
Generalized Software Interface for CHORDS

Pattaphol Jirasessakul, Zachary Waller, Paul Marquis,
Vinh Le, Connor Scully-Allison, Scotty Strachan, Frederick C. Harris, Jr. & Sergiu M. Dascalu

Department of Computer Science and Engineering, University of Nevada, Reno
Reno, Nevada, 89557, United States of America
(pjirasessakul, cscully-allison)@nevada.unr.edu,

(zacharydwaller, paul.marquis1, vdacle)@gmail.com, scotty@dayhike.net,
(fred.harris, dascalus)@cse.unr.edu

Abstract

In the physical sciences, the observation and analysis of
environmental readings, such as wind speed, sap flow,
atmospheric pressure, temperature, and precipitation,
benefit greatly from real-time visualization as they al-
low environmental scientists to create faster actionable
intelligence. However, the scarcity of easily accessible
and customizable real-time visualization software often
creates logistical problems for researchers focused in
environmental sciences. The goal of this paper is to
present an alternative approach, based on usability
and open source software, for the Nevada Research
Data Center (NRDC) to visualize environmental data
in near-real time and confirm its viability for usage
with other research projects of similar size. This ap-
proach involves creating an open-source near-real time
interface to act as middle-ware between the NRDC’s
data repository and CHORDS, a cloud-hosted data
visualization package. While this interface is primarily
being built for the NRDC, there is an emphasis on
tooling it to be as generalized and generic as possible.

keywords: Data Visualization, Environmental
Science, Middleware, Web Scraping, Web Ser-
vice

1 Introduction

Data visualization is a critical tool for scientists work-
ing with large and constantly updating data streams.
However, these scientists, usually of a physical science
background, are often presented with two options for ro-
bust visualization: expensive proprietary solutions, or
programming language libraries that require developer-
level knowledge to use.

This is where Cloud Hosted Real-Time Data Services
for the Geosciences, or CHORDS, comes in. CHORDS
is a project that was developed by EarthCube, an
NSF-funded project that supports the development

of cyberinfrastructure for the Geosciences. CHORDS
provides a visualization platform tailored for environ-
mental research to make real-time data available to the
research community in standard formats[7].

However, CHORDS by itself comes with a very
critical limitation that makes the use of a middle-ware
vital for operation in larger projects, such as the ones
hosted at the NRDC. CHORDS provides an HTTP API
that allows for the population of real-time data entry,
but the API is only partially exposed and often forces
the task of manual inputting new hardware and stream
deployments onto the user. This is especially tedious
for larger environmental research groups because the
addition of new sensor equipment is not an uncommon
occurrence during a multi-year operating period.

The middleware described in this paper first inter-
faces with the NRDCs own HTTP library to access
the data stores. This then automates the creation of
a CHORDS portal is created, if not already existing,
and allows users to specify the data to be stream based
on the way the data is structured. The middleware
compares the amount of the datastreams being mon-
itored and automates the creation of new ones based
on the metadata provided by the NRDC. The data
is then streamed in near real-time to CHORDS, and
users may visualize their data in standard formats while
provided complex scientific tools such as prediction
models. Preliminary results of a discussion indicate
that this middleware represents a satisfactory solution
to the NRDC’s problem of data visualization.

The remainder of this paper is structured as follows:
Section 2 introduces a basic background of the project
and some related works, Section 3 goes into the speci-
fications of the software, Section 4 discusses the overall
design of the software, Section 5 contains details on the
UI design of the web client, Section 6 and 7 includes
details of the prototype development and discussion
about viability, finally Section 8 details conclusions and
future work.



2 Background & Related Work

This project was made in coordination with the
NRDC and EarthCube, both of which falls under the
umbrella of the Cyberinfrastructure branch of the Na-
tional Science Foundation (NSF). The following section
will go over the goals of both organizations as well
as a more detailed explanation on other visualization
options inside and outside of the Nexus Project.

