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Abstract

In this thesis we explore a problem facing contemporary data management in the

earth and environmental sciences: effective production of uniform and quality data

products which keeps pace with the volume and velocity of continuous data collection.

The process of creating a quality data product is non-trivial and this thesis explores

in detail what knowledge is required to automate this process for emerging mid-scale

efforts and what prior attempts have been made towards this goal.

Furthermore, we propose a model which can be used to develop a mid-scale data

product pipeline in the earth and environmental sciences: Keystone. Specifically,

by automating Quality Assurance, Quality Control and Data Repair processes, data

products can be created at a rate that keeps pace with the production of data itself.

To prove the effectiveness of this model, three software applications that ful-

filled each of the key roles suggested by the Keystone model were conceived, imple-

mented and validated individually. These three application are the NRDC Quality

Assurance Application, the Near Real Time Autonomous Quality Control Applica-

tion (NRAQC), and the Improved Robust and Sparse Fuzzy K Means (iRSFKM)

imputation algorithm. Respectively, they provide the functionalities of metadata

management and binding through a multi-platform mobile application; automated

data quality control with the help of a dynamic web application; and rapid data im-

putation for data repair. The latter leverages multi-gpu processing to add significant

speed to a high accuracy algorithm.

The NRDC Quality Assurance application was validated with the aid of a di-

rected user survey which was disseminated among environmental scientist members

of the Earth Science Information Partners organization. An analysis of these surveys

indicated that the NRDC Quality Assurance application addresses many significant

gaps in the area of metadata binding and creation with many respondents still record-

ing metadata on pen and paper and taking between hours to weeks to digitize their

metadata.

The efficacy of the NRAQC application was demonstrated through a case study
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where nearly a million data points were batch tested according to various user con-

figured metrics. The NRAQC system consistently flagged the same data points on

the same streams over the course of five iterations, with an average testing time

of 134.24 seconds per testing iteration. Specifically, in each iteration, the NRAQC

system identified 1946 repeat values, 365 missing values, and 131 out-of-range values.

Finally, we demonstrated the effectiveness of our iRSFKM algorithm and im-

plementation with multiple experiments, clustering real environmental sensor data.

These experiments showed that the our improved multi-GPU implementation is sig-

nificantly faster than sequential implementations with 185 times speedup over eight

GPUs. Experiments also indicated greater than 300 times increase in throughput

with eight GPUs and 95% efficiency with two GPUs compared to one.

The overall model itself was validated through a discussion of how effectively

these software solutions worked in tandem to produce a final data product in an

primarily automated fashion.
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Glossary
in-situ environmental sensing A type of sensor-based research where a measurement

device is located in the area it is observing. For example, a wind-speed monitor
on a weather station is a in-situ sensing device.

data imputation The process of using statistical methods to fill a missing value in
a dataset by levering known data which may be related to the missing point in
some way.

interoperable A characteristic of data that expresses an ease of use across different
programs and models.

machine readable A characteristic of data that indicates that it can be parsed by
computers and computer programs.

metadata Data that describes data. In the earth sciences it is often used for data
indexing in addition to ascertaining the provenance of data.

ontology A graph describing relations of ideas and words in a particular domain.

QA Abbreviation for “Quality Assurance.” The process of monitoring and maintain-
ing the hardware and software which provides data. This process involves tech-
nical maintenance of hardware and software in addition to the documentation
of metadata related to this process and detailing specific processes.

QA/QC An abbreviation for the closely linked processes of Quality Assurance and
Quality Control which are part of data management.

QC Abbreviation for “Quaility Control.” Describes the process of checking collected
data for consistency and correctness. Used to ensure that collected measure-
ments reflect ground truth values.

remote sensing A type of sensor-based research where a measurement device is re-
moved from the area it is observing. For example, satellite imagery is a form of
remote sensing.

sensor network A collection of sensor-based research sites capable of transmitting
data between one-another.

time-series A type of data that measures a single variable over time. Mathematically
represented as an vector indexed at timestamps.

vocabulary Similar to ontology. A lexicon of words which express ideas in a specific
domain. In the sciences we want ensure that our vocabularies are as standard
as possible.
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1 Introduction

1.1 The Humanity of data

As long as 40,000 years ago, humans were recording their experiences on the walls

of cave dwellings in the form of paintings discovered in modern-day Indonesia [6].

An example of such a painting can be seen in Figure 1.1. Although the purpose of

such paintings is yet to be definitively established it cannot be denied that there is

something undeniably human about them and at the same time something undeniably

human about data.

Figure 1.1: An example of a cave painting from Lascaux, France. Photo taken by
Mike Beauregard [11]. From a certain perspective, cave paintings can be
thought of as some of the first data recorded by humans.

Long before we as a species knew what existed beyond the next visible horizon,

or before we learned what forces moved the wind, the earth, the sun and the stars, we
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made indelible, intelligible marks that recorded information. Whether intentional or

not, this information conveyed something to humans living 40,000 years in the future.

Most fundamental definitions of data describe it as “facts or statistics” collected

for analysis. Although these recordings could have been put to walls for pure aesthetic

value, there seems to be some fact underlying these recordings. An ineffable and

relatively insignificant data point which recounted some reality of early humanity. A

data point which says, “I experienced something. Here it is.”

1.2 The importance of data

Today, thousands of years removed from these early “data points,” we are living in

the midst of a data explosion. We are collecting more data, about more subjects,

faster than we ever have before. In the last two years alone, we have generated over

90% of all data ever produced [61]. In this current “Information Age,” our entire

existence is generating data.

Everything from our social interactions to our physical health is being recorded,

mined, aggregated and analyzed. Never before has data been so important and so

ubiquitous as it is today. Furthermore, this influx of data has transformed many

domains in the sciences. For example, in the year of this thesis’ writing, over 5

petabytes of data were aggregated and collected to “take” the first ever picture of

black hole [1]. This was so much data that it had to be shipped by plane to the

location where it was being processed. This methods of transfer was significantly

faster than transferring it over the internet.

In the earth sciences, in particular, this transformation has been no less impactful.

Orbital satellites are capable of collecting millions of data points in a single second in

the form of multi-spectral images. Even for the relatively less data-dense subdomain

of in-situ environmental sensing, the advent of IoT and new approaches to data

streaming has made continuous measurements of remote locations commonplace [65,

68]. Figure 1.2 presents an example of an in-situ environmental sensing site.

In a practical sense this means that we are collecting data in the earth and
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Figure 1.2: An in-situ environmental monitoring station in the Snake Range. Stations
like this are hard to monitor regularly and can produce errors in data when
damage is incurred to one of the many delicate sensors around the site.
Photo by Scotty Strachan.

environmental sciences at volumes and velocities which we are unprepared for. More

specifically, traditional approaches to metadata management and quality control are

lacking [21]. Metadata has been traditionally handled with a combination of pen-



4

and-paper, excel spreadsheets and web interfaces for manual upload to a database if

one existed. For quality control, many data sets are uploaded and downloaded from

data repositories with no guarantee that any quality checks have been undertaken on

them.

With a small volumes of data, these traditional approaches pose little problem

when making a single data product for scientific analysis. Individual scientists can

afford to spend the time manually uploading and binding metadata to their datasets.

For quality control, individual scientists can write their own programs and routines to

perform quality checks on static datasets they download. But this is still a problem

in aggregrate [108].

As datasets grow, the demand for more real-time processing grows with them to

ensure that less data is laying fallow as raw data points and can be used to provide

actionable intelligence. Accordingly, these traditional, manual approaches are no

longer viable. In order to accommodate this new era of data collection, automation

is required for metadata management, quality control and data repair to make data

products at the same speed we are making data [21].

1.3 The Purpose of This Document

To address these contemporary issues facing the development of quality data products

this thesis proposes the “Keystone” model of data management for streaming sensor

data. This model suggests that three automated software modules working in tandem

provide the necessary and sufficient functionality to take raw data and make a quality

data product which can be used for sound science. Specifically, by automating Quality

Assurance, Quality Control and Data Repair processes, data products can be created

at a rate that keeps pace with the production of data itself.

As proof of this model, this thesis details the implementation and validation

of three distinct software prototypes which derive mutual benefit from one another.

First, a cross platform Quality Assurance mobile application was developed which

makes the digitization and binding of metadata to existing data in the Nevada Re-
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search Data Center nearly instantaneous. Next, a Quality Control application called

the Near Real-Time Quality Control Applciation (NRAQC) was developed which

leveraged the metadata digitized by the QA application. This application provided

significant functionality for the automated testing of NRDC data. Finally, an impu-

tation algorithm was modified to run on multiple GPUs to provide fast and accurate

data repair on datasets with missing information.

In Chapter 2 we will expand on prior work for these software solutions in addition

to identifying gaps in contemporary data management which drives the need for this

thesis. We will then propose and specify our solution to this identified technology

gap in Chapter 3 with the introduction of the Keystone Model. In Chapters 4, 5,

and 6 we will outline, in detail, three prototype applications which have been used

to fulfill the requirements outlined by our Keystone Model. From there, in Chapter

7 we will present a validation of the three prototype applications and the Keystone

Model itself. Finally, we will conclude this thesis in Chapter 8 with a review of what

was covered across these chapters and will propose several avenues for future work.

.
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2 Background & Related Work

In this chapter we hope to introduce you to both the domain to which the proposed

solution applies in addition to the gap it seeks to bridge. The content contained here

should be sufficient to provide a surface level understanding of the terminology, tools

and issues which affect data management in the earth sciences at the time of writing.

If a particular idea is not explored in sufficient detail it is the hope of the author that

you will find in this chapter a resource which will provide you with more detailed

information or the terminology necessary to effectively research it on your own. In

the era of Google, research can be as simple or as difficult as the vocabulary of a

problem makes it.

2.1 Data Management

Data management broadly refers to the information science subdomain which is con-

cerned with the acquisition, transfer, storage, maintenance and dissemination of data.

The purpose of such practices are to ensure data collected at high volumes and veloc-

ities will be equally usable 10 years from now as it will be on the day of its collection.

While this sounds like trivial problem to those with a passing familiarity of scien-

tific data analysis it can severely inhibit scientific progress and the development of

actionable intelligence [73].

To illustrate, imagine that you are a new environmental scientist graduate stu-

dent. You just received a spreadsheet from your lab leader containing meteorological

data and were told to analyze them to see if you can draw any conclusions about

global warming in rural China. Now, immediately you should have some questions
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about the metadata for these data. First, where were they collected? By whom?

What devices were used to collect them? Were the data collected with the intent

that they would be analyzed in this way? Were they collected by a trained scientist

or an amateur? Did they do anything to ensure the data were accurate?

A week or two after data was collected these questions are easy to answer, es-

pecially if the project’s primary investigator (PI) is in your department. If he didn’t

clearly document these things on paper he can give you answers to most of these de-

tails off the top of his head. You can jot them down and begin your analysis, radiant

in your confidence that data management is a waste of time.

Now imagine that this data was collected not two weeks ago, but 20 years ago and

not in the United States but instead in South Vietnam. You are uncertain if the data

producer is still employed (or was ever employed) in the department from which this

data originates, can communicate with you in English or is even still alive. Without

proper data management the answers to most of these questions posed above turn

from definite detailed descriptions to logical conjecture and pure guesswork. This

dataset may have produced some invaluable, and never before published, data which

answers your research questions perfectly, however without proper data management

ensuring that contextual metadata is preserved you will be unable to use it. It will

be worth less than the measurements you could make with a Mercury thermometer

outside of your office door.

This problem is one which the domain of data management hopes to resolve by

streamlining the processes of collecting, annotating, exposing and delivering data.

While many projects and papers have explored how best to accomplish this goal, the

most seminal comes from a work published in 2016: “The FAIR Guiding Principles

for scientific data management and stewardship [108].”

2.1.1 FAIR Data Principles

In this highly influential work by various members of the FORCE 11 organization [43],

the authors suggest four key principals which should govern Scientific Data Manage-
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ment with the goal of promoting the discovery and utility of scientific data. These four

principals are Findability, Accessibility, Interoperability and Re-usability. A

significant portion of this work was developed with these principles in mind, so we

will explain them in detail.

For a dataset or data to be considered Findable, it must meet several criteria.

First it must be assigned a “globally unique and persistent identifier.” Oftentimes

this identifier takes the form of a DOI, or digital object identifier [29]. Second,

data must be “described with rich metadata.” This basically means that there must

be detailed and abundant data which describes the data. This also requires that

the data-describing-the-data must be closely tied to the data so the two are easily

associated and aligned with one another. Finally, this principle requires that data is

registered or indexed in a searchable resource. As datasets are often very large and

and sometimes nebulous its crucial that people have some means to only get those

datasets which they require for their science. For earth scientists, this search-ability

often takes the form of geospatial parameters, like location, with options to narrow

data sets with additional information, such as time-of-collection and data-type [24,

71].

Moving into Accessability, the Fair Data Principles dictate that a dataset can

be called accessible if it meets two requirements: first, that data is retrievable by

it’s identifier using a standardized communications protocol. As addendums to this

requirement the authors indicate that such a protocol should be “open, free and uni-

versally implementable”[108] in addition to allowing for authorization and authenti-

cation procedures where necessary. Basically, the authors are suggesting that data

should be available over the internet and accessible through HTTP[41] calls or, failing

that, TCP/IP calls. Second, metadata must be accessible even when the data is no

longer available. This requirement of Accesability is quintessential to a core goal of

this thesis. It suggests an elevation of metadata to a position of key importance, far

removed from its current status as an afterthought of data dissemination. This goal

of collecting and managing metadata in a accessible and machine readable fashion
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was the key impetus of the Quality Assurance software component of this thesis.

Following from Accessability is the requirement that datasets be Interoperable.

Specifically this means that data must: (1) “use a formal, accessible, share and

broadly applicable language for knowledge representation”; (2) “use vocabularies that

follow FAIR Principles” and (3) “include qualified references to other data/meta-

data.” These three requirements can be synthesized to illustrate the idea that data

should be easily usable by anyone who picks it up. Per the first requirement, it should

be encoded in a standard format, like XML[18] or JSON[23]. These languages meet

the requirements of interoperability because there exists significant support for them

in a variety of commonly used languages. If we am using C# or Python we should

be able read data with the same ease for each language. The next two criteria are a

bit more abstract.

A vocabulary in this sense, is a technical term referring to a formalized lexicon

of words used in a specific domain. More specifically in this context it means the

terminology used to markup and organize my data. Take the following code snippet

as an example:

Listing 2.1: An example of a vocabulary in the environmental science domain.

<data>
<measurement>

<unit>Fahrenheit</unit>
<value >10.2</ value>

</measurement>
</data>

In this snippet, the language is XML. The vocabulary describes the terms “data”,

“measurement”, “unit”, and “value.” Oftentimes to ensure that a vocabulary is FAIR

it will be encoded in a formalized dataset itself as an ontology[3] and made accessible

via a special type of identifier called a Uniform Resource Identifier (URI)[62]. The

ontology itself guarantees FAIRness by using standardized vocabularies[31, 48] which

can be referenced and accessed in a FAIR way. Although seemingly infinitely recur-

sive, pretty quickly one arrives at a document which references itself and breaks the

chain of referencing new documents.
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Finally, for a dataset to be Reusable, it must meet one core criteria: it (and

its metadata) must be “richly described with a plurality of accurate and relevant

attributes.”[108] To clarify, Wilkinson [108] specifies some crucial attributes which

should be included. Specifically data should be released with: a clear data usage li-

cence and detailed provenance. Additionally, data should meet community standards.

In short, data should be released as a complete product with information about where

it came from, what’s inside it, and how to use it. It should also meet the standards

that a given community upholds as a quality product.

2.1.2 Data Management in the Earth Sciences

With FAIR data practices we have identified a gold standard of Data Management

which can be applied to evaluate the quality of data management in nearly any field.

For the earth Sciences, FAIR data practices have been widely discussed and are being

adopted as a policy by numerous institutions including the American Geophysical

Union [92]. However, for many intuitions, there exist barriers which hinder the easy

adoption of FAIR data management practices. Relevant to this work we will ex-

plore two currently existing in the earth sciences: workflow barriers and technological

barriers.

Workflow Barriers

Workflow barriers describes the complications which arise from traditional data man-

agement practices in the earth sciences. There has been significant scholarship on

this topic in the last decade, as data management education, especially in the earth

sciences, has failed to keep pace with the speed and volume of collected data [97].

According to Strasser and Hampton[97], “few courses exist that are exclusively de-

voted to data management practices.” They go on to assert that – even when data

management practices are taught – spreadsheets are the most common tool used for

data collection and education.

According to Jones this ubiquitous use of spreadsheets can be problematic for



11

effective data management due precisely to the factors that make them excellent tools

for individual data analysis [53]. Their extensiblity, UI-based formatting and orga-

nization, and ability to embed processing and charts make spreadsheets an obvious

choice for analyzing data with minimal overhead. However, these same character-

istics cause problems when attempting to disseminate the data contained in these

spreadsheets. Spreadsheet software often uses proprietary functions for mathemat-

ical operations and markup of text/data. If a spreadsheet is the sole repository

of collected data for a project, formatting and processing information needs to be

stripped away from the core data before it can be usable. Furthermore metadata is

often not well encoded or well associated with specific data values and is often stored

as the headers of columns in spreadsheets. Additionally, vocabularies used in these

headers are rarely described in a machine readable and interoperable format and are

not accessible anywhere than in the dataset itself.

This illustrates the idea of workflow barriers by showing us a traditional data

management workflow in the earth sciences. For a small project, data will be collected,

aggregated into spreadsheets, organized with some identifying metadata and quality

controlled for analysis. Metadata describing data provenance – including Quality

Assurance practices performed on data collection instruments – will be poorly tied

to datasets themselves: written up on pen-and-paper notebooks or as comments in

embedded systems code [81, 87]. This workflow — although useful for answering

specific research hypotheses — does not lend itself to reproducability. Data managed

in this way is oftentimes single-use; even if it is uploaded to a publicly accessible data

discovery platform.

Technological Barriers

Following from the aforementioned Workflow Barriers compromising adoption of FAIR

data standards there are also significant technological barriers which prevent adoption

of these standards. Chief among these problems are limited capabilities and experi-

ence on the part of domain scientists in the area of software engineering. Although
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most (if not all) are familiar with some programming languages (R, Matlab, and

Python) and some libraries needed for building and analyzing environmental models,

few domain scientists tend to use these languages to their fullest capabilities [63, 79,

85, 101]. Like data produced and used in one science project, many programs built

by environmental scientists are single-use with the goal of reading, analyzing and out-

putting their data. Accordingly, this makes the adoption, use and implementation of

general software solutions for common data management problems very difficult.

