
Ground Truth Verification Tool (GTVT) for Video Surveillance Systems

Amol Ambardekar, Mircea Nicolescu, and Sergiu Dascalu
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, USA

{ambardek, mircea, dascalus}@cse.unr.edu

Abstract— As cameras and storage devices have become
cheaper, the number of video surveillance systems has also
increased. Video surveillance was (and mostly is) done by
human operators on a need-to-know basis. The advent of new
algorithms from the computer vision community, and
increased computational power offered by new CPUs have
shown a strong possibility of automating this task. Different
approaches have been proposed by computer scientists to solve
the difficult problem of content recognition from video data.
They use many different videos to prove their usefulness and
accuracy. A careful comparison and evaluation needs to be
done to find the most suitable method under given conditions.
To compare the results given by video surveillance
applications, the ground truth needs to be established. In the
case of computer vision, the ground truth needs to be provided
by humans, making it one of the most time-consuming tasks in
the evaluation process. This paper presents a tool (GTVT) that
allows the user to establish the ground truth for a given video.
GTVT presents a user-friendly interface to perform the
cumbersome task of ground truth establishment and
verification.

Keywords- computer vision, video surveillance, ground truth
verification, human computer interaction

I. INTRODUCTION
The last decade saw a great increase in the overall

processing power, amount of memory and storage capacity
of computers. The 90’s also saw a great decrease in digital
camera prices. All these advances made many computer
vision tasks possible for real-world applications. Image
processing is generally considered a low-level analysis tool
for computer vision techniques, although it requires
substantial computation and memory resources. Cheaper
digital camera prices and cheap data storage devices made
video surveillance more affordable. We can see video
surveillance systems installed in supermarkets, banks,
airports, casinos and on traffic lights. Most of the video
recorded by all these cameras is watched online by a person
to find abnormalities, or just recorded for future use.
Advances in computer vision techniques have showed the
promise of changing the current situation. Video surveillance
applications, developed using computer vision techniques,
are interested in the real-time observation of humans or
vehicles in some environment (indoor, outdoor, or aerial),
leading to a description of the activities of the objects within
the environment. A complete video surveillance system

typically consists of foreground segmentation, object
detection, object tracking, human or object analysis, and
activity analysis. There are different approaches suggested in
the literature for video surveillance [1-5].

Different video surveillance methods have presented a
dilemma for an end user or developer: which is the best
technique to employ in a given situation? New techniques
generally try to alleviate the errors made by previous ones
and present their work on a set of video sequences. The
computer vision community lacks a standard database of
videos that can be used for the evaluation of these
approaches. Such databases are common in the machine
learning and object recognition communities [6]. Even if one
finds a set of videos relevant for a particular scenario, the
ground truth is not readily available. The reason behind this
is the daunting amount of time required to generate ground
truth for a particular set of videos. The lack of
standardization among different ground truth authoring
techniques is another cause. The ground truth needs to be
established by humans, as all these computer vision
techniques are ultimately trying to imitate human vision. A
typical video sequence of five minutes captured at 30 fps has
a total of 9000 frames. Therefore, a tool that can help in this
process is an essential requirement. The tool also needs to
standardize the process of ground truth creation and help the
user to finish the task in a reasonable amount of time.

A number of semi-automatic tools are available to speed
up the process of ground truth generation. Video
Performance Evaluation Resource (ViPER), developed by
Doermann et al. provides a software interface that could be
used to visualize video analysis results and metrics for
evaluation [7, 8, 9]. The framework compares the output of
the algorithm with the ground truth and measures the
differences according to objective metrics. They apply this
methodology to recently proposed segmentation algorithms
and describe their performance. These methods were
evaluated in order to assess how well they can detect moving
regions in an outdoor scene in fixed-camera situations [8].
The interface was developed in Java and is publicly available
for download. Jaynes et al. [10] developed an Open
Development Environment for Evaluation of Video
Surveillance Systems (ODViS). The system is different from
ViPER in that it offers an application programming interface
(API) and also supports the integration of new surveillance
modules into the system. Once integrated, ODViS provides a

2009 Second International Conferences on Advances in Computer-Human Interactions

978-0-7695-3529-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ACHI.2009.17

354

number of software functions and tools to visualize the
behavior of the video surveillance system.