2.1 NRDC

The NRDC was born out of a data portal that was
developed during a previous Track 1 NSF EPSCoR
project on climate change called the Nevada Climate
Change Portal. The current project that the NRDC
is affiliated with, the Solar Energy-Water-Environment
Nexus, was created in order to increase research aware-
ness, and productivity of alternative energy sources,
and the conservation of natural resources in the state
of Nevada. The NRDC serves in a critical role of
cyberinfrastructure within the Nexus Project, which
includes the provision of technical skills and resources
to members of the research project. The tasks that
the NRDC covers include the acquisition, transport,
storage, querying, and dissemination of observational
data gathered by automated digital sensor systems.
The NRDC participates in cutting-edge software and
systems development to enhance next-generation sci-
ence that leverages the Internet of Things (IoT). Their
goal is to transform the scale, quality, impact, and
bottom-line cost of research projects in Nevada that
seek to deploy automated sensor systems as part of their
scientific workflow[3].

2.2 EarthCube

EarthCube is a quickly growing community of scien-
tists across all geoscience domains, including geoinfor-
matics researchers and data scientists. They are a joint
effort between the NSF Directorate for Geosciences and
the Division of Advanced Cyberinfrastructure. Earth-
Cube was initiated by the NSF in 2011 to transform
geoscience research by developing cyberinfrastructure
to improve access, sharing, visualization, and analysis
of all forms of geoscience data and related resources. As
a community-governed effort, EarthCube’s goal is to
enable geoscientists to tackle the challenges of under-
standing and predicting a complex and evolving solid
Earth, hydrosphere, atmosphere, and space environ-
ment systems. The NSF’s Directorate for Geosciences
(GEO) and the Division of Advanced Cyberinfrastruc-
ture (ACI) partnered to sponsor EarthCube, which
NSF anticipates supporting through 2022[2].

2.3 CHORDS & Other Visualization
Options

Currently, there are a handful projects within the
NRDC that utilizes data visualization: VISTED and
VFire. VISTED (Visualization Tool of Environmen-
tal Data) is a web application, which enables data
selection, extraction, download, conversion, and visu-
alization of environmental data sets that extends for
over 30 years (1980 - 2009)[9]. VFire is an immersive
visualization application that uses remote sensing data
in conjunction with simulation model to predict the
behavior of wildfires[8]. RWWSS (Real-time Web-
based Wildfire Simulation System) is a web application
that provides users with wildfire simulations using
data from the Lehman Creek Watershed in Great
Basin National Park [11]. A workflow dedicated to
visualizing big data on web applications was created
as an alternative to expensive third-party software[12].
Finally, a system revolving around MongoDB and some
accompanying tools were developed to visualize big
data as a way to address the mass influx of data in
the recent years[10].

Aside from CHORDS, there are also alternatives
out for near real-time data visualization. There are
multiple programming languages out there with data
visualization library along with existing proprietary
data visualization softwares. Libraries such as D3.js
and Plotly.js, are well known library within the field
of data visualization. D3.js is a library made for
visualizing data using web standards. It combines
powerful visualization and interaction techniques with
data driven approach to give users the freedom to design
the visual interface anyway they want . Plotly.js is
open-source library that supports many chart types
including scientific ones such as heatmaps and contour
plots to use for plotting sensor data in real-time[4][1].
Unfortunately, both of these and other libraries suffers
from the same problem as they require some sort of
programming knowledge on their respective program-
ming languages. This results in lower accessibility of
these libraries for smaller research team as they may
not have someone with the programming knowledge in
the team or have the time and patience to learn the
language and library by themselves.

Alternatives to using programming libraries would be
to use real-time data visualization softwares. Examples
of these softwares are Tableau and Visualr, both offer
many features such as the ability to connect with
multiple data sources such as MySQL, Oracle and MS
Excel, being able to fetch data from API Data Providers
and a plug and play feature where all the users have
to do get the software running is to install it[5][6] .
However, as compensation for having many features,



they often come with a hefty price tags along with some
sort of training session in order to use them effectively.