Although there have been significant efforts made by organizations like NEON[10],

Earth Science Information Partners[35], EarthCube[33] and the Long-Term Ecologi-

cal Research Network[50] to use and disseminate standardized software packages for

data management, there exists significant diversity in hardware and software used

for managing data in a FAIR way.[108] This means that although good solutions for

Quality Assurance and Quality Control exist, their usefulness varies depending on

the software stack or workflow utilizing them[34]. (These existing solutions will be

explored in more detail in Section 2.5.) The use of these software packages are also

limited nonetheless by the technological literacy of their users and their integration

into real time pipelines becomes increasingly reduced as data ingestion workflows

become sufficiently complex.

2.2 Earth Science Information Partners

The Federation of Earth Science Information Partners (ESIP) is a key organization

in the domain of data management for the earth and environmental sciences. Com-

prised of member organizations like NASA[70], NOAA[75], and USGS[104], it’s stated

mission is to “To support the networking and data dissemination needs of our mem-

bers and the global earth science data community by linking the functional sectors

of observation, research, application, education and use of earth science.”[36]

Accordingly, ESIP is not a standards or research organization but rather a plat-

form for collaboration and exchange of information. This makes it invaluable resource

to new researchers attempting to survey the domain of data management in environ-
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mental science. The organization of ESIP is extremely sympathetic to the intro-

duction of new members, being organized into informal clusters which hold monthly

meetings for the sole purpose of exchanging new information relevant to their sub-

domains.

Although there may multiple clusters which are of interest to a computer science

student or researcher in general, the most important to the topic of this thesis is the

Envirosensing Cluster. The wiki page dedicated to this cluster’s work provides innu-

merable resources which compliment the topic of this thesis, especially QA/QC [37].

2.3 The NRDC

The Nevada Research Data Center (NRDC) is the primary data management platform

which the tools in this thesis were built for [77]. It currently hosts approximately

3.5bn time series data points collected from sites across Nevada and over 10m images

collected daily from webcams mounted at those same research sites.

2.3.1 History

Originally built as a data portal/repository for data collected as part of a Track 1

NSF EPSCoR funded project, the NRDC began life as the Nevada Climate Change

Portal(NCCP) [72]. As further funding was acquired through a second Track 1 Pro-

posal for the Solar Energy Nexus Project, the NCCP was transformed from a data

repository scoped to the house the data from one project, to a multi-project repository

and data management platform for earth science research in Nevada and renamed the

Nevada Data Research Center.

2.3.2 Position as a Data Management Platform

Although sustaining considerable growth since it’s inception years ago, the Nevada

Research Data Center remains a relatively small platform for the dissemination and

management of data in the earth sciences. Compared to many national platforms

like NASA’s EarthData [70] or CUAHSI’s Hydroshare [24] the NRDC occupies a
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very niche space as a data management platform. Although it hosts billions of data

points, they are produced from a limited number of projects contained almost entirely

within the state Nevada [72, 96, 102].

Although this sounds like a mark against the NRDC this limited focus is very

helpful to the development and maintenance of the NRDC as an integrated platform.

Unlike these other, larger data management platforms, the NRDC does not need to

aggregate data from myriad unknown sources. Furthermore, it is able to focus it’s

management practices on time series data alone, as opposed to geo-spatial data. This

can simplify many workflows and make integrated tool sets much easier to build and

configure to work with NRDC data. Furthermore, demands for space and processing

tend to be more limited as the variety of data manged by the NRDC stays confined

to this geographical area and this domain.

2.4 Earth Science Data

“Earth science” describes a very broad umbrella of loosely related fields which study

the earth. It aims to model and explain the natural phenomena occurring across

various portions of this blue marble we call home, from the reaches of the upper

atmosphere (Meteorology) down to the depths of the earth’s core (Geology) and across

our vast bodies of water (Hydrology) [54]. In order to study these qualities of earth,

and especially those in the critical zone of life, significant data must be collected

about as many natural processes as possible. Everything from wind speed, to soil

conductivity, to precipitation and solar radiation must be collected and managed in

some way. Although measurements can be extremely varied in their purposes and

methods of collection, in the earth and environmental sciences they can largely be

broken into two large subcategories: geospatial Data and time series data. There two

categories are defined primarily by their method of collection and what they are used

for.
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2.4.1 Geospatial Data

Although none of the solutions proposed in this document operate on or are configured

to work with geospatial data, I have included an overview of this type of data because

it is ubiquitous in the earth and environmental sciences. Furthermore, although there

exists a need for Quality Assurance and Quality Control software that works on data

like this, solutions are being actively developed by large organizations like ESRI [38,

39].

Informally, geospatial data can be thought of as any data we can overlay on a

map. In Figure 2.1 we see a variety of geospatial data that everyone is familiar with: a

weather map displaying temperature gradients over the united states. If you have ever

been to weather.com you have seen a map like this. The data itself is geographically

indexed temperature values at a single point in time rendered as colored pixels on

this map.

Although meteorological data is very commonly stored and rendered in this way,

it is not the only data which can be called geospatial. Some other types of data which

are commonly managed geospatially are: hydrological data[105], geological data[5],

and even data from the social sciences, like political maps used to organize political

affiliations by location [93].
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Figure 2.1: An example of geospatial data from NOAA showing recorded high tem-
peratures across the United States, for a particular day. Taken from [22]

2.4.2 Time Series Data

By contrast to our consideration of geospatial data in Section 2.4.1, an understanding

of time series data is crucial to understanding the purpose and implementation of the

solutions proposed in this work. Time series data is defined mathematically by David

Billinger in a textbook on time series methods as a vector of values s.t. X is a set of

real numbers and Xj(t), j = 1...r where “r is real valued,” and t increments or decre-

ments by equidistant steps. The author goes on to qualify this purely mathematical

definition by saying that t often is a timestamp of some variety.[20]. An example of

time series data can be found in Figure 2.2 and Table 2.1.
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Table 2.1: An excerpt of time-series environmental data downloaded from the NRDC.
The values depicted here are temperature measurements collected over the
course of 7 minutes.

Timestamp Temperature (C)
1/25/2018 1:19 -5.678
1/25/2018 1:20 -5.654
1/25/2018 1:21 -5.697
1/25/2018 1:22 -5.774
1/25/2018 1:23 -5.788
1/25/2018 1:24 -5.793
1/25/2018 1:25 -5.797

In more practical terms, this just means that a time series is a vector of numbers

indexed at timestamps. Or even more concretely, in the scope of this paper, its a

measurement of a single variable collected at set intervals over time. Time series

datasets, measuring one value over time, are commonly identified as having some

other characteristics which make them unique. First, points located near one another

in time are expected to be more closely related or interrelated than measurements

farther removed from one another. Two, being linear with only two features, they

allow for the use of mathematical regression to build models to predict future events.

Finally, as they are typically less dense than geospatial data, they use up significantly

less space in storage and less processing power when being manipulated.

By comparison to it’s geospatial cousin, time-series data does not measure a

wide area or hope to provide information about a very large area. It quantifies the

conditions in a very small area with a fine granularity. In the environmental sciences,

we use time series data to glean a very deep understanding of a point in space. This

data can obviously be used to make conclusions about similar climates and natural

phenomena, however the research questions associated with the collection of time-

series data are often very specific, with broader implications. For example, “What

can the age of trees in the Great Basin tell us about forest fires? [14]”
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Figure 2.2: An example a chart graphing time-series meteorological data over time
taken from [20]. Because of it’s naturally linear nature, time series data
is most commonly visualized using a line chart, although it sometimes is
rendered with a scatter plot with no interconnecting lines.

2.5 Quality Assurance and Quality Control

Chief among problems currently in need of resolution for data management in the

earth sciences are the twin issues of Data Quality Assurance and Data Quality Con-
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trol. As the volumes and velocities of data collection increases, there is an increasing

need to automate both of the these processes to the greatest extent possible. In the

following subsections I will explore these problems in greater detail and outline some

of the extant software solutions which have been proposed to address these issues.

2.5.1 Quality Assurance

Individual researchers and one-off projects dominate the model of data collection in

traditional climate/environmental research [65]. In traditional research, single use

data proves extremely effective at answering a singular projects research questions

and fulfilling research requirements attached to funding streams. However, despite

the short-term success of such a model, a clear problem arises when another research

team wishes to use this previously collected data, or when data need to be integrated

into larger syntheses [15]. This problem drives the need for complete, accurate, and

usable metadata.

Metadata is considered a major part of the data life cycle. Creation of metadata

include information surrounding the data set, such as format, file names, and mea-

surement units, and information about the experiment producing the dataset, such as

documenting data processing steps and contextual information to the data [67]. Its

purpose is to make the datasets easy to understand [67]. Unfortunately, that is not

always the case. Traditionally, scientific metadata is kept in notebooks and papers,

a holdover from days before computers. This creates fractured data, where its hard

to relate the electronic data sheets to hand written documents [97].

Due to the narrow focus of typical projects, only the original researchers in-

timately know how the data was generated. Metadata is often non-standardized,

incomplete, and stored in temporary formats. Some communities and organizations

have developed their own metadata standards; however, several different metadata

standards can exist within any given discipline [46]. Eventually, over time – or given

enough distance – the value of these data sets is diminished to other researchers and

the public. It becomes harder to recover and ascertain contextual information that
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is essential to decoding it and metadata standards rarely address long-term preserva-

tion [100]. Methods for uniform quality assurance and metadata collection are being

recognized as the next major challenge for data intensive science as collection becomes

increasingly automated and results globally disseminated [108].

At the broadest level, Quality Assurance refers to the preventive maintenance and

management process employed to reduce inaccuracies in data automatically logged by

sensors [34]. Although many works touch on the idea of Quality Assurance, the most

seminal motivating work published on the subject comes from a 2013 paper “Quan-

tity is Nothing without Quality: Automated QA/QC for Streaming Environmental

Sensor Data” [21]. In this paper, the authors put forth a comprehensive, generalized

set of practices to optimize QA on environmental field sensors. They suggest that

QA procedures be automated, well documented, and complete metadata maintained

alongside data. This work presents Quality Assurance as a process oriented approach

to data management, this strongly implies that no single software solution can provide

effective QA but can only rather aid the QA process performed by humans. Accord-

ingly, a significant number of background works on this subject study the analysis

and creation of software that best facilitates good QA practices.

A further example of a motivating work indicating the need for Quality Assurance

practices in the paper “Workflows and extensions to the Kepler scientific workflow

system to support environmental sensor data access and analysis” [9]. This paper out-

lines the development of a software environment that addresses technical challenges

related to accessing and using heterogeneous sensor data from within the Kepler sci-

entific workflow system. Within the bounds of their end-to-end examination of this

existing sensor network workflow, the authors indicate on several occasions that a

clear need exists for quality assurance practices with in-situ sensor networks. They

also acknowledge that existing software solutions used to facilitate these practices are

not well developed. Our QA application intends to fill this proposed gap.

Outside of motivating works driving research in /glsQA, there also exists several

works that explore the practical or theoretical implementation of Quality Assurance
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processes and software. One, Meta-information concepts for ecological data manage-

ment represents an early survey of many data management needs for ecological sensor

data collection [66]. This paper suggests exactly at which stage in the data collection

pipeline to place QA processes and software. Another paper, “Anomaly detection

in streaming environmental sensor data: A data-driven modeling approach” shows

a more practical approach to Quality Assurance by suggesting that expected shifts

in the quality of data can be anticipated by using data-driven modeling techniques.

Although the approach taken by the authors of this paper is not representative of

the approach we undertook, it shows that there exists a strong interest in applying

modern software engineering techniques to the problem of Quality Assurance.

Along similar lines, in the paper, “Automatic processing, quality assurance and

serving of real-time weather data” the authors demonstrate that there exists a strong

interest in developing software to automate and streamline the process of Quality

Assurance on environmental sensor data [109]. The authors of this paper propose a

software to manage and utilize statistical metadata that can indicate the quality of

data through uncertainty values. The concept of collecting metadata in a standard-

ized format for quality assurance strongly reflects the goal of the Quality Assurance

software developed and detailed in this paper for the NRDC. However, our approach

is unique in that it is oriented towards metadata collection as an end goal rather than

as a supplement to Quality Control computations. Taken together, the above papers

generally indicate a strong research interest external to the Nevada Research Data

Center (NRDC) in the development of Quality Assurance software, however there

also exists a well-documented interest in developing software within this organization

as well.

References to the considerations of a Quality Assurance system for the NRDC

appear in early literature proposing practices and architecture for its predecessor

project NCCP [65]. These works present Quality Assurance and Quality Control

(QC) as crucial elements of any large scale environmental research project. They also

impress upon the reader a need for a standardized and centralized set of tools which
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enable universal comprehension of data being collected. From this specific need to

improve on existing QA practices, a quality assurance application was conceived.

2.5.2 Quality Control

In the field of in-situ environmental sensing, invalid data is a very serious concern

that affects the overall quality of a data set and pollutes the integrity of any derived

data product. Invalid data are those measurements that do not actually represent

the conditions they are supposed to represent. A hardware failure can often cause

this divergence in representation and reality and produces gaps in data or verifiable

incorrect values. Invalidity, in the context of time-series environmental data can be

organized into five major categories: missing values, out of bounds, repeated values,

spatially inconsistent values, and internally inconsistent values.

Missing values represent a period of time in which no measurements were logged.

The out of bounds category details a measurement that exceeds maximum or mini-

mum bounds of what is considered a reasonable measurement. Repeated values occur

when the exact same value is logged in direct succession for an extended period of

time. Spatially inconsistent data describes co-located physical data loggers record-

ing vastly different trends in data over the same period of time. Finally, internally

inconsistent data describes logical inconsistencies within a measured data stream or

between two related datastreams.

The problem of Quality Control (QC) in the realm of environmental sensor data

has been explored extensively in scientific literature. In work as early as 1970, tech-

niques to formalize Quality Control have been detailed as a necessary part of any

project which produces large volumes of autonomously collected data [40]. In more

recent years however, as the autonomous environmental research sites have become

cheaper to install, easier to set up, and generally more ubiquitous, there has been

a strong surge of research exploring the methodologies and importance of Quality

Control on high volume streaming data.

Many academic and industry oriented white papers published in the last 15
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years explore the importance of Quality Control as it applies to domain specific data.

Meteorological data, environmental data, metadata studies: together these and many

more articles paint a clear picture indicating that Quality Control is no small problem

to the scientific community working with time series sensor data [42, 49, 66, 108].

Outside of these general considerations however some key literature has examined

major ideas informing modern automated quality control in great detail.

At the forefront of seminal works on this issue – and the one most informative

to the software produced for this paper – is the article by Campbell [21]. This

paper presents a clear and critical overview of Quality Assurance(QA) and Quality

Control in the context of streaming environmental sensor data. As environmental

data collection becomes increasingly automated, a need to build automated checks on

these processes arises. As the paper indicates, Quality Assurance is “process oriented”

and Quality Control is “product oriented”, establishing a clear delineation between

the two often muddled concepts. From these basic definitions, the authors expand

on automated QA/QC providing a survey of state of the art in this domain: best

practices, implementation suggestions, and examples of prominent extant software

which successfully automates these processes.

Significant work has been done by several organizations to create robust and prac-

tical QC software. Principal among these is a software suite called the GCE Toolbox

by Georgia Coastal Ecosystems LTER. This Matlab based toolbox [59] represents

the gold standard of QA/QC software for environmental sensor data. Users of this

software can perform automated quality control manually or with rules-based checks,

visualize data and import/export data in various inter-operable and standardized

formats. Unfortunately, an advanced knowledge of Matlab–and access to the costly

Matlab compiler and IDE–is required to use these tools. This greatly restricts accessi-

bility to quality QC, especially to smaller research organizations with fewer resources.

The Near Real Time Quality Control Application (NRAQC) addresses this drawback

with its simplicity of deployment and multiple robust interfaces for configuration.

Outside of the GCE toolbox, several other software packages attempt to address
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contemporary QC needs in various scientific domains. Chief among these, ArcGIS

provides functionality for the automated QC of geospatial data [38]. Additionally,

Campbell Scientific has support software associated with their data loggers called

Loggernet. This proprietary software provides basic Quality Control functionality on

streaming data [84]. NRAQC is not actively iterating on any functionality provided

by ArcGIS as it only handles Time-Series data. Additionally, since NRAQC queries a

database, file, or API for logged data, it is agnostic about hardware setups unlike Log-

gernet which interfaces directly with the physical data loggers, causing compatibility

issues.

In addition to the software development efforts, many organizations are working

to standardize the metadata flags which indicate specifically how a measurement was

deemed invalid. Chief among these organizations are ESIP and QARTOD, with the

former cataloging and supporting present efforts towards standardization and the lat-

ter putting forth a strong proposal for flagging standards in oceanographic sensor data

that can easily be applied more widely [35, 47]. Standardization is crucial for data

inter-operability. Understanding these standardization efforts is equally necessary to

create QC software that scientific organizations will use.

The approach of utilizing a microservice architecture in a data intensive system

is a recent development in distributed architectures. Even more, utilizing a microser-

vice architecture to implement any form of quality control system is currently not

a popular topic of research. It is because of these reasons that there is a severe

deficit of academic papers within the last five years pertaining to both quality control

and microservice architectures. With this said, this thesis provides both a solution

to the problem of uncoordinated quality control, and a contribution to the research

regarding usages of service-oriented architectures in quality control.

Finally, the primary drive and motivation to produce this software follows from

the development of a Quality Assurance application that manages metadata for the

NRDC [87]. Quality Control solutions represent a natural extension of metadata

management practices. Data quality flags are essentially granular metadata bundles
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applied to individual measurements, which denote any possible errors with the data,

the means by which it was flagged and possible corrections made to the data. Together

QA and QC represent two pillars supporting robust and usable data in the 21st

century.

2.6 Data Imputation

“Missing data imputation”, or “gap filling,” describes the process of filling in holes

that occur in sufficiently large data sets [94]. To ensure valid statistical analyses

with a dataset these holes must be filled with accurate estimations of “ground truth”

values. Although many simple and effective statistical imputation methods exist,

like K Nearest Neighbors (KNN) which takes a simple mean of “closely related”

data points [13], not every dataset is as sympathetic to these approaches as others.

Accordingly, when choosing approaches to data imputation, multiple factors must be

considered. The randomness of missing data and the structure of the dataset being

imputed are a few examples of this.

2.6.1 Unsupervised Machine Learning

When classified, machine learning breaks down into two large sub-areas which each

describe a collection of algorithms that share a common approach to learning: su-

pervised and unsupervised[95]. With supervised learning, an AI is “taught” how to

solve a particular problem by letting it:

1. Attempt to solve a problem on it’s own, blind.

2. Evaluate how close or how far it was from solving this problem.

3. Modify the tools or paths it uses to solve the problem according to how close

or far it was from solving it.