Even though both systems give enough functionality,
they are not especially user-friendly. There is practically no
information available about the usability concerns of either
system. Our proposed approach is an effort towards
developing a user-friendly tool that can reduce the overall
efforts in establishing the ground truth for videos. GTVT
concentrates on object detection and classification, rather
than segmentation. The user initially creates the information
file by processing a video sequence using one of the many
surveillance applications. The information file contains the
information (the class of the object) about the objects
detected in each frame. The user starts GTVT and opens the
video sequence file and the information file. The user also
selects the number of types (classes) of the objects that can
appear in the video. GTVT then presents the user with the
detected objects (bounding boxes) in each frame and their
respective classes found by the video surveillance
application (given classes). Then, it allows the user to select
the bounding box and choose the actual class (ground truth)
of the object. If the same object is going to appear in the
subsequent frames, the user can use GTVT’s tracking
algorithm to automatically generate the ground truth. This
information is aggregated to calculate the accuracy of the
video surveillance system (i.e., object
recognition/categorization algorithm) on a particular video
sequence. It also creates the ground truth video and the
information file for future reference.

The remainder of the paper is organized as follows:
Sections 2 and 3 present requirement specifications and use
case modeling respectively, describing software engineering
techniques used in developing GTVT. Section 4 presents the
results. Section 5 gives possible directions of future
developments. Finally, Section 6 concludes by discussing
advantages and limitations of GTVT.

II. REQUIREMENT SPECIFICATIONS
Requirements specifications detail tasks that determine

the needs or conditions to meet for a new product or revision
of a previously developed product, taking into account the
possibly conflicting requirements of the various scenarios.
Requirements specification is critical to the success of a
project. Throughout the tool development process we have
followed a human-computer interaction paradigm so that the
final product is user-friendly. The rest of this section
explains user requirements, system requirements, functional
and non-functional requirements.

A. System and User Requirements
This application is designed for creating ground truth

video and to analyze the performance of different video
surveillance algorithms. It is recommended that the user have
some background of computer vision. However, we do not
assume that the user has such background. System
requirements presume Windows XP operating system with
.Net framework 1.0 or higher installed.

B. Functional Requirements
In functional requirements, we consider what the

application is supposed to do at a certain point of time or
what action the application needs to take after user input.
These requirements directly address the user’s expectation
from the system. We have divided these requirement features
into three categories. Level 1 requirements include basic
features that must be included in the system. Level 2
requirements include features or functionality which will
make the system complete and Level 3 requirements are
extra and future functionality that can be included in future
versions of the application. Level 3 requirements are those
requirements without which the system can work, but if they
are included, the system will perform the desired tasks more
efficiently. Table I depicts the functional requirements we
considered during the GTVT design process.

C. Non-functional Requirements
Non-functional requirements are those not directly

related to application functionality or user experience. They
typically include constraints placed on the system such as
performance constraints, technology constraints, and
development constraints. Table II lists the non-functional
requirements for our software tool.

TABLE I. FUNCTIONAL REUIREMENTS

R01 [1] GTVT should be able to open video files.
R02 [1] GTVT should be able to open information file (text file) that

contains bounding box and classification information for
each frame.

R03 [1] GTVT should be able to play, pause video file.
R04 [1] GTVT should be able to save ground truth information file.
R05 [1] GTVT should be able to save ground truth video.
R06 [2] GTVT should allow user to configure classes that can appear

in the video.
R07 [2] GTVT should allow the user to select a particular bounding

box. When the user selects a particular bounding box, the
application should retrieve relevant classification the
information from information file. It then should allow the
user to choose if the classification was correct or wrong. If it
was wrong, it should allow user to enter the correct
classification.

R08 [2] GTVT should include a keyframe concept where only
keyframes are modified by the user and the rest of the work
is done by the in-built tracking algorithm (e.g. blob tracking
[11], Mean-Shift [12]).

R08 [3] GTVT should include support for different video file formats.
GTVT should also include support for different video
resolutions (currently 320X240 videos supported).

R10 [3] GTVT should include support for different user-defined
information file formats.

R11 [3] GTVT should include the concept of “project” such that
information file and video can be opened or saved together.
Therefore, project file format needs to be created.

TABLE II. NON-FUNCTIONAL REQUIREMNTS

T01 GTVT should be developed using Visual Studio .Net C# [13].
T02 GTVT needs .Net framework installed on the computer to run.
T03 GTVT should use consistent design language (e.g., same font).

355

III. USE CASE MODELING AND SCENARIOS

A. Use cases
A use case describes how the system should respond

under various conditions. It analyses how the system should
behave to a request from one of the users to deliver a specific
goal. This is primarily done in the form of scenarios that
describe sequences of interaction steps. Some of the
functional requirements can be established using use case
modeling. Use cases can serve as a basis for estimating,
scheduling, and validating development efforts.

Figure 1. Use case diagram of GTVT.