3 Software Specification

The main requirements of this project were elicited
from the main stakeholder, Scotty Strachan, a domain
scientist specializing in in-situ environmental sensing
and data management. These requirements were split
between functional requirements, which describe the
overall technical functionality of the system, and non-
functional requirements, which outline constraints on
the system.

3.1 Functional Requirements

From formal interviews with Dr. Strachan, we elicited
seven base level functional requirements that form the
core functionality of our solution. The first and second
requirements are to create an interface that will not
only be able to successfully interface with a running
instance of CHORDS and manage the data inside, but
to also interface to the research team’s data source
in the NRDC in order to query data. The third
requirement involves implementing the functionality
to visualize data displayed on CHORDS in near-real
time. The fourth requirements is streamlining the user
experience by creating a web client to simplify the
originally tedious visualization process for users. The
NRDC sensor networks currently exists in a structured
hierarchy, so the fifth requirement is to fetch that
hierarchy and format it into integrates intuitively with
the user interface. Finally, the sixth and seventh
requirements is the functionality that allows users to
specify whether they wish to stream data in a near-real
time mode, or stream from a specific date range.

There are four higher level functionalities that this
solution provides outside of the scope of the main
functionalities. The first requirement let users compute
and display summary statistics, such as the minimum,
maximum, mean and standard deviation, of the data
streams that they chose for their visualized session.
The second requirement enables users to share their
visualized session by adding in the functionality to
export a snapshot, which is an interactable instance of
the users visualization at the time it was created. The
third requirement enables users the option of having the
visualized instance alert them through email when the
data leaves an expected range. The fourth requirement
builds upon the web client by embedding a customized
Google Maps API onto it. The map will list all available
sites in NRDCs hierarchy network that represented as
marker on the map. Additionally, when the user clicks
on a marker, the latest photo streamed from that site

Figure 1: A diagram showing the high level design of
the project.

will be displayed along with specific information about
that site, such as name, latitude, longitude, and current
measurements.

3.2 Non-Functional Requirements

This project operates under 4 non-functional re-
quirements acting as constraints on the design and
development of this system. The first requires that
the interface portion of the software be written in C#
with the .NET Web API library as its framework. The
second requirement is that the development team uses
a modified instance of the CHORDS visualization pack-
age for the visualization aspect. The third requirement
is that the software should be compatible with all major
web browsers. The fourth requirement is that the
software should be able to consistently maintain near-
real time execution when streaming data from sensor
instruments.

4 Software Design

This project consist of three major parts: NC-Client,
NC-Interface and the Chord’s visualization. The goal
of this section is to show, in detail, the design of this
software and everything that is required to produce a
similar design. Beginning with a high level explanation
of each component and delving into how of each of these
components interact with each other. The architecture
of this project is component based to ensure fast and
robust development as well as strong interoperability
as each components are loosely coupled. A high level
design of the project can be seen below in Figure 1.

4.1 Components

NC-Client - The NC-Client consists of two web
pages and a scripts file. The script contains code to
drive the spawning of views and navigation logic for



Figure 2: An example of a visualized session of 3 different data streams on a CHORDS instance

each web page on the web page. It also impements an
auto-refreshing function call to allow for near-real time
streaming.

NC-Interface - The NC Interface is the main com-
ponent of our project. It contains four modules:
ChordsBot, DataCenter, GrafanaManager, and Ses-
sionManager. Three of these four modules also have
a Web API controller associated with them. Each of
these modules are further explained in section 6.

Chords Visualization - The Chords Visualization
is the main component of visually and actively interfac-
ing with the data from the NRDC repositories. After
a user has made a selection of a desired datastream
using the NC-Client, the NC-Interface will fetch that
data, reformat it, create the users CHORDS session
(via SessionManager) and then push the data to the
newly created session with ChordsBot. Figure 2 shows
an example of a visualized CHORDS session.

5 UI Design

There are two primary interfaces users interact
with when using the Generalized Software Interface
for CHORDS : The interface web client and the
CHORDSs interface. And, although functionality was
implemented to integrate with Graphana, we cannot
include it here due to space limitations.