This is an extremely non-technical overview of supervised learning but an in

depth understanding of supervised learning is not crucial to understand this thesis.
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But, it is important to understand how it differs from unsupervised learning. Now,

the key idea of supervised learning is that the “correct” answer to the problem we

are attempting to solve is known and can be compared against the attempt made by

the AI. For example, if we ask a supervised machine learning algorithm to attempt

to fill in a missing data value in our dataset we can compare it’s final guess against

the real value and ask it to try again if it is too far from the actual answer [60].

With unsupervised machine learning the approach is fundamentally different,

rather than having a correct answer to compare the AI’s attempts against we let the

algorithm organize itself into the best groups it can find with no external feedback on

whether they are correct or not. This does not mean, however, that an unsupervised

learning algorithm does not receive any feedback or use any metrics to learn, it just

doesn’t compare its guesses against the ground truth.

By comparison to supervised learning, unsupervised learning using objective met-

rics to evaluate if two data points (or likely data vectors) are similar or not. In KNN,

mentioned above, and K Means Clustering the metric is the same: a measurement

of distance between vectors. The assumption with this is that if two vectors which

are closer in the n-dimensional space they occupy will be more similar than vectors

which are farther away from one another. With KNN, every vector is compared di-

rectly against their closest neighbors to and can give a very clear idea of how far

any vector is away from any of the other vectors in a dataset. With clustering, the

main algorithm used in this paper for data imputation, all vectors in a dataset are

compared against a set number of “centroids” each of which define the center-point

of a particular cluster.

By organizing data into clear groups we can then fill in missing values by finding

out which group a vector fits into best even if it’s missing one value compared to all

others. Once we find it’s group we can then make an educated guess about what the

remaining data value could be.
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2.6.2 Clustering and Convex Optimization

The primary algorithm used for clustering in this thesis is called Fuzzy K-Means

(FKM). Fuzzy K-Means clustering algorithms are modifications of traditional K-

Means clustering. These algorithms exploit fuzzy set theory to define membership as

a percentage allowing for a data point to have membership in multiple clusters [32].

This approach to clustering has proven to be very effective for applications in the

domains of computer vision and pattern recognition [8, 106]. Data imputation as an

application of FKM has been explored by many authors [57, 58], but in the recent

past, “pure” FKM approached to Data Imputation fallen out of vogue, yielding to

hybrid approaches with other machine learning techniques [7, 98]. Accordingly, there

currently exists a research gap in the area of utilizing a standalone FKM algorithm

for Data Imputation.

The traditional approach to Fuzzy K-Means, as introduced by Dunn[32], is rela-

tively simple. A set X of n objects can be grouped into c clusters with membership

coefficients U defined by centroids in matrix V with the following algorithm:

Algorithm 2.1 Traditional fuzzy k means algorithm.

while Not Converge do
Compute centroids V via (Eq. 2.1)
Compute coefficients of memberships for U via (Eq. 2.2)

end while

The equations referenced in Algorithm 2.6.2 follow here with a brief explanation:

vk =

∑
x wk(x)mx∑
x wk(x)m

(2.1)

n∑
i=1

c∑
j=1

uij =
1∑c

k=1 (
‖xi−vj‖
‖xi−vk‖

)
2

m−1

(2.2)

uij in the above equation describes a specific cell of membership matrix U which

defines the membership of object xi in centroid vj.
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The fundamental algorithm modified and used in this work is derived from Xu

[110]. This algorithm, called “Robust and Sparse Fuzzy K-Means Clustering,” makes

several adjustments to traditional Fuzzy K Means Algorithms to enforce “robustness”

and “sparsity” of the clustering. In this context, “robustness” refers to a characteristic

of centroids which mitigates outlier influence in updating their mean value. “Sparsity”

refers to a cluster’s membership characteristics. A membership vector is sparse if a

data point is wholly a member of only one cluster and no others. It is the authors’

assertion that there exists an optimal sparsity for each data point where it belongs

to a few clusters but not others.

The algorithm proposed by Xu modifies the core FKM algorithm expressed above

with the modification of Equations (2.1) and (2.2). Several supplementary equations

were also introduced by the authors of this paper to enforce robustness and sparsity.

Equations 2.3 and 2.4 replace (2.2) and (2.1), respectively:

min
ui1=1,
ui≥0

‖ui − h̃i‖22 (2.3)

This equation optimizes membership for a value denoted by row ui, where 1 ≤

i ≤ n, and n is the number of rows in our data matrix. Equation (2.3) is a wholly

independent sub problem for each line. So with n values this minimization can be

performed entirely in parallel with n cores. h̃i is an auxiliary variable used to enforce

sparsity that is stored in an auxiliary H matrix. The next equation updates the

centroids and replaces (2.1):

vk =

∑n
i=1 sikuikxi∑n
i=1 sikuik

(2.4)

sik in this equation is an auxiliary variable which enforces robustness. If a eu-

clidean distance between a centroid and data vector is within a user defined threshold

then sik will be defined as the reciprocal of that distance, which reduces the weight of

farther points. If its outside the threshold then sik will be defined as 0. This prevents

outliers from influencing centroid updates. uik describes the membership percentage

of data vector i in cluster k, and xi describes data vector i out of n values being clus-
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tered. As many calculations in this algorithm require numerous auxiliary matrices

and sum reductions plentiful opportunities for parallelization could be found.

Constrained optimization was mentioned many times in this subsection and de-

serves a quick overview. If you remember Calculus I, optimization is a mathematical

method which will give us the x value we can input to get the smallest or largest

y given a function y = f(x). With constrained optimization this problem becomes

complicated because we now put some constraint on the x value we want to know, eg.

x < 1 and x > 0. Now we are looking for the smallest or largest value of x that fulfills

this condition as well. This becomes increasingly more complicated as x becomes an

n-dimensional vector [17]. Fortunately, we do not require a deep understanding of

how to solve these problems on paper as certain software tools already exist which

solve these problems for us. Most important at this point is to have an idea of what

is meant by the term “constrained optimization”.

2.6.3 Data Imputation Methods

The work of Schmitt surveys data imputation methods in detail with a comparative

analysis of six common methods of data imputation [83]. In this paper, the authors

compare the imputation methods of a simple Mean, KNN, fuzzy K-means, singu-

lar value decomposition (SVD), Bayesian principal component analysis (bPCA) and

multiple imputations by chained equations (MICE). Using a quantitative analysis

gauging the accuracy of imputed data on multiple benchmark data sets, the authors

largely concluded that – for both large and small datasets – FKM provided accurate

results at the cost of a very poor execution time. This trade-off indicates a clear

opportunity for optimization with the aid of modern GPU programming techniques.

Data imputation with Fuzzy K-Means algorithms is relatively simplistic. After

all data objects have been clustered, a missing data value j for a specific data vector
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xi can be filled in with the following equation [57]:

xi,j =
V∑

k=1

U(xi, vk) ∗ vk,j (2.5)

To explain this formula in greater detail, U(xi, vk) describes a membership value

for a particular vector xi in a cluster vk. This value between, 0 and 1, can be used as

a weight to scale how much a given centroid k should influence the sum which yields

our missing value. The sum itself is the summation of the value at feature j in each

centroid. With the weights, this should accurately place our missing value between

all centroids of which it has some membership, this should also accurately reflect it’s

true value.

2.7 GPU Programming

In this work Graphical Processing Units (GPUs) are leveraged to address the issue

of Fuzzy K Mean’s relatively slow execution times compared to other imputation

methods. Accordingly discussion of GPU programming will primarily be constrained

to a general overview and a background of its use for these applications.

In 2007 NVIDIA released its propriety programming language CUDA which en-

abled programmers to leverage the thousands of cores in GPUs for high-density par-

allel processing. In Figure 2.3 you can see a visual breakdown of the abstracted

architecture the CUDA programming language uses to simplify the complexity of

massively parallel programming on GPUs [74].
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Figure 2.3: CUDA Architecture for use with GPU programming, from [76]. The
CUDA architecture abstracts the physical cores used for processing on
an NVIDIA GPU into groups of threads which represent a single stream
of execution. Each of these threads can be presumed to run in parallel
to one another. These threads are then broken into blocks which are fur-
ther generalized into grids. The right hand size of this figure shows the
memory hierarchy of a CUDA-equipped GPU.

To describe Figure 2.3, in greater detail, on the far left we see an box called a

“kernel”. A kernel is basically the name for a CUDA subroutine that runs on a GPU.

Any given kernel should strongly resemble a C program because CUDA uses C syntax

for nearly the entirety of grammar. When a kernel is executed it is assigned, from

the calling program on the CPU, a number Grids, Blocks and Threads. This orga-

nizational hierarchy does not directly map to any real part of the GPU’s hardware;

however, it abstracts the assignment of certain threads of execution to specific GPU

cores away from programmers. With CUDA, programmers can treat each individ-

ual thread like its own contained stream of execution (it is very much like the more

commonly found multi-threaded processing enabled by tools like pthreads). This or-



32

ganization of processing units allows for programmers to map their processing to the

data they have, which is a significant change compared to CPU-based programming

which requires programmers to map their data to the single processing stream they

have available.

In addition to this abstraction of execution streams, CUDA also provides a clear

memory hierarchy which separates out what data a given thread has access to at any

given time. This memory hierarchy gives significantly more control to programmers

so they do not need to worry about overwriting or otherwise messing up their large

datasets while performing massively parallel operations.

The concept of leveraging GPUs to accelerate the time consuming process of

clustering is not a new one. A handful of publications have been produced exploring

how best GPUs can be leveraged for clustering. However, many of these publications

are now outdated [90, 91], having been released very shortly after the introduction

of NVIDIA’s GPU processing framework, CUDA. Accordingly, they do not reflect

significant changes to GPU hardware and software. Changes which certainly affect the

structure of proposed algorithms and implementations. Additionally, more prominent

contemporary articles do not consider applications of data imputation and, more

importantly, do not create Multi-GPU implementations of their algorithms [2]. We

assert that the usage of Multiple GPUs for this algorithm is a substantial contribution

of this thesis over prior work.

2.8 Critical Tools and Technologies

In this final section, we will give a brief overview of some software tools and tech-

nologies which were used in the constriction of the software solutions detailed in this

thesis.

2.8.1 Containerization

Containerization refers to a minimalistic approach to virtual machines and roughly

describes a recent trend in cloud computing. The core idea underlying containeriza-
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tion is that, instead of spinning up full virtual machines, emulating the full hardware

and software which can be found on a single server, it would be more processing and

space efficient if we only emulated the small parts needed to one program or a handful

of scripts. A general comparison of these two approaches to virtualization can be seen

in Figure 2.4, which was drawn from an blog post comparing containers and virtual

machines [80].

Figure 2.4: Architecture comparison between traditional Virtual Machines and con-
tainers, from [80]. In this diagram the difference between containers and
virtual machines are highlighted from the hardware layer up. Containers
are much more lightweight and share resources from the host operating
system. Accordingly, it’s much easier spin up more of them to perform
smaller tasks than dedicated VMs.

Although there exist many varieties of container software, the one used most

prominently in this thesis is Docker [27]. Docker is containerization software platform

which provides: repositories for existing containers, tools for orchestrating multiple

containers across one or multiple servers[28], and a scripting language which users

can use to define their own custom containers. Its one of the most effective ways to

make a software deployable anywhere as all possible dependencies can be easily hard

coded into the container environment.
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2.8.2 OWL & RDF

OWL and RDF are lexical standards short for Web Ontology Language and Resource

Description Framework, respectively [3, 25]. RDF, originally developed to provide

a machine-readable language for describing basic relations and information on the

internet. Using a logical syntax of “triples,” where any two ideas and their relationship

can be broken down into a subject, predicate and object. The following code snippet,

drawn from the Friend of a Friend Specification[19], demonstrates how it works:

Listing 2.2: A small ontology which defines a person using the Friend of a Friend
(FOAF) vocabulary.

< f o a f : Person rd f : about=”#danbri
xmlns : f o a f=”http :// xmlns . com/ f o a f /0.1/”>

< f o a f : name>Dan Br ick ley </ f o a f : name>
< f o a f : homepage rd f : r e s ou r c e=”http :// danbri . org /” />
< f o a f : openid rd f : r e s ou r c e=”http :// danbri . org /” />
< f o a f : img rd f : r e s ou r c e =”/images /me . jpg ” />

</ f o a f : Person>

This very basic snippet describes a person. Its comprised of 5 “triples” all con-

cerned with one subject: “#danbri.” This fancy “#danbri” name is basically declaring

a variable which exists uniquely in the namespace of our document and provides an

absolute reference for all the following objects.

When visualized, an RDF description of an idea or ideas produces a Directed

Graph. These graphs can be very complicated, or very simple but they follow a

common structure where vertices respresnt subjects or objects and edges represent

predicates. The graph for the above description can be seen in Figure 2.5.
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Figure 2.5: An graph visualization of a description of a person using RDF syntax.
The node on the far left is the subject of all of the nodes to the right.
Each node is connected via an arc which represents the predicate which
connects them.

After working with RDF for a few years, information scientists found it to be

lacking in semantic richness. It can describe relations between ideas but only in a

very abstract way. Furthermore it does not allow for significant divergence from a

one way logical association between ideas, limiting its ability to describe complex

set functionality. To address this, researchers at the World Wide Web Consortium

(W3C), defined a new specification called OWL.

OWL extends the definitions of RDF by allowing users to define their own pred-

icates with significant detail. With OWL users can define a much more complex

language in a machine readable format that captures the subtlety of ideas which are

related but not in a direct sense. OWL enables users to define relations between ideas

like membership, disjointedness, and intersectionality. This allows for a much richer

description of objects and ideas on the web.
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2.8.3 Ionic

Ionic is a mobile application development framework which uses JavaScript and the

Angular framework, along with HTML and CSS to develop cross-platform native

Android and iOS applications [52]. Currently on it’s third iteration, Ionic allows

users to develop mobile, desktop and web applications which run as though they were

native. Ionic was used to develop the Quality Assurance application detailed in this

thesis. The logo of this software can be seen in Figure 2.6.

Figure 2.6: The Ionic logo.

2.8.4 Python

Python is a commonly found scripting language used to develop a wide variety of

software products and applications. The Python logo can be seen in Figure 2.7. With

a syntax which mimics natural language more than programming languages like C or

C++, it is used significantly by computer scientists, software engineers and domain

scientists alike [79]. Because it is interpreted, rather than compiled, and performs

garbage collection, it is criticized for being less efficient than more technical languages

like C++. Accordingly, Python is rarely used for hyper-performant applications like

embedded systems programming.
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Figure 2.7: The Python logo.

Nonetheless, for many applications Python makes it extremely easy to spin up

a project and begin coding. There also exists significant support for many external

libraries which provide functionality for everything from multi-threading applications

to performing machine learning tasks. In Keystone, Python was used for the devel-

opment of microservices in the Quality Control Application, the generation of code in

the new development on the QA application and also for managing data and hosting

kernels for the clustering application. To expand on any of the work detailed in this

thesis and good grasp of Python will be necessary.

2.8.5 Flask

Flask is a Python framework which provides easy to use tools for the fast creation

of microservices [82]. Installed via the Pip package manager, a few lines of code can

set up an endpoint ready to be queried at localhost in seconds. All the microservices

created for the QC portion of this thesis were written in Flask. The Flask logo can

be seen in Figure 2.8.
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Figure 2.8: The Flask logo.

2.8.6 Angular

Angular is a front end web framework developed by Google to simplify the devel-

opment of complex and dynamic web applications [45]. The logo of this framework

can be seen in Figure 2.9. In it’s original form it was called Angular.js and could

be linked for use in a website via a simple <script/> HTML tag. After upgrading

to 2.0, the Angular project dropped the “.js” from its name and moved from a pure

JavaScript framework to a TypeScript framework. TypeScript, by comparison to

its less restrictive cousin, is not interpreted but rather compiled and enforces strict

typing on all its various language constructs [103]. This change made Angular 2.0

significantly different from Angular.js. The syntax, build and deployment methods

changed significantly between these two versions.
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Figure 2.9: The Angular logo.

The Quality Assurance software detailed in this thesis used an early version

of Ionic which required Angular.js as the core language/framework of development.

The Quality Control application built for this thesis, attempted to iterate on lessons

learned from the Quality Assurance application by utilizing the new and improved

version of Angular for its front end development: Angular 2.0. Accordingly, a fa-

miliarity with both Angular.js and Angular will be required to understand the code

produced as part of this thesis.

2.8.7 CVXPY

CVXPY is a Python library which can be installed via the Pip Python package

manager [26]. It provides an interface between any Python program and multiple

varieties of convex optimization algorithms. It was used in this thesis to solve the

constrained convex optimization required for a sequential implementation of the Ro-

bust and Sparse Fuzzy K-Means algorithm detailed in Chapter 6. The particular

solver this library utilized for this problem was the ECOS solver [30].
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2.8.8 CVXGEN

CVXGEN is a web service which generates library-free optimized C code for a par-

ticular optimization problem [64]. This library was used to generate C code, which

was adapted into CUDA code, to provide a means to perform convex optimization in

the GPU adaption of the Robust and Sparse Fuzzy K Means Algorithm.

2.8.9 PyCUDA

PyCUDA is a Python library which provides methods for interfacing with GPUs for

massively parallel programming [78]. Capable of calling kernels, passing CUDA code

to these kernels, and assigning threads and blocks at runtime, the PyCUDA library

provides all functionality which standard C++ interfaces provide. This library was

used in this thesis to enable the use of Python for reading in, preprocessing and

managing data before it was passed to GPUs in the Improved Robust and Sparse

Fuzzy K Means software.
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3 Data Quality Model

In Chapter 2 we identified a few key problems plaguing modern Data Management

practices for the earth sciences in general and some gaps which can be filled in the

NRDC workflow, in particular. To enumerate them very clearly they are:

1. A need for FAIR data/metadata management practices to promote the usability

of data products.

2. A need for automated and integrated quality control applications which can keep

up with the increasing volume and velocity of data being collected in Nevada.

3. A need for fast and accurate data repair which can fill holes identified by solu-

tions to gap 2.

In order address these three gaps I propose an integrated and related framework

of applications which solves each of them in turn. When combined, these software

provide a comprehensive solution to many data management requirements of the

NRDC. Together these software packages make up the focus of this thesis, Keystone,

and can be described with “The Keystone Model.”

3.1 The Keystone Model

The Keystone Model, shown in Figure 3.1, is the comprehensive solution proposed

by thesis for the above three problems in modern data management for the NRDC

and beyond. Comprised of three core modules, which represent software solutions



42

developed to fulfill each need above, this figure shows how they inter-operate and the

key input and outputs of the Keystone toolset.