Figure 1 displays how the actor interacts with the GTVT
system as well as the larger scale functionality of the
backend. In order to describe the functionality, detailed use
case descriptions are presented as follows:
UC01 Start running. User opens GTVT from his/her set of
applications.
UC02 Open video file and information file. The precondition
for this use case is that the GTVT is running and the user
pressed the OPEN button. When the user presses the OPEN
button, user is presented with open dialog and is asked to
choose the video file and the information file. The
information file contains information about the bounding
boxes and class information found by the video surveillance
algorithm. Class information means the types of objects
classified by the video surveillance algorithm, e.g., a traffic
surveillance application may classify the detected objects as

cars, SUVs, trucks and buses. If opening both files is
successful, the information pane is updated accordingly.
UC03 Set number of classes. In this use case, the user sets
the number of classes that are possible in the given video.
For the above traffic surveillance example, it is four classes
(class 0 to 3). Class -1 is implicit and denotes any object that
was detected but was not classified as non-vehicles (e.g.
human or bike in the above example).
UC04 Show each frame and bounding boxes. The
precondition for this use case is that the video and
information files are opened successfully and the number of
classes is set. When the user plays the video or uses the
scrollbar to go to a particular frame number, GTVT extracts
the bounding box information from the information file for
the corresponding frame. The bounding boxes are drawn in
red.
UC05 Record the user input about the ground truth. The
precondition for this use case is that GTVT presents the user
with bounding boxes for each frame and the user selects one
of these bounding boxes. When the user selects a bounding
box (bounding box turns blue), the list box is populated with
the available number of classes and presses the START
TRACKING button.

TABLE III. RUNNING GROUND TRUTH VERIFICATION TOOL (GTVT)

Actors: Ground truth verification tool user
Pre Conditions:
1. The PC should be running with Windows XP or later.
2. .Net framework should be installed.
3. Ground truth verification tool (GTVT) should be installed.
Flow of Events:
1. User opens the GTVT application from his applications.
2. User selects the OPEN button, the open dialog appears.
3. User selects video file and information file.
4. User uses tools menu and selects preferences.
5. It presents a popup window that lets user enter the number of

classes.
6. When user changes the progress bar value, the corresponding

frame and its bounding box information from the information
(info.) file is retrieved.

7. All the bounding boxes are drawn and current frame number is
updated.

8. When user selects a bounding box, the user is presented with the
class that was given by video surveillance system.

9. User then keeps it or changes it to a new one if it is wrong and
presses START TRACKING button.

10. Then, user can continue to play the video until the user catches
problem with the tracking. GTVT tracking algorithm is
responsible for filling the ground truth values for the consecutive
appearances of the given object.

11. User can go back and forth while playing the video and change the
ground truth. If there is any change, changes are recorded in new
information file.

12. User repeats steps 4 to 11, until all the ground truth information is
entered.

13. When user presses SAVE button, the ground truth video file and
ground truth information file are saved.

14. When user presses the PERFORMANCE button, the application
calculates per class and overall accuracy and shows it in a new
pop-up window.

Post Conditions:
1. The ground truth video and information files are saved.
2. Per class and overall accuracy of the video surveillance system is

estimated.

Use cases

Open video file and
information file

Start running

Set number of classes

Show each frame and
bounding boxes

Record user input
about the ground truth

Generate the ground
truth information file

and the video

Calculate the accuracy of the
surveillance system, given the

ground truth

User

356

UC06 Generate the ground truth information file and the
video. The precondition for this use case is that the last use
case is performed for all the bounding boxes of all the frames
in the video. When the user presses the SAVE button, the
user is presented with a save dialog box and is asked to save
the ground truth video file and the ground truth information
file.
UC07 Calculate the accuracy of the surveillance system,
given the ground truth. The precondition for this use case is
that the user has finished entering the ground truth for all the
bounding boxes. When the user selects the
PERFORMANCE option from the menu, GTVT presents the
user with the confusion matrix and the overall percentage
accuracy.

B. Scenarios
Table III depicts the primary scenario presented by

GTVT. For the given scenario, we discuss pre conditions,
flow of events and post conditions.

IV. RESULTS
We have developed the GTVT aiming at facilitating the

ground truth generation for object classification in video
surveillance videos. It satisfies all the Level 1 and Level 2
requirements and satisfies the primary scenario. Level 3
requirements are extra features and do not undermine the
basic operation of GTVT.

We tested GTVT using the output generated after
processing a sample video using the traffic surveillance
system discussed in [14]. The traffic surveillance system can
classify vehicles in four classes. They are cars (class 0),
SUVs (class 1), trucks (class 2), and buses (class 3). The
traffic surveillance system sometimes detects objects (e.g.
bike) that can not be assigned to any of the four classes. Such
objects are classified as non-vehicles (class -1). To
understand the difficulty of the task even for the sample
video we tested, one can calculate the number of frames for
which the user needs to provide the ground truth. We chose a
simple traffic video that was shot at 30 fps and with the
duration of only 10 seconds. Even if there is only one object
that appears in each frame, the user needs to provide ground
truth for all 300 frames. GTVT automates this task and the
user needs to input the ground truth only when the object
appears the first time and when the tracking algorithm fails.
Therefore, for the sample video of 10 seconds, the user
entered the ground truth only twice. This greatly reduced the
amount of time required for generating the ground truth.
Automating the task also reduces the possibility of manual
error.