5.1 Interface Web Client

Our custom built web client, visible in Figure 3, is
a single-page-web-application allowing users to view
the sensor network hierarchy, select a deployment, and

begin streaming data. This feature enables users to
specify the type of data they want to stream.

The NRDC sensor networks exist in a hierarchy. Each
sensor network (NevCAN, Solar Nexus, Walker Basin
Hydro) contains a list of sites, which refer to geographic
locations. Each site contains a list of systems, which are
logical groupings of deployments or sensors. In order to
make it easy for a user to access specific deployments to
view their data on the user interface, we implemented a
way to retrieve and display this entire hierarchy on said
interface. This requires our web interface to make calls
to the NRDCs Infrastructure API and format the data
returned in a user-readable format. By implementing
this feature, it makes accessing specific data streams
much easier for the user.

Upon visiting the client page, the user can select
between the three sensor networks. Then, the user can
select which site they want to see data for from a list of
all sites in that sensor network. Next, the users select
which data streams they would like visualized. The user
can select one stream or multiple. Finally, the user can
save their session with a name and specify the time
period for which they would like the data streamed.
Leaving the end date of the stream blank will result in
a continuous live data stream.

5.2 CHORDS’s Interface

CHORDSs UI primarily functions on the back end of
our software by creating new CHORDS instruments for
user created data streams. At the top of the CHORDS
page, the name the user chose for the session in our
web client is displayed as the name of the CHORDS
instrument, along with the total number of measure-



Figure 3: The main page for the NRDC-CHORDS-
Interface Web Client. A user can begin finding a
datastream to visualize by clicking on one of the three
available site networks associated with the NRDC.

ments reported and the dates of those measurements.
Additionally, a list of all visualized session created by
a research team is available to them as well as seen in
Figure 4.

The main section of the visualization page displays
the actual graphed data from the data stream displayed
alongside of the names of the data streams and above
the times that the data was received by CHORDS
like the one seen in Figure 2. Below, each variable
corresponding to a selected data stream is displayed.
For each variable, the user is shown the units of the
variable, the property measured, and the name of the
variable, which is a combination of data about the
stream including the location of the sensors, what the
sensors are measuring, and other information.

6 Prototype Development

A prototype of this project was developed as a proof
of concept for the NRDC. It implemented the majority
of the functionality detailed in Section 3. On the server
side, we created a service called NC Interface. It acts
as an interface between the NRDC’s data center and
CHORD’s Data API so that data can be gather from
the former, formatted and sent to the latter. On the
client side, we created a single page web application
called NC Client that allow users to select the specific
data stream they want to visualize out of the NRDC’s
sensor network hierarchy.

The NC Interface was developed using the .NET
Web API framework. It is composed of 4 different
modules: ChordsBot, DataCenter, GrafanaManager
and SessionManager. When the user first opened
up the web client, the DataCenter module is called
to fetch the NRDC’s sensor hierarchy network for
the user to select their data streams. Once the

Figure 4: A picture of a research team’s CHORDS’s
Portal. Currently displayed is a list of the team’s
currently visualized session

user select their stream(s), that information is sent
to SessionManager that will create the user’s session
on the research team’s CHORDS Portal. Once the
session is created on CHORDS, ChordsBot is called
to automate the data streaming to the session along
with performing other functionalities like filling forms in
the session with information regarding the selected data
streams (their name, location, units of measurements,
etc.) and generating the session’s Grafana dashboard.
Automated tests are performed in order to confirm
that DataCenter was getting the correct data and that
ChordsBot was performing the functionalities that it
was automating for the user on CHORDS properly.

CHORDS’s Data API was very inflexible in terms
of what our development team wanted from it. While
certain things like data put and fetch activities are
well documented on the API, functionalities like the
automation of Sites and Instrument creation on a
particular CHORDS instance are not. From our com-
munication with the API’s developer, we have learned
that since the API was developed using Ruby on Rails,
a lot of its functionality are written for them which
doesn’t give their development team a lot of room to
formalize the API.