Figure 3.1: The Keystone Model of data management. The three key processes are
closely interrelated and together produce a complete data product.
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This model is very high level however and does not specify the specific applica-

tions developed for this thesis. Rather it identifies how an integrated tool set which

hopes to provide comprehensive data management should be structured. Starting

from the top, we see that the primary input into our model is raw data. This means

it has undergone no quality control and does not have significant metadata bound to

it. It’s either a collection of files or perhaps a series of rows in a database table. Most

importantly, it is most certainly not a data product and has very limited use, even

to the individuals who collected it.

Moving to the bottom of this figure, we see the ultimate goal of Keystone and

data management in general, a usable “data product.” By comparison to the raw data

above, a data product is a usable package of data. It has been quality controlled,

it has granular metadata clearly organizing the data, it has global metadata iden-

tifying the context surrounding its collection and the provenance of the data itself,

including what measures were taken to ensure that the data was collected under the

best circumstances possible. This final data product can be used in many different

ways – by anyone, anywhere – for scientific analysis, for exeriments which test scien-

tific repeatability, to acquire or justify funding which can continue research on these

topics.

This transformation from a pile of raw measurements to a complete data product

is enabled only through the coordinated of Quality Assurance, Quality Control and

Data Repair processes. These three processes are often distributed throughout the

data collection and analysis phases of the overarching scientific process. This uneven

and undefined distribution of processes has many drawbacks, which are explored

extensively in Chapter 2.

If we link these processing steps as shown in Figure 3.1 and integrate them into

a single system the process of producing a comprehensive data product becomes

much more streamlined. Each of these processes can be automated to some degree

which enables data management pipelines to keep up with the ever increasing volumes

and velocities of streaming data coming in from an increasing variety of sensors and
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instruments.

Accordingly, to demonstrate the effectiveness of this model, three software solu-

tions have been developed that aid, or provide the functionality required for Qual-

ity Control, Quality Assurance and Data Repair. Respectively, the corresponding

software solutions are the NRDC Quality Assurance Mobile Application[69, 88], the

Near-Real Time Autonomous Quality Control Application (NRAQC)[86], and finally

the Improved Robust and Sparse Fuzzy K Means (iRSFKM)[89].

3.2 Quality Assurance

As explained in Section 2.5.1, Quality Assurance is the least software-oriented pro-

cess included in the Keystone Model. Nonetheless, it has significant opportunity for

improvement and automation through the use of software. Identifying clear problems

with traditional methods of metadata management which contributed to the first gap

detailed at the beginning of this chapter, the Mobile Quality Assurance Application

was developed to simplify the input and binding of project-level metadata which is

used for quality assurance processes.

Further details on the purpose, design, implementation and outcome of this ap-

plication can be found in Chapter 4.

3.3 Quality Control

Detailed in Section 2.5.2, Quality Control as a process allows for significant automa-

tion. However, there currently exists a lack of integrated and fully autonomous so-

lutions to QC. To address this issue we have built the NRAQC system to provide

integrated, quality control functionality to the NRDC. Although only a prototype it

fulfills many requirements expected of such a software package.

Further details on the purpose, design, implementation and outcome of this ap-

plication can be found in Chapter 5.
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3.4 Data Repair

Data Repair is a non-technical term we have opted to leverage for use in this thesis.

It merely refers to the act of filling in identified holes in datasets which have gone

missing, for various reasons. Although commonly performed as part of the analytics

process, by the scientist building a model or experimenting on collected data, an

opportunity exists to expedite the process and make a more complete data product

by performing this sort of repair after gaps have been found by autonomous quality

control software. As indicated in Section 2.6.2, the main method used for data repair

in this thesis was a clustering algorithm, modified to run on multiple GPUs.

Further details on the purpose, implementation and outcome of this application

can be found in Chapter 6.
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4 Quality Assurance

4.1 Role in Keystone

The Quality Assurance application detailed in this chapter fulfils the intended pur-

pose of the Quaity Assurance module in Keystone through its automated metadata

creation, management and binding. The Quality Assurance Application produces

machine readable metadata from the time of it’s first entry and clearly binds that

metadata to the data being collected from that site. Furthermore, because the struc-

ture of input metadata is enforced by form fields in the application interface, the

vocabulary and organization of uploaded metadata is guaranteed.

These functionalities serve the overall Keystone model in several ways. First this

metadata creation and storage provides information which is crucial to the transfor-

mation of raw data to a full data product. The metadata uploaded and stored in

the NRDCs databases provide crucial contextual information needed to identify the

source, types, and purpose of otherwise contextless measurements. The Quality As-

surance application allows users to input information about what devices were used

to collect data points, where they were located and the deployment conditions they

were installed under. This information is crucial to understanding a data product

when far removed from the source of its creation.

Furthermore, the Quality Assurance application provides functionality which

binds crucial provenancal information to data products. By organizing and keep-

ing track of service entries and documents associated with various tiers of NRDC site

and sensor deployments, our final data product has a clear lineage of what processes

were undertaken to ensure that collected data was accurate. Through the documents
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which can be bound to various parts of this hierarchy, an idea of the original research

questions which created this data can also be bound to data points in the form of

associated papers and proposals.

Finally, the NRDC Quality Assurance application serves the next stage in our

data management pipeline by providing machine readable metadata to our Quality

Control software. This contextual information is similar to that bound into the final

data product, however it can be used more dynamically to simplify workflows and

provide richer interfaces to an integrated Quality Control platform.

4.2 Prototype Application

In order to prove the functionality expected of such an application that fulfils the

requirements of the QA module, a prototype application was developed. The following

subsections detail the specification, design and implementation of the NRDC QA

application.

4.2.1 Software Specification

The QA App was developed with many functional and nonfunctional requirements

in mind. These requirements were decided on after extensive talks with several data

management experts and stakeholders. Detailed in Table 4.1, these requirements

guided design and development of core functionalities for the QA application. Using

an agile development method, these requirements went through several iterations

before settling into the current list.

Using these functional requirements, a series of use cases were constructed and

mapped in a use case diagram, found in Figure 4.1. This process informed the prin-

cipal design phase of this applications construction and was frequently referenced or

tweaked alongside the software specifications through the implementation phase.
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Table 4.1: Functional requirements for the NRDC Quality Assurance Application.

Functional Requirements Description
Input Data The user shall be able to enter new data into the

QA app.
Upload Data The user shall be able to upload data to a secure

database.
Read Data The user shall be able to download entries from the

database to their mobile device and view previous
data entries.

Edit Data The user shall be able to edit previous entries and
upload the change data to the database.

Navigate Data The user shall be able to move between different
screens of the app, and input data.

User Authentication The user will be able to authenticate themselves to
access secure functionalities.

Delete Server Data The user, with proper authorization levels, shall be
able to delete data stored on the database.

Upload Photos The user will be able to launch the device’s cam-
era and upload a photo from their photo gallery on
their device.

Save Unsynced Data The user shall be able to save data locally on their
device to upload it to the server at a later point
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Figure 4.1: Diagram showing use cases and their actor interactions for the Quality
Assurance Application
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The description of each Use Case follows:

• LogIn

Field technicians must log into the app. Once logged in, technicians are given

a list of projects they are associated with. This helps reduce the amount un-

necessary data downloaded. Technicians can also add new entries and upload

them to the server. Admin technicians, once verified through the log in, are

given the ability to edit or delete entries already synced to the server.

– SyncToServer

Connects to the server and uploads new data entries found on the phone.

Then, downloads new data found on the server. The app can manually be

synced by pressing the synchronization icon on the header bar on the front

page.

• InputData

Allows the user to input new data. Opens a blank template for whichever

dataset they are choosing to input. Once finished, it is saved to local memory

until synced to the server.

– TakePhoto

Opens the phone’s camera app to take a picture that can be uploaded

alongside the data set, like the System in Figure 4.2. Not every data set

can have a photo.

– GetLocation

Uses the phone’s GPS to fill out latitude and longitude coordinates, such

as the Site in Figure 4.6. Only two types of data sets need GPS location.

• ReadData

All users must be able to view the data, regardless of whether or not they are

logged in. This is so users who are not a part of the project, but are interested

in the data, can view it. To read the data, users need only to navigate to their
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desired object and click on the name.

• EditLocalData

Users are allowed to edit entries that have not yet been synced to the server.

Users can navigate to unsynced data entries and select the edit button to change

them.

• EditSyncedData

Admin technicians are allowed to edit data already synced to the server. If an

admin is logged in, they can edit entries by navigating to it and clicking the

“Edit” button. If the user is not an admin, this button will be greyed out. The

changes will be uploaded the next time the app is synced to the server.

• DeleteLocalData

Users are allowed to delete entries that have not yet been synced to the server.

Users can navigate to unsynced data entries and select the delete button to

remove them.

• DeleteSyncedData

Admin technicians are allowed to delete data entries already on the server. If

an admin is logged in, they can delete entries by navigating to it and clicking

the “Delete” button. If the user is not an admin, this button will be greyed out.

The changes will be uploaded the next time the app is synced to the server.

4.2.2 Software Design

When designing the Quality Assurance Application, there were several key require-

ments that shaped the development process. First, the QA application must be able

to structure the enormous amounts of service entries and access them in a timely

manner. To achieve this, the application utilizes a data access hierarchy that narrows

down the amount of data queried. Second, the application must handle the situation

that there is no available internet or cell signal in the immediate area. The application
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Figure 4.2: An example of inputting a picture from the phone’s camera into metadata
for a particular system in the NRDC.
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manages this problem by storing the changes locally and allows users to commit these

changes when they reach an appropriate area. Finally and most importantly, the ap-

plication cannot function as a singular client side application without any support.

The QA Application consists of a client and server with the client utilizing a Model-

View-Controller(MVC) architectural pattern and the server utilizing a microservice

architecture.

The client-side application utilizes a MVC architectural pattern as shown in

Figure 4.3. This architectural pattern was executed with Angular.js framework and

the C# and Javascript programming languages. The model section of the client-

side application is the central nexus of interaction with the main NRDC System.

This contains routines that would handle the HTTP communication with the server

end, as well as the manipulation of locally stored data. The view section is tasked

with the primary task of satisfying the first requirement and showcasing the data in a

hierarchal format. In this section, the functionality to navigate through the hierarchy,

view imagery, and handle conflicts syncing with the database is handled. Finally, the

controller section serves the primary master and control portion of that application

that dictates the behavioral actions that result from the interactions made by the user.

This section is where the application would issue the command to shift the page views,

create the transitional effects in-between views, and initiate the interaction with the

model section.

The server side of the application utilizes a microservice architecture where each

web service is independent of each other and are combined to create a greater func-

tionality. These services can each be classified into three main groups: Edge Mi-

croservices, Administrative Microservices, and Specialized Microservices. The Edge

Microservices are infrastructure services that perform the role of data provider from

the data base to the client application. The Administrative Microservices perform

the role of security and provides varying level of access to the hierarchy, based on the

individuals status within the project. The Specialized Microservices provide complex

functionality to the application that outside that of the Edge Microservices. These
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functionalities range from photo compression and searching to file conversions.

Figure 4.3: High-level block diagram detailing the architecture of the QA app. Client
and server are connected via http calls from the mobile application to the
Edge Micro services.
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UI Design

Throughout development, the User Interface design of the Quality Assurance Appli-

cation transformed drastically. Initial designs for a prototype implementation of this

application, visible in Figure 4.4, were relatively simplistic, utilitarian and focused on

the highest level of sensor network metadata that would be managed: a project. A

project described a specific cluster of in-situ sensors networked together that collected

data associated with answering the question of a single research project. Given the

broad scope of a project, the metadata collected and stored was general in scope,

requiring only one page and a few form fields. As development on this application

expanded so too did the UI design to better accommodate the technical and personal

needs of stakeholders.

Figure 4.4: A mock up showing the design of the flag dashboard (left) and the data
visualization dashboard (right).
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The first major design shift was a visual one. The application transitioned out

of the simple Flat Design of the initial prototype into a Material Design variant with

the addition of more primary color contrasts, subtler form fields and floating action

buttons. This design choice gave the application a more modern and commercial feel

that people have come to expect from a high quality mobile application.

A second design shift, more critical to the proper functioning of the application

itself, was the inclusion of a hierarchical navigation structure. While the details of

this structure are explored in Section 4.2.3, from a design standpoint it was crucial

to enable the fast traversal of this hierarchy by making each item on every navigation

level a large, clickable button that only leads to a sub list of items contained by the

item clicked. Figure 4.5 contains an example of one of these sub lists. By placing a

link to the information about the previously clicked item in the top right corner, the

design of this list navigation negates the possibility of users unintentionally opening

information pages that will slow their navigation. This streamlined design enables

users to find the lowest level component they want in seconds, and then open infor-

mation pages for the editing and viewing of related metadata.

Finally, stakeholders expressed a strong need for the display of saved pictures

showing the makeup of a sensor system or the structure of a specific component. This

need drove the development of a dedicated image viewing component which retrieved

images from a remote or local source and displayed them on appropriate pages. The

addition of this component required significant planning as each image had many

management functions associated with it: saving the image to the database, saving

the image locally, delete locally, delete on the database, open an enlarged view of the

image, and more. This suite of functionality had to be added without cluttering the

limited real-estate of a mobile screen. We overcame this problem with the inclusion of

a floating action button which expanded into an array of buttons that each perform

one of the above stated functions.

Finally, the interface provides users with a simple, straightforward medium en-

abling quick access to the forms required by technicians. Visually reminiscent of
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Figure 4.5: Screenshots indicating the final UI design of the Quality Assurance Ap-
plication. On the left is an updated and ascetically pleasing main menu
screen. On the right, we see an example of a sublist in the hierarchical
navigation structure. Here we see that Site Monitoring and Meteorolog-
ical are systems associated with the Rockland Summit Site. Clicking on
either item will populate a new list of Deployments that are in the chosen
system.
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Googles material design, this application takes cues from public facing software to

provide a refined interface to encourage smoother adoption of this app among un-

skilled mobile technology users. Large buttons and clickable lists simplify use for

technicians wearing gloves when performing maintenance on sites in high elevations

or in colder months.

4.2.3 Implementation Details

Currently, the NRDC QA Application is comprised of a front-end system developed

in the Ionic Framework, and a back end comprised of essential and independent web

services communicating through a centralized hub [56]. The data transferred between

the two are stored inside a Microsoft Virtual Environment with Microsoft SQL Server

2012 as the primary database management. These two main components together

allow for a seamless interface between the main databases and the client application.

For the front-end system, the QA application was built with the Ionic Frame-

work [52]. This framework utilizes HTML and CSS as a wrapper to manipulate the

interface, as well as Javascript to apply functionality. Once completed, the HTML,

CSS, and Javascript are then compiled into the appropriate codebase: either Apple

or Android.

A wide collection of libraries and modules were used to simplify development

at various stages of implementation. Primarily, Googles AngularJS was used as a

structural framework for the Javascript codebase and allowed for a more object-

oriented approach to manipulation of the HTML and interaction with microservice

APIs [45]. Additionally, Node Packet Manager (NPM) and Bower were used as the

main package managers for this application. They ensured libraries, assets, and

utilities were regularly updated and organized.



59

Figure 4.6: An example of retrieving latitude and longitude coordinates from the
phones GPS.

Organization of the QA app follows a pattern representative of the hierarchical

organization of existing sensor networks managed by the NRDC and associated in-

stitutions. At the topmost level, the application presents the user with a selection

of Site Networks: a representation of several data collection sites connected by their

similarity of purpose or project associations. From there the user selects a site as-

sociated with that network, a system associated with that site, and a deployment

associated with that system, ending with a hardware component associated with that

deployment. This workflow of tunneling down into atomic components gives data

scientists a logical means of quickly locating the exact sensor network element they

seek by leveraging their knowledge of existing infrastructure.

At any point in the navigation of the sensor network hierarchy, a user can add a

new entry to the list of displayed entries or view the details of existing ones. Whether

choosing to display or create, the user will be greeted with the same page. If displaying
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data about an existing item, the page will be populated with data about the selected

element. If the user chooses to create a new item, the form fields on this page are

blank and ready for input.

On the element creation screen, visible in Figure 4.6, the user inputs information

into blank form fields that expand or contract to fit the size of the input data. The

user can also choose to upload a related picture or get their location via their phones

GPS. This functionality enables field technicians to upload accurate location data

about sites they are working on with the touch of a button. Once all necessary

information in entered, the new metadata entry can be saved locally. And, once the

user is done adding new entries, they can upload them en masse to the server for

storage in the database.

On the view screen, the user is presented with a few different options compared

to the creation screen. Principally she can no longer save an entry, only edit or delete

with proper permissions, and there appears a floating orange icon in the bottom right

Figure 4.7: An example data entry page containing info about a single data sensor.
The floating action button in the lower right-hand corner provides the
option to add a service entry when clicked.
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corner visible in Figure 4.7. From the submenu which this button populates, users

can add two different types of metadata about an entry, a document and a service

entry. Documents allow users to add related files to a metadata entry. Service Entries

are entered when scientific equipment is repaired or replaced.
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5 Quality Control

5.1 Role in Keystone

The Near Real Time Quality Control(NRAQC, pronounced “na-rock”) application

detailed in this chapter fulfils the intended purpose of the Quality Control module

in Keystone through its automated and integrated Quality Control testing process

and the creation and binding of QC metadata called “flags,” which indicate specific

problems with data points. The quality control testing process developed for this

software platform performs several well known and commonly implemented tests on

datasets to evaluate the quality of those datasets based on simple metrics. This

particular process of automated testing elevates data input into the Keystone Model

from L0 or “Raw Data” to L1 or “Data with a Basic Level of Quality Control.”

By automating the testing of datastreams and simplifying the process of config-

uring tests on incoming data, NRAQC fulfills very well the requirements expected of

Keystone’s quality control module. In a way similar to the Quality Assurance soft-

ware detailed in Chapter 4, NRAQC simplifies the process of creating a quality data

product by not only testing data sets autonomously but also by binding the error

information directly to tested data points through relational flags. In the NRDC

database, each measurement row holds a foreign key which can point to a specific flag

dictating its quality level.

In addition to providing this value to a final data product, the NRAQC system

works in tandem with the Quality Assurance module and the Data Repair module.

From the Quality Assurance module, the QC module and specifically the NRAQC

system, receives critical contextual metadata that organizes the data which will be
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configured and tested. This contextual metadata provides information about the

deployment conditions related to a particular data source and can be used to inform

what tests should be performed on that particular source. Furthermore, this metadata

can be leveraged to provide more intuitive navigation panes like the hierarchical

navigating presented in this chapter. It can also be used to make richer and more

meaningful visualizations of tested data.

Finally, the NRAQC application, through a test which checks for holes in data

streams, creates spaces in the NRDC database where no measurement exists but a

time-stamp should be represented. This introduction of holes provides clear opportu-

nities for these holes to be filled via some variety of Data Repair service. Accordingly,

it is in this way that the NRAQC software serves the Data Repair service in our Key-

stone model.

