726. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[1] John L Campbell, Lindsey E Rustand, John H
Porter, Jeffery R Taylor, Ethan W Dereszynski,
James B Shanley, Corinna Gries, Donald L
Henshaw, Mary E Martin, and Wade M. Sheldon.
Quantity is nothing without quality. BioScience,
63(7):574585, 2013.

[2] ESIP. Federation of earth science information
partners. http://wiki.esipfed.org/index.
php/Sensor_Data_Quality#Quality_Control_
.28QC.29_on_data_streams.

[3] Google. Angularjs. https://angularjs.org/.
Last accessed June 13, 2017.

[4] Tonic. Ionic. https://ionicframework.com/.
Last accessed June 13, 2017.

[5] V. D. Le, M. M. Neff, R. V. Stewart, R. Kelley,
E. Fritzinger, S. M. Dascalu, and F. C. Harris.
Microservice-based architecture for the NRDC.
In 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN), pages 1659-1664,
July 2015.

[6] Michael J. McMahon, Frederick C. Harris,
Sergiu M. Dascalu, and Scotty Strachan.
S.E.N.S.O.R. applying modern software and
data management practices to climate research.
2011.

[7] NEXUS. Solar energy water nexus. https:
//solarnexus.epscorspo.nevada.edu/. Last
accessed June 13, 2017.

[8] NRDC. Nevada research data center. http://
sensor.nevada.edu/NRDC/. Last accessed June
13, 2017.

[9) NSHE. Epscor nevada. https://epscorspo.
nevada.edu. Last accessed June 13, 2017.

[10] Mark D. Wilkinson, Micheal Dumontier, IJs-
brad Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, and et. al. The fair guiding
principles for scientific data management and
stewardship. Scientific Data, 2016.