7 Discussion

Our software was successful in visualizing data from
the NRDC database in a way that was configurable
by users. While CHORDS was intended to work with
static sets of data sent to it, our software was configured
to be able to send CHORDS live updates as the data
enters the database. To our knowledge, this has not
been done using CHORDS specifically, yet our software
allowed for both live streams and static viewing of data.
Our software was able to take the streams of data
from NRDC Databases, place that data in a CHORDS-



compatible data structure and send chunks of data to
CHORDS via HTTP.

While many data visualization solutions on the mar-
ket support live streaming of data, most come at a
high price that limits their availability to those outside
of industrial applications. Our service is open source
and could be adapted to work with systems other than
the NRDC database, which could allow for greater
availability of live-streaming data visualization.

8 Conclusion & Future Work

This software was intended to act as a middleware
between data coming in from the NRDC database and
the CHORDS data visualization service. It performed
that function successfully, sending data to CHORDS in
a format that could be interpreted and displayed to the
user.

Using C#, the program stored the data from the
NRDC sites, deployments, and data streams into data
structures and processed those data structures to be
compatible with CHORDS. Using HTTP and a variety
of services like Selenium and PhantomJS, the program
interfaced with CHORDS and sent the data successfully
even though CHORDS lacked a functional API to input
data.

With some modification this software could be used
as an open-source data visualization solution for labs
that cannot afford more expensive software. This
software can also help those who are not knowledgeable
enough at programming to interface their database to
CHORDS. Additionally, there are plans for the software
to be used by the Desert Research Institute to monitor
data incoming from lysimeters. This software has great
potential to help many people visualize their data.

9 Acknowledgements

This material is based upon work supported by
the National Science Foundation under grant number
IIA1301726. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

[1] D3.js. https://d3js.org/\#introduction. [On-
line; accessed November 18, 2018].

[2] Earthcube. https://earthcube.org/info/

about. [Online; accessed November 18, 2018].

[3] Nevada Research Data Center. www.sensor.

nevada.edu. [Online; accessed November 18,
2018].

[4] Plot.ly. https://plot.ly/javascript/. [Online;
accessed November 18, 2018].

[5] Tableau. https://www.tableau.com/

2018-1-features. [Online; accessed November
18, 2018].

[6] Visualr. https://visualrsoftware.com/

features.html. [Online; accessed November 18,
2018].

[7] MD Daniels, SJ Graves, B Kerkez, V Chan-
drasekar, F Vernon, CL Martin, M Maskey,
K Keiser, and MJ Dye. Connecting real-time data
to algorithms and databases: Earthcube’s cloud-
hosted real-time data services for the geosciences
(chords). In AGU Fall Meeting Abstracts, 2015.

[8] Roger V Hoang, Matthew R Sgambati, Timothy J
Brown, Daniel S Coming, and Frederick C
Harris Jr. Vfire: Immersive wildfire simulation and
visualization. Computers & Graphics, 34(6):655–
664, 2010.

[9] Likhitha Ravi, S Dascalu, Frederick C Harris,
John Mejia, and Noureddine Belkhatir. Visted:
a visualization toolset for environmental data. In
Proceedings of the 2015 International Conference
on Computers and their Application (CATA-
2015), pages 335–342, 2015.

[10] Rui Wu. Environment for Large Data Processing
and Visualization Using MongoDB. University of
Nevada, Reno, 2015.

[11] Rui Wu, Chao Chen, Sajjad Ahmad, John M Volk,
Cristina Luca, Frederick C Harris, and Sergiu M
Dascalu. A real-time web-based wildfire simulation
system. In Industrial Electronics Society, IECON
2016-42nd Annual Conference of the IEEE, pages
4964–4969. IEEE, 2016.

[12] Rui Wu, Jose T Painumkal, Nimrat Randhawa,
Lisa Palathingal, Sage R Hiibel, Sergiu M Dascalu,
and Frederick C Harris. A new workflow to interact
with and visualize big data for web applications.
In Collaboration Technologies and Systems (CTS),
2016 International Conference on, pages 302–309.
IEEE, 2016.