5.2 Requirements Elicitation and Specification

Software requirements were developed from a formal elicitation process where two

stakeholders were interviewed to determine the critical functionalities of the system.

The first stakeholder interviewed (S1) is a domain scientist specializing in in-situ en-

vironmental sensing and data management. S1 was solicited to express the needs

of the intended audience for the NRAQC. His experience with existing QC software

greatly aided the development of functional requirements for this software package.

The second stakeholder (S2) a data management expert and software engineer em-

ployed as lead developer for the NRDC, was elicited because of his expert knowledge

on distributed systems and scientific software development. His input helped guide

development towards a microservice-based architecture so that the NRAQC system

could be better integrated with the existing microservices currently handling the

collection of measurements and non-QC metadata in the NRDC. In addition, he sug-

gested that the development of a web-based system that manages significant amounts

of feedback from autonomous tests raised concerns of failure when using a monolithic

system. The current compatibility with an existing system, and the risk of significant
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architectural failure, were the largest factors that drove the development of microser-

vices as NRAQC’s primary backend. The final stakeholder interviewed (S3) is an

expert in microservice development who has developed microservices for the NRDC.

5.2.1 Requirements Elicitation

Stakeholder 1

1. Can you provide us with a QC Breakdown from a user standpoint?

ANSWER: The QC process takes in data from the user and visualizes the

data, where it then allows the user to manually or automatically monitor for

suspicious data points or trends. These data points or trends can be determined

suspicious automatically or through an experts judgement.

2. Ideally, what does this QC Software look like to you?

ANSWER: The users ideally should be presented with a GUI that is composed

of a visualization component, as well as a data selection component that ties in

directly with each other. Somewhere in this interface would be the flagging and

correction component that would recognize and amend data entries. Finally, if

possible, the addition of summary statistics of the region would be a possible

selection.

3. Have you used any other QC software before? If yes, Can you tell us some

things you liked about it? Some things you didnt like about it?

ANSWER: Yes, I have used multiple QC software tools before, such as GCE

Toolbox. Most QC software has a very interesting data streaming visualization

component, but they dont have a quality control focus at a standards point of

view, just at a streaming point of view. These software tools dont provide us

with reviewing, persistent flags, related personnel, and time of the flag.

4. Among the common quality control checks which flagging metrics would be

most important to be implemented in a prototype of this software? Why?
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ANSWER: Date and Time would be the most significant flagging metric to

be implemented in this prototype. I say this because Date and Time is the

most common metric to cause confusion in a group of technicians performing

QC. There have been notable cases of logger devices being set up to receive

daylights saving time while other would not, creating a severe disorganization

of data when aggregated.

5. Do you think its important that users have the ability to code in/upload their

own custom checks on data points or ranges of data points? Why or why not?

ANSWER: Yes, however this would have to a functionality that would be best

reserved for much later in the project. The idea of the GUI is to have a super-

vised check of the data flagging process. Adding custom scripts to set up new

functionality is very unsupervised and would be best discussed at a later time.

6. Would the option to upload flat files of data for QC checking (csv, xml, netcdf,

hdf) aid your research? Explain.

ANSWER: No, not especially, at least not at this time. The reason for this

is because we would want this application focused on operating on a specific

framework, like the microservices being developed for it. However, academically,

this would be of high value, but would require an immense time sink.

7. What constitutes easy to install scientific software for you? Would you be able

to use command line tools to install software? Do you think other scientists

who would use this software would be capable of using command line tools to

install this software on a server or cloud?

ANSWER: Easy to install scientific software would entail simple double click

.exe files where it would auto-install or run. Adding a command line inter-

face would simply confuse the scientific community that it was meant to serve.

Scientists in this field would often lack the technical expertise that would be

needed to use command line tools.
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8. In terms of a future iteration of this software application, what would the QC

Application 2.0 look like to you?

ANSWER: QC Application 2.0 would contain a more advance and fluid vi-

sualization component, and this could be anywhere from seamless transitions

between enormous figures to seamless loading of data points as data streams

in. Additionally, QC 2.0 would also have a more refined user interface than

the last iteration. There may be room for a user study to facilitate a more

intuitive interface, but this is just speculation. Finally, there would long-term

trend analysis available for entire data set.

9. With the idea of the QC application being a gateway to further projects, what

is next on the list in terms of development?

ANSWER: What happens next is the real scientific analysis, so this would be

the advance visualization tools. Now that the data is correct, this opens up a

lot of opportunities to really explore the data and find interesting features or

trends. Additionally, this would be a prime opportunity to publish the data to

a wider audience, such as the weather service. Finally, this raw data would turn

into a data product.

Stakeholder 2

1. How should missing entries be handled with consideration to the NRDC Database

with Quality Assurance Software?

ANSWER: There are two approaches to the problem of handling missing entries.

The first, is to simply insert a new line containing a null datapoint in the table

at the missing timestamp. The other is to load all missing data point entries

into a separate table dedicated to missing entries. I prefer the latter method as

it negates the possibility of accidental overriding an existing datapoint.

2. What are your thoughts on the most efficient way to develop a series of batch
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tests for data points?

ANSWER: I would establish a well defined order of tests such that if a data

point fails at any point it will be flagged at the failing test and removed from

the flagging pipeline. This means no unnecessary testing will be done after a

datapoint has already been flagged. If it passes all of them we should probably

have a dedicated OK designation in our flag vocabulary.

3. I have read that Micro services often have their own small scale Databases.

Would it be viable, with consideration to the existing architecture of the NRDC,

to have a small database associated with Quality Control Microservices?

ANSWER: That depends on what is being stored in this database. Primarily

we want to avoid redundant storage, so anything that is already stored in the

existing NRDC database should not be represented in the QC database. So,

nothing in the measurements table, but perhaps user specific information. We

also likely have the structure to store that in our database as well however.

There may be little point in having a QC specific Database.

4. Do you think there is value in containerizing this quality control application for

distribution?

ANSWER: Yes and no. The components being developed as part of the NRDC

bundle of applications are not explicitly designed for use with outside database

architectures. The idea of anybody picking up this software and integrating it

with their system is great however ideally they will pick up the entire NRDC

frameworkDB, apps, architecture and alland drop that onto their servers. Its

intended to be a large software package thats proven to work effectively with

time series data streams.



68

Stakeholder 3

1. How would you define microservice especially compared to a traditional service?

ANSWER: Microservices as opposed to a traditional services are a collection

of smaller services will a simpler functionality. They are expendable and easy

to replace while traditional services tend not to be. Each microservice is able

to scale independently from each other, which is the most significant difference

and how they bring scalability to growing system. And finally, there is a master

and control service discovery that serves as a hub to not only locate services

but spin up new instances should the need require.

2. What advantages do you think a microservice architecture can bring to a Qual-

ity Assurance application?

ANSWER: Quality Assurance and Control applications have a wide array func-

tionalities that technicians require or at least desire. The sheer amount of traffic

and variety that comes with these functionalities would create a stressed envi-

ronment on the greater system. By switching to microservices, each of these

functionalities can be delegated to an individual service. At the same time,

it will allow each functionality to persist independent of each other, should a

functionality break down.

3. Which technologies (languages, tools, etc.) aid the development of a group of

microservices? Explain

ANSWER: Microservices themselves are relatively new and people are just now

beginning to get a handle on that question. However, out of trends from personal

experience and those mentioned inside various academic papers, one of the

most important technologies is a web framework to actually begin constructing

the services. Another important technology is any form of web development

language, such as Javascript, C#, or Python. Finally, devTools, container



69

software, and continuous deployments are growing in number and are considered

quite vital in industry.

4. What does it mean to dynamically spawn a microservice?

ANSWER: Microservices are actually design to fail at specific times, believe

it or not. When planning for these failures, a common practice is to actually

sense for a service failure and create an instance of the same failed microservice

autonomously. The alternative would be to manually create a new instance

again and that would be grossly inefficient. In certain industries, systems would

actually sense that one service is lacking to cater to user demands and would

create another instance of a microservice to help manage incoming traffic.

5.2.2 Functional & Non-functional Requirements

The requirements determined by the elicitation process were split between functional

requirements, which describe the overall technical functionality of the system, and

non-functional requirements, which outline constraints on the system. The functional

requirements of NRAQC were broken down into two priority levels. The base level

requirements indicate the critical functions that are vital to the system operability,

while the second level requirements represent adjunct functionalities that are not

necessary for operability.

From stakeholder elicitation it was determined that the NRAQC system depends

on thirteen fundamental operating requirements, visible in Table 5.1. In addition

to these thirteen baseline requirements, NRAQC documentation also specified eleven

secondary requirements and eight tertiary requirements, specified in Tables 5.2 and

5.3, respectively.

In addition to these functional requirements, the NRAQC system was developed

under the constraint of eight non-functional requirements. The first requirement

dictates that the NRAQC system is built as a web application. The second require-

ment describes the backend microservices being written in Python with the Flask
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Table 5.1: The core functional requirements of the NRAQC Application.

Requirement Description
FR1.1 The application will utilize a set of backend microservices to com-

municate to a greater database.
FR1.2 This application will monitor a database table containing time series

measurements for when new values are stored.
FR1.3 This application will ingest data points from an external database

autonomously when new values are detected.
FR1.4 This application will run each data point through a series of tests

specific to its measurement type.
FR1.5 This application will modify a data member associated with the

tested data point indicating its checked status called L1 flag.
FR1.6 This application will, when a test fails, will set the L1 flag as a failure

with additional information indicating which test it failed.
FR1.7 This application will provide to the user an web interface which lists

flagged datapoints.
FR1.8 This application will provide to the user an web interface which

visualizes a data stream as a line graph.
FR1.9 This application will clearly indicate flagged data points on the data

visualization with a coloring distinct from unflagged datapoints.
FR1.10 The application will handle the login and authentication of admin-

istrative staff and technicians.
FR1.11 The application will capable of storing user-specified changes to data

and streaming management.
FR1.12 The application will provide administrators the appropriate editing

rights to associated data streams while limiting said rights of lower-
level users.

FR1.13 The application will provide a web interface for the administrative
functionality of this application.

library as its main framework [82]. The third requirement indicates that user inter-

face must be written with HTML, CSS, and JavaScript, with Angular4 as the primary

framework [45]. The fourth requirement ensures that the data model followed by the

NRAQC system coincides with the model followed by the greater NRDC system. The

fifth requirement describes the use of containerization provided by Docker. The sixth

requirements relates to the fifth in that the system was developed inside the Linux

operating system. The seventh requirement necessitates that the flagging subsystem

can detect the availability of multi-core processors within its backend environment.
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Table 5.2: The secondary functional requirements of the NRAQC Application.

Requirement Description
FR2.1 The application shall provide users with the option to force a check

on selected data points.
FR2.2 This application shall bundle associated flags into a flag set to min-

imize redundant listings on the flag display interface.
FR2.3 This application shall provide users with a robust interface for data

source configuration.
FR2.4 This application shall provide to the user detailed information about

individual data points when hovering over the data visualization.
FR2.5 This application shall create a report of flagged data points over a

certain time period.
FR2.6 This application shall distribute a flag report to a data steward via

email or compatible messenger program.
FR2.7 This application shall provide users with an interface to discover

similar data streams and overlay them over the currently visualized
stream for comparison.

FR2.8 This application shall enable users to save data streams for quick
viewing on a dashboard.

FR2.9 This application shall enable a user to validate flagged data by man-
ually setting a L2 flag.

FR2.10 This application shall provide functionality that allows a user to save
L2 flags and write them to the database.

FR2.11 The system shall keep a running audit of which user set validated
which flagged datapoints.
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Table 5.3: The tertiary functional requirements of the NRAQC Application.

Requirement Description
FR3.1 This application may provide functionality for the upload of a flat

file containing time series data.
FR3.2 This application may run quality control tests on an uploaded flat

file.
FR3.3 The application may write out a Quality Controlled flat file contain-

ing the original data points with appended flags.
FR3.4 The application may provide the user with a means to download the

Quality Controlled file.
FR3.5 The application may provide functionality for the upload of custom

checks in the form of coded functions.
FR3.6 The application may provide security measures to prevent the injec-

tion of malicious code.
FR3.7 The application may provide functionality for expert assisted QC

with functions for long term trend analysis and scientific modeling.
FR3.8 The application may utilize machine learning for intelligent flagging

to reduce false positives.
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5.3 Software Design

Following a systematic approach to software development, a formal design processes

was undertaken after gathering requirements from stakeholders. The following sub-

sections detail a subset of the designs procured for this software and can be used as

reference when attempting to modify or reproduce the NRAQC software.

5.3.1 High Level Design

For the high level design of the NRDC QC software we have developed two documents

representing two parts of a client-server architecture: a website map and a component

diagram. Pictured in Figure 5.1, the website map of the QC Application shows the

intended layout of the Quality Control Application’s main ui. After being prompted

to login from a landing screen, users will begin at the flagging dashboard. From here

users can navigate to either the Data Visualization page, the Administration page or

Figure 5.1: Website map for the NRDC Quality Control Application.
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click on the flag visualization for a more detailed breakdown of flagged measurements

by data stream. From each respective top level page users will have links to sub-pages

or modals that provide information about the application, provide tools to configure

the application or provide some sort of relevant service. More detailed information

and visual mock-ups on these pages can be found in the UI Design portion of this

document.

The second design document provided is pictured in Figure 5.2 and shows a com-

ponent diagram describing the interaction of server-side microservices supporting the

UI and providing automated measurement testing functionality. As every component

is implemented as a microservice it should be noted most interfaces between compo-

nents will be implemented as RESTful APIs. Each service in the edge service frame

Figure 5.2: Component diagram showing high level architecture for server side of
NRDC Quality Control Application.
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is assumed to be connected to the internet and provide RESTful API’s exposing the

functionality of the QC app to client side code. To give a comprehensive understand-

ing of each component and it’s role they will be enumerated and explained in detail

for quick reference.

NRDC (Database)

This component will not be implemented as part of the Quality Control Application,

however portions of it may be modified to accommodate specific requirements of QC

metadata. It principally represents the necessary data source that is required for this

QC system to operate. The system is being developed to accommodate an exchange

of this component with an remote API or a flat file system. At the most fundamental

level however the Quality Control system is designed to work with direct access to a

database with a known table structure that conforms to certain open data standards.

Data Manager (Microservice)

This component will be implemented as a micro service and essentially provides all

functionality of retrieving, formatting, disseminating and writing measurement data,

flag data and related metadata. This component provides a flexible interface to the

data source that can be reconfigured to accommodate an API data source or a flat file

system. It requires the implementation of two other interfaces : one which allows it to

send and receive data from the Testing/Flagging Service component and another

which allows it to receive data from the Configuration Manager component.

Testing/Flagging Service (Microservice)

This component provides the core functionality to the automated Quality Control

of streaming data. It should run autonomously and have no direct interaction from

the user at any time. It provides one interface allowing the Data Manager to

send measurements to it for testing and retrieve flagged measurements from it for

writing to the data source. It requires the implementation of one interface from the

Configuration Manager to allow the upload and modification of tests from the
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client.

Flag Handler (Microservice)

The flag handler, as an edge service, provides an interface between the client and

server. It’s primary role is to handle JavaScript code which queries for flags. It

will filter, format and bundle flags so that they may be quickly rendered upon being

downloaded by the client. Formally, it implements an interface between to connect

it to the NRDC.

DataVis Handler (Microservice)

The DataVis Handler, as an edge service, implements an interface to connect with the

NRDC component and retrieve the desired information. This microservice handles

all requests from the data visualization component of the UI and performs necessary

formatting and organization to ensure that the Web page can focus on rendering data

points instead of wasting power processing them. A key functionality of this service

is the ability to classify flagged data points as distinct from normal data points so

they will be rendered differently by the data visualization component.

Configuration Manager (Microservice)

This component provides functionality to the client of receiving user configuration

requests and sending down stored user configuration info. In addition to these client-

server interactions, the Configuration Manager implements interfaces to distribute

configuration objects to the Data Manager component and the Testing/Flagging

Service. It can also notify the two services of a change to the configuration and

request a temporary cease of the automated flagging cycle while re-configuration

occurs.

5.3.2 Medium Level Design

For the medium level design, the NRDC QC software can be represented in the form of

a comprehensive class diagram. Pictured in Figure 5.3, the class diagram depicts the
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overlying class hierarchy of the NRDC QC system. However, for added convenience,

this diagram can be split into four sections that roughly equate to planned compo-

nents: the Configuration, the Datasource, the Test Suite, and the Edge Classes. The

Configuration will contain the classes that start and maintain changes to the system.

The Datasource will contain the classes that entail the reading and writing of data.

The Test Suite will contain the classes that make up the testing and flagging portion.

And finally, the Edge Classes will contain the classes that interact with the client side

of this application. A detailed description for each is included below.

Figure 5.3: Comprehensive Class Diagram for Quality Control Application.
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Configuration

The configuration class is primarily in charge of maintaining the various configurations

required to run the NRAQC software platform. In this diagram (Figure 5.4) two

classes are defined for the two key components of NRAQC which can be configured:

testing and data sources. They both inherit from a generic configuration interface

class.

The testing class manages configurations which define tests performed upon mea-

surements. Source configuration, by comparison, is in charge of managing the config-

urations associated with data sources for the NRAQC system. Through the source

configuration class, users should be able to define where thier data comes from and

how to access it.

In addition to passing around configurations to other modules, these classes are

called by the Configuration Manager microservice to help with the writing, reading

and parsing of configuration files when requests are sent to the microservice. These

configuration files are written in XML. Examples of them can be seen in Listing 5.1

and 5.2.

Figure 5.4: The Configuration section of the Class Diagram.
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Listing 5.1: Example of test configuration file.

<DataStreams>
<DataStream>

<Stream>63</Stream>
<Test>

<Type>Bounds</Type>
<Max>28.0</Max>
<Min>−40.0</Min>

</Test>
<Test>

<Type>Repeat Value</Type>
<RepeatThreshold>3</RepeatThreshold>

</Test>
</DataStream>
<DataStream>

<Stream>66</Stream>
<Test>

<Type>Bounds</Type>
<Max>28.5</Max>
<Min>−19.7</Min>

</Test>
<Test>

<Type>Repeat Value</Type>
<RepeatThreshold>3</RepeatThreshold>

</Test>
</DataStream>

</DataStreams>
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Listing 5.2: Example of data source configuration file.

<DataSource>
<Type>Database</Type>
<Language>SQL</Language>
<Implementation>Microso f t SQL</Implementation>
<Connection>mssql+pyodbc : / / . . .</Connection>
<Username>c i l s t u d e n t </Username>
<Password>. . .</Password>
<I n i t i a l C a t a l o g >

<Name>ProtoNRDC</Name>
<Tables>

<Context namespace=”I n f r a s t r u c t u r e”>
<Table id=”Deployments”>

<Name>Deployments</Name>
</Table>
<Table id=”Components”>

<Name>Components</Name>
</Table>

</Context>
<Context namespace=”Data”>

<Table id=”Data Streams”>
<Name>Data Streams</Name>
<TestedDataStreams>

<Stream>63</Stream>
<Stream>66</Stream>

</TestedDataStreams>
</Table>
<Table id=”Measurements”>

<Name>Measurements</Name>
</Table>

</Context>
<Context namespace=”Vocabulary”>

<Table id=”L1 Qual i ty Control”>
<Name>[L1 Qual i ty Control ]</Name>

</Table>
</Context>

</Tables>
</I n i t i a l C a t a l o g >

</DataSource>
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Datasource

The “datasource” group of classes (shown in Figure 5.5) all implement a single inter-

face called “DataSource.” By having this singular defined interface, each unique data

source manager object communicates with the source configuration which is required

to define how they should manage their data. While the implementations of these

interfaces will be very different, they all behave approximately the same way.

The three different classes defined here manage the three most common sources

of environmental data which would be quality controlled for. The API source al-

lows users to define a series of API endpoints which can be used for reading and

writing data to and from this software solution from a remote server. The Database

Figure 5.5: The Datasource section of the Class Diagram.
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source allows provides tools for the reading and writing of data to a local or remote

database with a direct access address and login. Finally, the file source provides

tools for the reading and writing of flat files containing time-series data. For this

thesis, the DataBaseSource was the only class implemented and it was configured to

communicate with the NRDC database directly.

Test Suite

The Test Suite shows all classes necessary for the execution of Quality Control Tests

configured by data managers. As can be seen from the diagram in Figure 5.6, the

testing classes are driven primarily by a core class called the Tester. The tester

manages the configurations passed into it by the TestConfiguration class, generates

the needed tests from a number of base classes, ingests and formats data for systematic

testing and runs all tests in a predefined order.

In order to ensure our measurements are tested in an expected format, all data

is loaded into the Tester class as list of DataStream objects. A datastream object

is defined as a list of measurements along with some additional metadata. Finally a

measurement is a base object which contains a timestamp, a single float value and

a flag. When created, measurements have a null value for flag. Upon being tested

they will be set with a value corresponding to a particular integer code defined in our

database tables.

Extending from a simple interface so that the Tester class can agnostically call

tests regardless of their subtype, each test class manages a specific type of test on

datastreams.

The MissingValueTest checks the timestamps of two data points for a time-

difference which exceeds that of the standard difference defined by the time series.

For example, if the time series is at 10:00 min intervals, and two timestamps are at

1:20pm and 1:40pm then a missing value has been found. Upon finding this value,

this test will generate a new Measurement object (or multiple where appropriate),

with a null value at the missing timestamp(s) and store it in a separate list for later
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Figure 5.6: The Test Suite section of the Class Diagram.
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insertion into the database. This test runs automatically on all datastreams which

have other tests run on them.

The RepeatValueTest checks a user-defined number of data points which par-

ticular a particular data point in time to see if a particular value is a repeat value. So,

if a user defines a threshold of five repeats for a repeat value, then this test will check

the five preceding data values. If any one is different then this measurement goes

un-flagged, otherwise it is flagged. This threshold is stored in the test configuration

file and loaded in from the configuration class.

Finally the OutOfBoundsTest class checks one measurement against user de-

fined ranges of Maximum and Minimum allowable values. Although defined here as

integers, they were ultimately implemented as floats. These ranges are stored in the

configuration file and loaded in from the configuration class.

Edge Classes

The final collection of classes, shown inFigure 5.7, are a handful of utility classes

which manage various components of user interface communication. Specifically the

two distributor classes manage the output of measurements for client-side visualiza-

tions and flags for various views that require this data. They also perform tasks of

aggregation and interfacing with data sources, like the NRDC database. Finally, the

login class communicates with software specific database that holds login data and

passes back tokens verifying login requests.

Figure 5.7: The Edge Classes section of the Class Diagram.
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5.4 Detailed Design

For the detailed design of the QC Application, the system can be represented in the

activity chart presented in Figure 5.8. This activity chart provides a more generalized

look at the main QC pipeline. At the highest level, the pipeline shows a fluid process

leading with initialization and configuration into a paralleled section depicting the

testing and flagging process. However, each piece of the activity chart can be further

broken down further into their own subsystem and categorized into two main sections:

the Server side and the Client side. Each of these sections will contain an additional

number of activity charts according to the number of pieces within the original chart.

These additional charts describe the overall flow of the various sub-systems within

the greater QC system.

5.4.1 Server Side

The first activity chart, shown in Figure 5.9, depicts the flow of actions leading

to the initial configuration of the QC system. The system will read in a master

configuration file which will be in the form of an XML document. This XML will

be parsed and proceed to be appropriately loaded as a test configuration or a data

source configuration. It is then where the objects will instantiate a data source and all

tests. These objects make up the crucial settings that will determine the parameters

of both corresponding data source and tests.

The second activity chart, shown in Figure 5.10, details the process of retrieving

measurements from the NRDC system. This section can be split up into three sub-

sections based off the type of data source. If the data source is an API, the workflow

would consist of querying for desired data streams and converting them into the

system’s native datastream class. It is at that point where each datastream is iterated

over and each new measurement can be gathered and placed within. If the data source

is instead a formal database, the process would entail querying for datastreams and

iterating over each one for new measurements. These measurements will be come
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Figure 5.8: General Quality Control Activity Chart.
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Figure 5.9: Activity Chart for Configuring the Microservices.
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Figure 5.10: Activity Chart for retrieving the Measurements from the NRDC system.
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in a raw format and processed into the established Measurement object and placed

into the datastreams. Finally, if the datasource is a file, this process would instead

simply reading the measurements from the file and instantiating them as measurement

objects in the system. These objects would be formated for timestamps and eventually

placed in datastreams. It is at this point in all three sub-section where they converge

and send the datastreams off to testing.

The third activity chart, shown in Figure 5.11, describes an outline of an inde-

pendent configuration check that will be running constantly as the system persists.

This check will run every minute and check the configuration file for new changes.

The process of checking will be composed of retrieving a cached configuration and

the one present within the file. These configurations will be hashed and compared

where any changes will be noted and the cached configuration will be replaced with

the new one.

The fourth activity chart, shown in Figure 5.12, presents the general method of

testing within a testing service. Prior to entering a testing service, datastreams will

be organized based on category. After entering the appropriate testing service, each

datastream will fetch a measurement. Depending on the measurement, the test may

require multiple data points. If so, an appropriate amount of additional parameters

will be retrieved. These are then tested for failure, and flagged as either a pass or

a failure. The failures will receive feedback based on the type of failure. regardless

of pass or failure, these measurements are loaded up into a Post-Test data structure

and then sent off to update the database.

5.4.2 Client Side

The fifth activity chart, shown in Figure 5.13, showcases the client side functionality

of dynamically generating tests. This method begins when a user navigates to a

specific deployments and begins the selection process that would eventually lead to

the types of test to be generated. Currently, this systems supports only three types

of tests: Bounds Checking, Repeated Values, and Missing Entry. It is here where the
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Figure 5.11: Activity Chart for Monitoring any changes to the Configurations.
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Figure 5.12: Activity Chart for Testing and Flagging of incoming Measurement data.
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Figure 5.13: Activity Chart for Creating the Tests.
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additional checks can be set according to each different type. Once completed, the

system will send the configurations off and a test will be generated.

The sixth and final activity chart in Figure 5.14, details the client side function-

ality of visualizing flagged data. In this activity chart, the user begins by logging in

and organizing the flagged data according to the type of flags. The user then can

download the measurements and this will render a doughnut chart depicting the fre-

quency of flags. By further examining the sectionals of the chart, this will bring up a

bundle of flags. Each flag bundle contains the option of rendering a data visualization

in the form of a parallel line graph with unique coloring.
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Figure 5.14: Activity Chart for Visualizing the Flagged Data.
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5.5 User Interface Design

The User interface for the NRDC Quality Control application was designed as a

website containing multiple pages and components that communicate with the remote

micro services detailed at length in other sections. In early planning stages NRAQC

was designed to have three top level pages which users could navigate between: the

Flagged Data Dashboard, the Data Visualization Dashboard, and the Administration

Dashboard. In the following subsections we will detail the intended design of the QC

Application as initially specified with the use of various mockups. For an exploration

of the final design as was implemented see section 5.6.2.

5.5.1 Flags Interface

After users log in users this design detailed that users should be greeted with the

page detailed in Figure 5.15. The first thing to note about this figure is the overall

Figure 5.15: Main landing page for the Quality Control Application. It is the flagged
data dashboard and it shows at a glance the number of flagged measure-
ments in need of expert review. Other pages can be navigated to via the
horizonatal navigation bar on top.
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structure of the webpage, the navigation bar is horizontally oriented like folder tabs

and there is a lot of white space. The tab like navigation bar enables a cleaner design

as large visual entities like charts are more easily aligned in the center of the page.

This ensures that data visualizations, like the flag related doughnut chart are given

a place of importance in the center. Building upon this, the UI utilizes white space

and color to draw the eye to critical information and mitigate any distraction when

evaluating important data.

Continuing with Figure 5.16 note the content of this page itself. From the prior

image you will see that the a cursor is now present. Upon hovering over a portion of

the doughnut chart the content in the center will change to give more detailed data

reflecting the portion being interacted with. Additionally, by clicking this arc the

user will be sent to the next page giving an even more detailed breakdown of flagged

data of this type organized by data stream, visible in Figure 5.17. From this page a

user can click on one of the flag bundles and pass forward into the Data Visualization

Figure 5.16: Main landing page for NRDC QC Application. Note the changed data
in the center of the doughnut chart as the cursor hovers over an arc
representing a subset of flagged measurements.
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Figure 5.17: Flags of a certain type organized by datastream. Either of these flag bun-
dles, represented by blue circles, are active links to the data visualization
page where the associated datastream will be automatically visualized.

Dashboard with the data from that stream loaded into the line chart. This will be

the primary way that data scientists get from the Flagged Data Dashboard to the

Data Visualization Dashboard.

5.5.2 Data Visualization Interface

Whether the user navigated here via the link in the navigation bar or via the “Flagged

Data Dashboard” workflow, the user will see the page detailed in Fig 5.18. However,

they will only see the visualized data shown here, if they came via the Flagged Data

Dashboard. If they came from the navigation bar link they will need to select the “Add

Datastream” button from the left toolbar and choose a Datastream to be visualized

before they see a line on the chart.

In this figure flagged data is rendered as red, while unflagged data is rendered in

blue. This sort of color coding provides data stewards with at a glance information

about Data Quality over time. It can help significantly when coordinating site visits

for Quality Assurance and Maintenance because a Data Steward can, at a glance, see
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Figure 5.18: The main data visualization page. A toolbar on the left hand side of
the screen provided various functionality to the user. They can add a
datastream to the visualization, manually flag datapoints in the graph
by slicing areas, or get a detailed list of all flagged datapoints associated
with this stream. Flagged data is colored red in the visualization.

the relative ability of a sensor to log valid data over time. If there is a lot of red on

a graph like this, it might be worth checking out the physical sensor.

For additional information, a user can hover over the chart at any point and get

a quick breakdown of the measurement rendered at that point. This functionality is

visible in Figure 5.19. The small text box displays relevant info about this Measure-

ment like the value and the type of flag. Eventually, users will be able to click this

data point to get an even more detailed breakdown of relevant flag related metadata,

like information about the test that it failed or when it was flagged.

5.5.3 Administrative Interface

As configuration and administration of the Quality Control tests is such a crucial

element of proper automated QC a substantial portion of the interface is dedicated

to Administration. In Figure 5.20 users are presented with two simple and large
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Figure 5.19: Data visualization page showing interactivity of graph. Even non-flagged
data can be viewed by hovering in this manner.

buttons indicating possible paths of test related interaction and configuration. If an

user wishes to view tests, they will be linked to a navigation page. Upon selecting a

datastream they will view a listing of all tests associated with that datastream. From

there they can reconfigure and adjust tests where desired.

If they choose to create a test, users will be taken to the view depicted in Fig-

ure 5.21. From here users can find a deployment by clicking the button in Step 1.

From there they can selected an associated Datastream in Step 2 by clicking on the

dropdown menu. The process continues with additional steps off of the depicted

screen. In subsequent steps the user can select the type of test and any custom pa-

rameters that are required. From there they will be given the option to save their

new test and upload it to the server to go into production by the next automated

Quality Control Cycle.
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Figure 5.20: The configure tests screen. The user can navigate to a datastream to
configure existing tests via the “view tests” button or they can construct
an entirely new test by selecting “New Test”.

Figure 5.21: The new test creation page. Users are guided in creating a new test in a
streamlined and step-by-step process.
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5.6 Implementation Details

Following this comprehensive design process, a prototype application was developed

to work with the NRDC and integrate into its existing data workflows. Although not

fully featured to meet the specifications of the above specification and design details

the developed application met a number of key functional requirements and proved

the basic workflow of configuring and working with such an application. The following

sections detail the narrative of this development and specify what was developed.

5.6.1 Backend

For the prototype of this application, five microservices were implemented across two

phases: the Configuration Manager, Data Manager, Testing/Flagging Service, Flag

Handler, and DataVis Handler. In addition to these microservices, all the classes

except for a login class detailed in Section 5.3.2 were implemented to drive these

microservices. These specific components were chosen because they best represented

the core workflow of the NRAQC system and would be very likely re-integrated in

future iterations of this software, if developed properly the first time.

In the primary phase of development four of the aforementioned microservices

were developed as a series of Flask services that called upon the various classes de-

fined in Section 5.3.2, implemented in Python, which provided the data retrieval and

testing functionality. Using the methods in these classes, the Data Manager derived

configuration information from a hard-coded XML file that allowed it to connect to

the specified data source: the static NRDC Test Database hosted on a secondary

server (to avoid critical failures which could compromise the original data).

After setting up a functional writing and querying service, the Testing/Flagging

service followed. Again receiving functionality from the same set of classes, this service

ingested a second hard-coded configuration XML file containing testing data. Using

the ingested testing data the Testing/Flagging service creates all tests dynamically

as “Test” objects and categorizes them by data stream so that they will always test
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the correct measurement set. Upon successfully linking these two services together

and verifying that they correctly retrieved, flagged and wrote back flagged data,

development began on the client side and two edge services required to retrieve data

from the data source.

In the second phase of development, which began a few months after completion

of the initial phase, configuration classes and user interfaces were developed to meet

further requirements specified in by the specification document. The development

and completion of these classes enabled the existing NRAQC services to eschew use

of the prior hard coded file used to define tests and now run tests however they

were defined from the user interface. Development of the configuration classes was

a non-trivial phase that required multiple redesigns of prior configuration files and

classes which loaded and parsed them. Furthermore, as detailed in the User Interface

subsection of this section, the implementation of a configuration service and class

significantly changed the intended designs of these interfaces as specified in section

5.5. Despite attempts to implement the specified Data Source Configuration classes,

due to constrictions of time and design problems they were defied implementation in

this phase.

5.6.2 User Interface

Development on the UI was defined significantly by the efforts were made to mirror

the initial UI designs. The results of these efforts were mixed but generally promis-

ing. Starting with the initial “landing” page of the NRAQC web interface, visible in

Figure 5.22, the doughnut chart was relatively simple to implement out-of-box. Us-

ing the Flag Handler interface to pass down aggregated and formatted flag metadata

from the NRDC test database, this doughnut chart required only a few lines of setup

and worked exactly as designed. Unfortunately the specific colors used in this chart

library, ChartJS, were difficult to configure so the colors currently visible are pretty

much fixed. A box containing informative text was added to explain how the doughut

chart should be interacted with.
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Figure 5.22: The main landing page of the NRAQC application.

By following the instructions in the welcome page and clicking on the doughnut

chart, users are led to an intermediary page, Figure 5.23 where flags of the selected

type are grouped by their specific datastream. These little bubbles are constructed

using D3.js [16]. Although a color-coded through line was intended to link partic-

ular flags with particular colors, this had to be abandoned for the purposes of this

application when configuring doughnut char colors became increasingly difficult. On

hover the numbers in these circles change color from white to black to provide user

feedback.

By clicking on one of the circles here the user is lead to the core data visualization

page of the NRAQC application, visible in Figure 5.24. On this page, the user has

multiple options but the primary focus lies on the chart taking up more than half the

screen.

Although visually pleasing, this chart lacks functionality intended from original

designs of this software. The user can hover over specific data points in this chart

(indicated by the red circles on our red line), however the data popup which results

has very limited information. Specifically, it specifies the x and y values and nothing

more. Despite making numerous attempts, with multiple visualization libraries, to
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Figure 5.23: A page which organizes flagged data points by the stream they were
flagged on. On this page we can see that there are 365 missing value
flags, with 360 originating from one datastream and 5 from another.

Figure 5.24: An image of the main data visualization page for the NRAQC software.
This datastream shows the results of inserting empty spaces to represent
gaps in a dataset.
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affix additional metadata to this tooltip popup no solution was found which did not

require significant fundamental development. Additionally, there existed no simple

way to specify that certain values should color the lines on the chart a certain way

so the chart is one color.

In order to address this lacking functionality on the chart, a second interface

was developed which users could switch between to view flagged datapoints as a list.

Visible in Figure 5.25, this interface lists the flag, value, and timestamp of each flagged

datapoint in the current visualized datastream. To indicate how such a interface could

be used if more richly developed, a text box for data steward annotations was added

to the right of each flag. Beyond this textbox, no manual flagging functionality was

developed for this prototype.

Moving from the flag review and visualization pages, a series of pages were devel-

oped to facilitate the easy configuration of tests and affix them to the proper datas-

treams. Using a navigation workflow demonstrated with Figures 5.26-5.29, users

navigate down a hierarchy of metadata which specifies the location of certain instru-

ment deployments. Along the left had side the “Nav-History” box specifies the prior

Figure 5.25: A list of all flags associated with the currently visualized datastream,
with their timestamps and the name of the flag.
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Figure 5.26: The top level options for configuration. User and data source configura-
tion were not implemented for this prototype.

Figure 5.27: A snapshot of the hierarchical navigation used to find a particular datas-
tream which can be tested. The image on the right was uploaded from
the Quality Assurance Application detailed in Chapter 4. On the left,
the nav history pane shows breadcrumbs of where we have come from.
We can click on any of those breadcrumbs to return to a prior page.
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Figure 5.28: A snapshot showing the variety of metadata we can retrieve from the
QA app and display in the QC app.

pages which users have navigated down. On the right hand side, the list of boxes

contains metadata about the current level our user has navigated to, including im-

ages. For data curators familiar with the associated QA application this interface

should feel logical and provides and example of how the prototype NRAQC applica-

tion benefits from metadata collected by the QA application. Although, somewhat

trivial in its current implementation, this synergy will be explored in greater detail

in Chapter 7.

Once users have navigated to their intended datastream, users are given the

option to create new tests or modify existing tests. In Figure 5.29, a datastream has

been chosen which has a pre-existing test and a new test. If the user clicks on the

new test, “Create a New Bounds Test”, the page in Figure 5.30 appears. The content

on this page is dynamic and provides a number of fields specific to the type of test

being run. For “bounds” tests it is two, for repeat values it is only one, a threshold.

When the user inputs information into these blank forms, a “save changes”

prompt appears, visible in Figure 5.31. Upon clicking this button to save, the user

receives feedback in the form of a green banner along the bottom of this page. This
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Figure 5.29: A snapshot showing our options for creating new tests on a chosen datas-
tream. On this datastream we already have an existing test for repeat
values we can modify and we also can create a new test which checks for
values which exceed desired ranges of our measurement series.

Figure 5.30: An example of a test configuration page. This particular test checks to
verify that a datapoint does not exceed either the minimum or maximum
range specified in these form fields.
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Figure 5.31: When information has been input into a form field the save changes
button appears.

can be seen in Figure 5.32. Editing an existing test follows almost exactly the same

workflow.

Finally, in order to demonstrate the functionality of this software on a static

database, which does not receive any new inputs like the live database would, a

final interface was implemented called Demo. Like the name implies, this interface

demonstrates the functionality of this application by performing batch tests on data

in the NRDC database. As these batch tests could be very time consuming, due to

the nature of how voluminous the tested data is, the Demo Service was multithreaded

so that it could report back its progress to the demo interface. In Figure 5.33 you

can see an example of one stage of the Demo interface reporting on its progress.
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Figure 5.32: When changes are saved the user is notified via a green strip at the
bottom of this form.

Figure 5.33: The Demo page of the NRAQC app. This page notifies users about the
current status of the demo via helpful text updates.
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6 Data Repair

6.1 Role in Keystone

The Improved Robust and Sparse Fuzzy K-Means (iRSFKM) software detailed in this

chapter fulfils the intended purpose of the Data Repair module in Keystone through

the rapid and accurate imputation functionality it provides. The final requirement to

get our Raw Data to a finished data product is that it be complete as possible. The

Data Repair module of our model suggests that completeness of a data product can

be fulfilled semi-artificially by making accurate statistical guesses about what values

should go in established holes in our dataset.

As has been loosely established in Chapter 2, many options exist for data im-

putation. For our application of the Data Repair portion of the Keystone model

we implemented a modified fuzzy k-means algorithm and ran it on multiple GPUs.

This implementation repairs real-earth science data accurately and quickly and can

be leveraged in an integrated pipeline to help the NRDC produce a more complete

and accurate data product that reduces the time-to-science for researchers.

6.2 Implementation

Four iterations of the improved RSFKM algorithm were implemented for experimen-

tation and analysis. First, a standard CPU implementation of the RSFKM was imple-

mented using a generic solver for Equation (2.3). This implementation was developed

to provide a clear baseline of the existing algorithm for timing purposes. Next, the

sequential CPU-only implementation was optimized with the introduction of library
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free convex optimizer in lieu of the generic solver. From there, a single GPU imple-

mentation was introduced and optimized for speed and overhead efficiency. Finally,

to account for restrictions on GPU memory and produce more consistent results, a

multi-GPU iteration of this software was implemented.

6.2.1 Convex Optimization

In the work by Xu, et al., the authors reference the use of “the technique” utilized

by Huang, etx. al. [51] to solve Equation (2.3). To speed up development time for

this baseline code and to promote reproducibility among computer scientists who are

not intimately familiar with convex optimization, we diverged from the method in

Xu, et al. and utilized ECOS convex optimization solver[30] through the CVXpy

interface [26]. Unfortunately, the introduction of this generic solver cased problems

for plans of a GPU adaptation of this algorithm.

Presently, no generic solver currently exists which leverages the power of GPUs

to speed up its numerous and dense calculations. Since preliminary timings of this

solver indicated that this was a substantial bottleneck in the RSFKM algorithm, a

workaround was necessary to enable the use of GPU architectures with RSFKM. To

solve this problem, a library free solver, comprised of optimized C code generated

by CVXGEN [64], was integrated into a modified sequential implementation of RS-

FKM. This improved implementation was significantly faster and provides a best case

baseline to measure GPU versions against.

The code generated by CVXGEN was much more sympathetic to a GPU im-

plementation of RSFKM compared to CVXpy as it was library free and written in

C, which directly maps to CUDA. However, this code also introduced new problems

hindering a successful GPU implementation. First, it generates code that only works

on a pre-defined, constant vector size. In our case, that means it only works for a

fixed number of centroids. Next, as this generated code was optimized for embedded

systems, many frequently accessed variables were set at global scope. As this code

would have to be adapted to run sequentially on a single thread (but with multi-
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ple instances running in parallel across multiple cores) this scoping creates problems.

CUDA doesn’t have an equivalent global scope that exists independently for each

thread, so a means to trick the architecture was required.

6.2.2 GPU Adaptation

As alluded to in Section 2.6.2, the approach of prioritizing the adaptation of optimiza-

tion code to GPUs came from two directions. First, the mathematical minimization

formula for membership is fundamentally independent, indicating that calculations

for membership vector ui can occur at the same time as ui+1. This makes the corre-

sponding algorithm embarrassingly parallel. Second, the significant bottleneck of this

minimization problem demanded resolution before other approaches to optimization

and parallelization could be considered.

The problem of the globally scoped variables was solved first. To properly adapt

the generated C code, a method was devised to maintain the structure of the program

as developed to run on a CPU. To maintain the illusion of global scope, per-thread,

the entirety of generated code, approximately 1,500 lines, was encapsulated into a

class-like struct. Encasing our C code into a struct allowed all required variables

to be treated like private members which could be freely and safely accessed by the

component functions which performed the minimization solving. The struct functions

themselves were labeled as __device__ functions and could then be called freely by

individual threads from the “Update Membership” kernel.

As can be seen in Figure 6.1, the modifed kernel was called on n blocks, each

using one thread. Although this configuration seems naive, attempts to call this

sequential code with multiple threads per block, in multiples of 32 to take advantage

of warp efficiency, saw much slower results than the one-thread-per-block approach.

Furthermore, very few threads-per-block could be instantiated due to a lack of register

space. This is likely due to the size of the solver struct being loaded to run on the

GPU. By using this structure, our solver could make the best use of GPU resources

to perform the embarrassingly parallel computations promised by Equation (2.3) in
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the most straightforward manner possible.

6.2.3 Further Optimization

After converting the primary bottleneck of the minimization solver into GPU code,

many other opportunities for optimization became evident. In addition to the afore-

mentioned “Update Membership” function, there existed three other computationally

intensive functions which comprised the core functionality of this algorithm. Those

functions are build h matrix, find centroids, update S. Generally, these func-

tions involved some kind of matrix manipulation with a sum reduction and could be

easily mapped one matrix cell to a block with multiple threads doing reduction and

simple addition work in parallel. Shared memory was used for each of these func-

tions as a buffer to hold summed data, pre-reduction, for fast access and simplicity

of implementation.

Through rewriting these functions in CUDA to run on the GPU, and adding

supplemental functions to store and calculate auxiliary scalars between iterations,

the entirety of this program (within a single iteration) was successfully configured

to run on the GPU. We successfully minimized overhead with this full conversion by

initializing all derived matrices, U,V,H, and S in global memory on the GPU. Each of

these matrices can be maintained on the GPUs main memory between the core kernel

calls which perform the computations of our clustering algorithm. Although highly

efficient, this memory configuration caused problems in terms of space efficiency which

are addressed by the multi-GPU implementation of this algorithm.

The only matrix which could not be initialized on the GPU was the original

data matrix X, because its contents are read from the disk. This however does

not significantly impact overall run time because the overhead of transferring this

data to the GPU occurs only once before clustering begins. After this, the only

continuous data transfer occurs at the end of each iteration when our centroids, V,

are transferred back down to the CPU to check for convergence. The overhead of

this transfer is very minimal however, as the number of centroids is generally going
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Figure 6.1: A diagram showing a basic breakdown of the implementation and oper-
ation of the core solver implemented as a CUDA struct from modified C
code. This diagram shows the mapping of the solver to each block and
indicates how the problem is decomposed, where each line in our mem-
bership matrix is solved in parallel on the GPU. The decision to call this
solver kernel on one thread per block came from slowdown observed with
more than one thread per block.



116

to be relatively small to provide meaningful clustering. The final overhead from data

movement between host and device comes from the output of the membership matrix

U. Like our data matrix, this matrix transmits between GPU to CPU only one time

after all the iterations of this clustering algorithm have concluded. Because of this,

the overhead of this retrieval can be considered negligible.

6.2.4 Multi-GPU

The need for a multi-GPU implementation of this algorithm was driven by the mem-

ory limitations of our single-GPU implementation. calculate centroids requires a

substantial sum reduction resulting from a matrix multiplication between the data

matrix and an auxiliary matrix which holds a regulating scalar. After multiplication,

but before reduction, result vectors are stored in shared memory assigned to a block.

This requires our shared buffer to hold n spaces of size 8 bytes for the double precision

values. CUDA provides a max of 48 KB per block. Accordingly, this only allows for

approximately 6,000 double precision values to be processed by this function.At one

point in this algorithm, this function handles every data value we intend to cluster.

With the space limitations, this indicates that we cannot cluster more than 6,000

values with this program.

Although there are certainly many approaches and solutions to this problem,

we chose to leverage data decomposition and split our calculations across multiple

GPUs. By randomly sampling data points and distributing them across GPUs we can

accurately cluster up to 48,000 data points in the same amount of time it would take

for 6000. Although the memory limitation remains, per-gpu, it becomes significantly

less impactful with each GPU we add. This horizontal scaling is not significantly

impacted by overhead due to the design of our per-gpu algorithm, where all substantial

matrices are instantiated and maintained on each GPU’s main memory. Data transfer

occurs minimally in between interactions to check for convergence and at the end to

transfer back results for imputation.
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6.2.5 Data Imputation

The data imputation algorithm was implemented in Python as a collection of methods

which performed basic pre-processing, called the above detailed GPU clustering algo-

rithm, removed data for imputation and performed the imputation algorithm specified

in Equation (2.5) using the centroids and returned membership matrix retrieved from

the GPU. The implemented imputation method checked its accuracy using a simple

RMSE algorithm finding the difference between the actual values removed from the

dataset earlier against those which were imputed.
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7 Validation and Discussion

7.1 Clustering Experiments

To evaluate the improved RSFKM algorithm on a single GPU and multiple GPUs,

timings were collected on repeated clustering of a set of environmental sensor data

downloaded from the Nevada Research Data Center’s website [77]. Preliminary ex-

periments showed that changing the number of features on our data and adjusting

the number of centroids did very little to influence overall runtimes for either CPU

or GPU implementations of this algorithm. So, for all the following experiments, the

number of centroids used is fixed at 15 and the number of features is fixed at 11.

Table 7.1: An excerpt of environmental data used for bench marking the effectiveness
of the improved RSFKM clustering algorithm. The values depicted here
are humidity and temperature measurements collected from many sites
across Nevada.

Timestamp Temp. (C) Temp. (C) Temp. (C) Temp. (C) Humid. (%)
1/25/2018 1:19 -5.678 -6.482 -6.499 -6.455 0.491
1/25/2018 1:20 -5.654 -6.474 -6.499 -6.452 0.492
1/25/2018 1:21 -5.697 -6.462 -6.479 -6.452 0.494
1/25/2018 1:22 -5.774 -6.481 -6.499 -6.449 0.494
1/25/2018 1:23 -5.788 -6.491 -6.515 -6.472 0.494
1/25/2018 1:24 -5.793 -6.503 -6.519 -6.478 0.492
1/25/2018 1:25 -5.732 -6.515 -6.538 -6.492 0.494
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7.1.1 Experimental Setup

The following experiments were performed on a remote server containing 24 2.00 Ghz

Intel Xeon CPUs connected over two PCIe buses to 8 GeForce GTX 1080 GPUs. The

GTX 1080s are grouped 4 cards to a single bus. Each GPU has an available memory

of 8GB with 6KB of shared memory available per block. Each GPU implements

the Pascal architecture which provides support for advanced processing features like

unified memory.

As an initial proof of concept, the clustered data set was a selection of 550,000

data points of time series data organized into 50,000 vectors with 11 features. Each

vector represented a per-minute log of autonomously collected meteorological data

with each feature representing a measurement collected at that minute from a distinct

sensor. Table 7.1 shows an excerpt of the data set used.

7.1.2 Data Imputation

Although not explored in great detail for this paper due to constraints of space, this

algorithm performed well in providing reasonably accurate data imputation. With

RMSE values as low as 0.18 the GPU implementation of this algorithm provided

accurate clustering on par with the CPU implementation. Since the applications and

datasets were very different between this paper and those tested by Xu, et al. [110],

a more detailed imputation experiment will be required and explored in future work.

7.1.3 Timings

Fuzzy K Means clustering, is a variable length iterative algorithm that does not

converge uniformly at a set number of iterations. Between runs where the same

data set is organized into the same number of clusters, convergence can occur in

half as many iterations as expected. Accordingly, this makes collecting timings of

full program runs problematic, because times can vary wildly. To solve this problem

the runtimes collected and manipulated in the following sections were calculated per-

iteration by dividing the overall runtime of this algorithm by the number of iterations
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Figure 7.1: A line plot showing the runtimes of the RSFKM algorithm running se-
quentially on a CPU and in parallel on one, two, four and eight GPUs.
The runtimes are per iteration of the clustering algorithm and averaged
over ten trials. The dotted line indicates a trendline which shows the pro-
jected runtimes of a single GPU experiment. The equation next to the
trendline was used to derive runtime values for efficiency calculations.

taken. Using this timing scheme significantly reduced outliers in our timing data and

produced meaningful results.

The raw per-iteration timings, shown in Figure 7.1, show a comparison between

the sequential implementation of RSFKM and our modified GPU implementation, on

one, two, four and eight GPUs. The sequential runtimes, indicated by the grey line,

indicate a clear linear curve which is to be expected by the O(NVF) complexity of

our algorithm. As V, the number of centroids, and F, the number of features in the

data vectors, are fixed at relatively small sizes compared to N, the algorithm becomes

linear as N becomes sufficiently large.

At a glance its evident that GPU implementations were very successful in reduc-

ing the runtimes compared to the sequential algorithm. On this logarithmically scaled
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Figure 7.2: A line plot showing the per-iteration speedup factor of singular and multi-
GPU experiments run with the RSFKM algorithm. For larger numbers of
clustered values, the addition of more GPUs produces near equivalently
scaled speedup factors.

graph, per-iteration runtimes of GPU implementations remain relatively level as data

inputs scale from 90 vectors to approx. 40,000, ending with runtimes of 128ms up

from 6ms. By comparison, across the same spread of processed data points the CPU

implementation grows significantly in runtimes, from 128ms to almost 32000ms. The

difference between these runtimes is so severe that when rendered with the CPU run-

times, without a logarithmic scaling, the GPU runtimes cannot be seen as anything

other than a multicolored horizontal line on the bottom of the graph.

The significance of this difference in runtimes is further reinforced by Figure 7.2

which shows the speedup factor of various GPU timings when compared with the

sequential timings. The speedup factor, S, was calculated with the following equation:

S = ts/tp, with ts and tp representing sequential and GPU runtimes respectively.

Overall, the speedup was very promising with a low of around 10x speedup for 8
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Figure 7.3: A line plot showing per-iteration throughput of the RSFKM algorithm as
run on CPU, one, two, four and eight GPUs. Throughput for this paper
was expressed in terms of vectors/ms and was calculated as thp = n/ms
where n is the number of vectors input for clustering. GPU throughput
handily outstrips sequential throughput by a wide amount, even when
processing a small number of values.

GPUs (with a small number of values) and a high of over 180x speedup for 8 GPUs.

Speedup was shown to be more significant as more GPUs were added and additional

data points could be processed. This increase in speedup is certainly consistent with

expectations because there is very little cost to calculations performed with two GPUs,

compared to one due to a lack of communication overhead. Broadly this indicates

that when the fundamental overhead of CPU/GPU communication is overcome by

data processing then speedup scales with the number of GPUs utilized.

Analysis of throughput and efficiency reinforce the conclusions made in reference

to timings and speedup. In Figure 7.3, its shown that overall throughput increases

with more GPUs but only for sufficiently large amounts of data. For smaller amounts

of clustered data we see a general dropoff of throughput when compared with fewer
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Figure 7.4: A line plot showing the relative efficiency of multi gpu implementations
vs. single GPU implementation. Calculated as E = tgpu/(tgpuN ∗N)∗100,
where N is the number of GPUs being used, this graph indicates how
much meaningful work each GPU is performing.

GPU configurations, again likely due to increased overhead that comes with the ad-

dition of multiple GPUs.

Similarly, Figure 7.4 most clearly shows that at lower values very little work is

being done on each GPU. As more GPUs are added the lack of work being done is

exacerbated dramatically. For 360 values, 2 GPUs get near 40% efficiency with below

10% 8 GPUs. This difference in efficiency drops off dramatically however as more

data is processed by each GPU. We do see that overall efficiency still drops off with

the addition of more GPUs despite increased throughput and speedup. Again, this

is likely due to increased competition for bus access which is harder to offset as more

GPUs are added.

Within the GPU runtimes themselves some characteristics of these lines should

be noted. First, there is a trendline on the single GPU runtimes. As explained

in Chapter 6, space limitations prevented successful operation of this program on
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one GPU with more than 6000 initial values. A trendline enables us to visualize

and estimate runtimes going out towards the max processed 40,000 values. This

trendline and its derived data will help provide efficiency data for our multi-GPU

implementations.

It should be noted that with the two, four and eight GPU experiments in Fig-

ure 7.1 a bow-like curvature can be seen. This is almost certainly due to the overhead

of transferred data between our multiple GPUs and the CPU. Since only two PCIe

buses connect GPUs and CPUs the overhead of data transfer becomes more pro-

nounced as GPUs are added and each GPU must compete to transfer data. And,

even though there is relatively little data transferred between the GPU and CPU

with this algorithm, there is certainly enough, especially with the per iteration trans-

fer of our centroids, that slowdowns occur when there is not a sufficient amount of

data for each GPU to process. The downward curve occurs as a result of more data

being computed on each GPU and causing less frequent calls back to the CPU to

check for convergence. This in turn, reduces simultaneous demand for the limited

bus access.

7.2 QA Discussion

Lacking a formal user study, the validation of the proposed QA software is broken

into a discussion about how QA has impacted the NRDC and the potential which

exists for the QA application to affect the greater scientific community.

7.2.1 NRDC Impact

The successful implementation of the QA application changes the face of quality as-

surance in the field significantly for existing projects in the NRDC. The inclusion of

a dedicated application impacts the workflow of sensor technicians and researchers

by substantially augmenting current data management capabilities. Data stewards

performing QA on sensor networks benefit from this application in several ways over

traditional methods: uniform data entry, centralized QA data storage with synchro-
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nization and a usable interface facilitating the utility of the above benefits.

The problem of uniform an accurate data entry naturally occurs in any system

reliant upon human interaction as the primary interface between a means of measure-

ment and the means of logging. This problem is further exacerbated when technicians

are deployed to remote areas, often equipped with only a notebook. It can be very

hard to meaningfully restrict metadata and service logging, as different people are

going to include different data that they find relevant to a QA expedition. The use

of form fields significantly normalizes data input by restricting users to only give in-

formation deemed necessary and sufficient to detail the quality assurance practices

performed. An example of these forms can be seen in Figure 4.7. In the case of

intrinsically non-structured data, the option to attach documents is provided. This

enables a diversity of data input methods.

Previously, QA-relevant metadata collected and maintained by technicians was

held in a decentralized heterogeneous collection of notebooks, spreadsheets and pro-

gram comments. This proved problematic internally, as audits and reviews of quality

assurance processes could not be effectively performed in a timely manner. Exter-

nally, this lack of centralized provenance-tracking metadata damages the integrity

of collected data, as logs are not comprehensively tied to data streams. This limits

the re-usability of collected data. With a central repository and dedicated backend

infrastructure, the QA App significantly improves the maintenance of QA and meta-

data logs by providing a centralized, organized database to store this information

and bind it to existing data streams. With the frontend mobile component auto-

matically syncing with remote servers, users need not worry about any logistics of

storing and formatting QA data for future use. They now only need to perform their

normal maintenance and installation practices and fill out the form fields detailing

their work.
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7.2.2 Broader Impact

It has been well documented that an issue of paramount importance to the greater

scientific community is the need for collected data to be accessible, findable, inter-

operable and reusable. [55, 107, 108]. As scientific research has become increasingly

collaborative with the growth of internet technologies, the free and easy distribution of

data across the internet has not kept pace [12, 81, 100]. While there are many factors

that contribute to this data need/accessibility gap, one prominent problem is a lack

of identifying metadata accompanying datasets [81, 108]. That is the goal of this

application and we believe that a need still exists in the wider scientific community

for the easy creation and upload of identifying metadata, so a survey was created to

demonstrate this.

To provide more significant validation and show the broader applicability of this

software to the national scientific community a survey was conceived and solicited to

Environmental Scientists. The survey was comprised of several questions that sought

to evaluate how findable, accessible, interoperable, and reusable respondents datasets

were. Most questions were bound by a Likert scale of 1 to 5.

The pool of potential respondents came from two working groups called Clus-

ters – for the collaborative organization Environmental Science Information Partners

(ESIP). Specifically, members of the Envirosensing Cluster and the Documentation

Cluster were emailed with the survey. After hosting the survey for one week 12

responses were acquired.

Using the responses collected from these domain experts we made some prelimi-

nary conclusions about how data scientists are managing their metadata. Primarily,

we observed that there still exists a strong need for software like the Quality Assurance

app to automate and speedup up metadata documentation processes. Secondarily,

we observed that although metadata was being digitized, it was not being digitized

effectively.

Concerning the first conclusion, a few questions demonstrated the current gap
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in technology that limits effective metadata collection. When asked how managers

document their metadata, the majority of respondents replied with either Field Note-

book/ Pen and Paper and Comments on Data Logger Scripts. When we juxtapose

these responses against a later question that asks people to estimate the length of time

it takes to get metadata into a machine-readable format, a picture emerges showing

that scientists are collecting and digitizing this data but not in the most effective way.

Upwards of six respondents indicated that it takes them hours and up to weeks to

digitize their metadata.

When scientists are extensively using program comments and field journals to

collect their data, they are not leveraging the advantages of mobile technology has

to offer in the internet age. By comparison, the Quality Assurance app enables the

fast and easy input of formatted data which is digital from the start and immediately

uploaded to a central database. This application could save many data scientists and

technicians hundreds of hours over the course of a year which are now wasted on basic

data input.

With this survey and the extensive background works that clearly demonstrate

a need to this sort of automated workflow, we have demonstrated that a strong need

still exists for software like the QA app presented in this thesis.

7.3 QC Case Study & Discussion

As a part of a case study performed to showcase the proof of concept NRAQC proto-

type, seven datastreams logging air temperature data were chosen from dozens present

within the Rockland Summit site of the Walker Basin Hydroclimate network. It must

be noted that the NRAQC prototype can in fact operate on any of the hundreds of

datastreams housed inside the greater NRDC system, but these seven were chosen to

shorten the runtimes of batch processing required for this case study.

For each of the seven chosen datastreams, 141,951 measurements were cycled

through the autonomous tests conducted by NRAQC, 5 times with a manual clearing

of the database in between iterations. 993,657 float measurements were batch pro-
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cessed in one iteration, with a total of 4,968,285 processed across all five iterations.

As each measurement was run through three tests, the total number of tests run per

iteration was 2,980,971 with a total of 14,904,855 across all iterations. The average

runtime per iteration was 134.24 seconds for this batch processing.

Although not nearly as efficient as possible, the running and re-running of these

tests demonstrates the consistency of this system. By running these same measure-

ments through bounds checking tests, repeat value tests, and missing value tests

the same points were appropriately flagged each time. In each iteration of testing

the backlogged data points, queried from and reinserted directly into the NRDC

database, 1946 repeat value flags were logged, 365 out-of-bounds flags were logged,

and 131 missing value flags were logged. The QC flags were placed on each data

value indicating the test which flagged it. For missing values, empty measurements

were created and inserted into the primary data table providing well defined spaces

for later data imputation.

These tests specified above are described in Section 2.5.2 and were drawn from

the work of Campbell, et al. [21]. The parameters of each test were defined through

the user interface and stored in an XML configuration file detailed in Chapter 5

and were adjustable without modifying any code in the classes or microservice which

performed the tests.

7.3.1 Discussion

In many environmental sensing groups, the notion of Quality Control is not unfamiliar

and the practice of using software to handle data sanitation is very common. However,

groups tend to use third-party software such as GCE Toolbox alongside the MATLAB

Computing Environment instead of creating their own. These software solutions offer

a wide array of tools to aid scientists with all sorts of management and control over

their datastreams. Although these external software solutions provide significant

functionality to suit the purposes of these environmental groups, they come with

their own set of problems. Software such as GCE Toolbox tends to be rather rigid
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regarding usability. In order to use GCE Toolbox to its maximum potential, the user

would be required to have a significant amount of technical knowledge. Additionally,

software such as GCE Toolbox is intended to work on a very specialized computing

environment, and therefore resists any form of system replication across networked

workstations. Finally, most software packages like GCE Toolbox require a sizable fee

in order to utilize their services. From a system-level view, this would create far too

large of a barrier when it comes to accessibility, procurement, and future maintenance

of the software.

The development of a system-level quality control web application addresses each

of these problems. By shifting towards the development of a web application, this

allows the members of the environmental group to access the services of this system

from anywhere with an internet connection. This widens accessibility to this system

and it eliminates the need for installation of external software packages on individual

terminals.

We developed this software to be completely open sourced and free to the public.

By having it open sourced, this handles the procurement problem as any environmen-

tal group may simply download the project through a public repository. Additionally,

the NRAQC system focuses primarily on the non-technical usability of a quality con-

trol system. It allows users to adjust the configuration on virtually all aspects of their

datastream through the dashboard without significant need for technical intervention.

This intuitive design addresses the problem of future maintenance, as any scientist,

technician, or data steward may operate this system without a technical background

in computer science or software engineering.

As the fields of sciences, especially environmental sciences, continue to grow, the

need for more complex software solutions will increase. The software that engineers

build must be able to adapt for larger scales and address the needs of scientists

without burdening them with impractical constraints. The NRAQC system provides

the means to address the needs of growing environmental sensing projects with its

reconfiguration of traditional data management practices.
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This software’s primary contribution and innovation comes from its principal

design characteristic to be deployed as a core step in a deliberate automated data

management workflow. Many common desktop QC solutions, like the GCE Toolbox

and Excel, imply a post-ingestion quality control process on data. That is, qual-

ity control handled as an afterthought; a step which necessarily precedes analytics

to ensure quality results. By decoupling the quality control process from the data

collection/ingestion process, crucial quality control metadata is often maintained on

local machines or left to languish on closed networks. Data sources, even those from

prominent scientific institutions like USGS or CUASHI, will provide data sets with-

out any granular metadata informing data users about what quality control processes

each measurement has been verified against [99, 104].

By injecting the Quality Control process automatically into a data-management

workflow, metadata is tied fundamentally to its associated data, because they are

logged nearly at the same time. The tight coupling of metadata and data forces

new projects to accommodate granular metadata in their designs because it’s being

collected in volumes and velocities rivaling that of the data collected. This, in turn,

leads to a greater accessibility of quality control metadata because it’s intrinsically

tied to the data being accessed and used.

This structure aids domain scientists, data users, and data managers in multiple

ways. It gives data managers a clear workflow for managing and distributing quality

control metadata. It makes it much easier for data users to get a transparent, quality

data product with a easily traced provenance showing its pedigree and reassuring

them of the validity of their calculations. Finally, domain scientists – who often fund

and benefit from from large scale, autonomous data collection projects – are given

a infrastructure which enables them to provide clear, understandable data to their

colleagues. This, in turn, promotes better reproducibility and independent validation

of published research.
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7.4 Validation of the Keystone Model

The Keystone Model which was proposed in Chapter 3, suggests that an integrated

approach to data quality management would be preferable to current ad hoc solutions

undertaken by many scientists using various different software solutions. The three

software solutions constructed to demonstrate use of this model include several key

interactions which also validate its effectiveness.

7.4.1 QA and QC

By having a Quality Assurance application which allows for the immediate input of

machine readable-metadata, the ways in which other applications can benefit from this

are numerous. Specifically, the NRAQC application benefited from the centralized

metadata uploaded by the Quality Assurance application in multiple ways.

First, the metadata uploaded to the NRDC database provided a natural means

to organize data streams for configuration. By loading our metadata directly into

an organizational hierarchy starting with a Site Network and ending with a single

Deployment, users were given a clear and effective means to navigate to a specific

data stream they wanted to test. Furthermore, by having this integrated connection,

changes made by the Quality Assurance app are immediately reflected in the NRAQC

application. This means that seconds after deploying a new instrument and setting

up a new stream of measurements, Quality Control processes can be affixed to them

with very minimal configuration.

Although novel, the hierarchical navigation also demonstrates another benefit of

this shared contextual metadata with the lists to the right of our navigation options.

These lists hold all the data managed by the QA application in a read only format,

and can help guide data managers towards streams and deployments which have

undergone insufficient QA or perhaps a lot of QA, in the form of service. This data can

provide users about problem sensors and deployments which require a greater degree

of quality control and can be visualized in many ways. The current implementation
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of this interaction is not especially practical but it does demonstrate the integration

between both applications.

7.4.2 QC and Data Repair

Although no formal integration was done connecting the two programs created to

demonstrate QC and Data Repair functionalities, NRAQC and iRSFKM, respectively,

the benefit of such a connection is obvious. One of the key tests any quality control

software checks for is missing values. The identification of these gaps are crucial to

begin the process of repairing the data so a more complete data set can be used for

modeling.

Generally this process of data repair can be time consuming and requires sig-

nificant technical knowledge to implement. If, however this repair happens, with a

verifiably accurate algorithm, immediately or shortly after gaps are discovered, while

leaving the original data source in check, this obviously reduces the time taken by

scientists between data collection and analysis. Of course, since it does not modify

the raw data, scientists are free to do their own imputation however for many, this

can provide a quick means to do preliminary analysis on a complete data product.
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8 Conclusions and Future Work

8.1 Conclusions

In this thesis, we took a deep dive into the technical and domain specific background

required to understand its topic, content and focus. As part of this background review

of the literature, we highlighted multiple problems facing data management in the

earth and environmental sciences. Most notably, problems involving contemporary

data Quality Assurance and Quality Control practices. Additionally, we identified key

problems with a lack of accurate and fast imputation methods which are configured

to work with time-series environmental science data.

To address these issues and promote an integrated, synergistic approach to data

management we proposed the Keystone Model of data management. To demonstrate

the promise of this model and provide individual solutions to the above identified

problems we developed three programs: a mobile Quality Assurance application, an

Autonomous Quality Control Application and an Improved Robust and Sparse Fuzzy

K-Means algorithm for data imputation.

For our Quality Assurance and Quality Control applications we detailed nar-

ratives of work spent on specification, design, and implementation. For the fuzzy

K-means imputation algorithm we detailed the iterative process of developing an

algorithm from the source of an academic paper and adapting it to run on 8 GPUS.

Individually, we validated these solutions via various methods. First, we validated

the Quality Assurance app with the use of a survey that explored the need for such

an application in the earth and environmental sciences. It was determined that a

strong need still existed for such an application as the one we propose in this thesis.
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Furthermore, in a discussion on this topic we asserted that our application fulfills well

the requirements expected of such an application by the community.

Next, we assessed the implementation of our Quality Control application by exe-

cuting a case study where numerous data streams were checked using the autonomous

testing modules quintessential to this software. Over the course of five iterations,

4,968,285 measurements were consistently checked against user defined quality met-

rics. Each time, 1,946 repeat values, 365 out-of-range values, and 131 missing values

were identified. This case study proved the consistent execution of the system in

fulfilling the purposes and needs outlined by software specifications. Furthermore we

outlined the documented need for software of this variety in the earth sciences.

We demonstrated the successful implementation of our iRSFKM algorithm with

a comparative analysis of runtimes, throughput, efficiency and speedup between a

single CPU implementation, one, two, four, and eight GPU implementations. This

experiment — and subsequent comparative analysis — proved the effectiveness of this

parallelization by showing that a multi-GPU implementation is significantly faster

than sequential implementations with 185 times speedup over eight GPUs. Experi-

ments also indicated greater than 300 times increase in throughput with eight GPUs

and 95% efficiency when using two GPUs compared to one.

Finally, the Keystone Model proposed in this thesis was validated with a discus-

sion of the symbiotic relationships our prototype applications share. Additionally,

it was argued with examples, that this model predicts potential modifications and

improvements to existing data management workflows.

8.2 Future Work

Being a very large project comprised of multiple sub-applications, Keystone intro-

duces significant room for expansion and future work.
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8.2.1 Additional Data Imputation Algorithms

In order to prove the value of the Keystone Model v is-à-vis the interactions between

quality control and data repair, work could be done integrating existing iRSFKM code

into the quality control pipeline as an optional last step. Additionally, many other

existing data imputation algorithms can be integrated into this pipeline in the place

of iRSFKM and compared to evaluate their relative effectiveness. The integration of

these works can provide significant value to environmental science researchers who

require a rapidly prepared data product to reduce they spend on pre-processing and

increase the time spent doing science.

8.2.2 Ontology-Based Microservice & Database Generation

Since both the backend and front end of the NRDC Quality Assurance application

has a very constrained structure based around the hierarchy of metadata being stored

in our database, there exists significant potential to generate both a backend and

fronted based only on a specification of names, fields and relations between classes

of metadata. All of this information can be encoded into a single ontology [44], and

used a source file to generate custom QA and QC applications which work for specific

research projects. If a researcher needs to keep track of their data in a hierarchical

fashion — similar to how we manage metadata at the NRDC — software for the

end-to-end management of metadata can be generated for easy deployment.

8.2.3 Modifications to the NRDC Schema

Even though the NRAQC software platform is capable of generating very granular

information associated with flags, the current NRDC database is not capable of stor-

ing it. Information like the date and time of testing, the tests undertaken, and user

annotations are currently unsupported by the NRDC database. These columns will

need to be added to our extant NRDC metadata tables.

Furthermore, as more than one flag can be applied to one measurement, the re-

lations between flag and measurements tables will need to be modified. Currently,
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there is a many-to-one relationship between the measurements and flag tables. This

will need to be modified to a logical many-to-many relationship between tables. Prac-

tically, this means a dedicated join table will be required to avoid troubles with inner

joins and redundant data.

8.2.4 Source Agnostic Data Streaming with Kafka

Congruent to the above detailed future work there exists an opportunity to fundamen-

tally modify the NRDC’s current data ingestion workflows to be more sympathetic to

integrated, real-time data management processes. Since the inception of the NRDC

nearly 10 years ago, there have been significant developments in data streaming tech-

nology. Most notably are the introduction of cloud-based streaming management

platforms like Kafka and Nifi.

Kafka, a software developed by Apache, introduces a streaming data paradigm

based on a market abstraction of “producers” and “consumers” [4]. With this plat-

form, producers put data into a stream with labels that particular consumers look

for. For example, in the case of the NRDC, there could be a single producer that

ingests data from a SensorML file and puts it into the Kafka data stream labeled as

“Raw Data.” This data could be simultaneously consumed by a service which stores

it in a database, a service which uploads it to chords for real time visualization and

a service which performs real-time quality control checks on the incoming data. Af-

ter checking this raw data, the quality control service could then become a producer

itself and pass quality controlled data back into the system to be used for rapid data

imputation or analytics. By leveraging this software platform, the Keystone Model

of data management can flow much more effectively, from end-to-end.
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Bintley, Lindy Blackburn, Wilfred Boland, Katherine L. Bouman, Geoffrey
C. Bower, Michael Bremer, Christiaan D. Brinkerink, Roger Brissenden, Silke
Britzen, Avery E. Broderick, Dominique Broguiere, Thomas Bronzwaer, Do-
Young Byun, John E. Carlstrom, Andrew Chael, Chi-kwan Chan, Shami Chat-
terjee, Koushik Chatterjee, Ming-Tang Chen, Yongjun Chen, Ilje Cho, Pierre
Christian, John E. Conway, James M. Cordes, Geoffrey B. Crew, Yuzhu Cui,
Jordy Davelaar, Mariafelicia De Laurentis, Roger Deane, Jessica Dempsey,
Gregory Desvignes, Jason Dexter, Sheperd S. Doeleman, Ralph P. Eatough,
Heino Falcke, Vincent L. Fish, Ed Fomalont, Raquel Fraga-Encinas, William
T. Freeman, Per Friberg, Christian M. Fromm, Jos L. Gómez, Peter Galison,
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