We used simple blob tracking similar to the method
discussed in [11] to track objects. For the purpose of ground
truth generation, it proves to be useful. It has two great
advantages of being fast and reliable when the image
resolution is low. We also tried the Mean-Shift tracker [12];
however, it fails more often, requiring increased user
intervention. This problem is more evident in the low-
resolution video sequences where object sizes are small.

Figure 2. GTVT when running it for the first time.

Figure 3. After selecting a bounding box, GTVT shows that the class for
the given bounding box is 2 and lets user select the ground truth. When the

bounding box is selected, it turns blue.

Figure 4. The successful tracking of the object in the next frame. The
ground truth values are copied from the previous frame and hence no user

input is required. The color of the bounding box is red in this case.

357

Figure 5. The successful tracking of the object after 47 frames.

Figure 6. Performance window showing the confusion matrix and the

overall accuracy of the algorithm.

To present the user interaction of the GTVT, the
following screenshots are included. Figure 2 is a screenshot
of the initial screen, whereas Figure 3 shows the screenshot
where the user has selected a bounding box (therefore, the
color of the box is blue indicating the user selection) and
started tracking. It also shows the information pane stating
that the video and information files were successfully
opened. The list box presents the choices of the classes, the
user can select (between -1 and 3). The given class (class of
the object determined by the video surveillance application)
is 2 in this example, and the user has also selected 2 as the
ground truth in the list box. Figure 4 shows the successful
tracking as GTVT selects the correct ground truth for the
bounding box without the user input. The red box represents
the detected object in the current frame. If the bounding box
is not selected by the user, it is red. To change the ground
truth, the user needs to select the bounding box which in turn
enables the ground truth list box. Figure 5 shows the same
object being tracked successfully. Figure 6 shows the
performance window displaying the confusion matrix and
the overall accuracy of the video surveillance application
used.

V. FUTURE WORK
For a typical video surveillance application, the failure

can be of two types: total or partial failure in detecting the
objects or failure in object recognition for the detected
objects. The current version of GTVT focuses on

establishing the ground truth for recognition. It would be
interesting to see the detection ground truth included along
with classification/recognition ground truth. However, the
current version of GTVT does not allow the user to select
ground truth for the objects that were not detected by the
video surveillance application under consideration. A Mean-
Shift tracker or feature tracker will have to be included to
achieve this functionality so that the user can initialize a
track for the objects that were not detected by the video
surveillance application.

VI. CONCLUSIONS
The operation of GTVT can be summarized as follows.

The user initiates the ground truth class for a particular
bounding box. The corresponding bounding box will be
tracked in consecutive frames using a tracking algorithm.
GTVT copies the ground truth information from the previous
frame so that the user does not have to repeat the same task
again. If tracking is successful and the user is satisfied with
the ground truth for a particular frame, user intervention is
not required. Thus, GTVT greatly reduces the overall time
required for ground truth generation by making the process
semi-automatic.

This tool shows how the HCI [15] paradigm can be used
to create a user-friendly application that can substantially
reduce the user’s efforts. In this paper, we presented a
Ground Truth Verification Tool (GTVT) and demonstrated
that it can greatly reduce the user’s involvement in ground
truth generation. GTVT can also be used as a verification
and accuracy measurement tool for several video
surveillance applications. We plan to standardize the ground
truth establishment technique and the way the ground truth is
saved. Any prospective user of GTVT needs to make only a
minor change in their video surveillance system to create the
information files. Our approach suggests a good alternative
to the current methods of ground truth establishment (e.g.
manual or tools like ViPER). As GTVT is designed by
placing the user into focus, the resulting product is more
user-friendly compared to existing similar applications.

ACKNOWLEDGMENT
This work was supported by the Office of Naval

Research award N00014-06-1-0611.

REFERENCES
[1] C. Wern, A. Azarbayejani, T. Darrel, and A. Petland, “Pfinder: real-

time tracking of human body,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[2] A. Bobick, J. Davis, S. Intille, F. Baird, L. Cambell, Y. Irinov, C.
Pinhanez, and A. Wilson., "Kidsroom: Action Recognition in an
Interactive Story Environment," M.I.T. Perceptual Computing,
Technical Report 398, 1996.

[3] A. Azarbayjani, C. Wren, and A. Pentland, "Real-Time 3D Tracking
of the Human Body," Proceedings of IMAGE'COM, 1996.

[4] A. J. Lipton, J. I. Clark, P. Brewe, P. L. Venetianer, and A. J. Chosak,
"ObjectVideo Forensics: Activity-Based Video Indexing and
Retrieval for Physical Security Applications," IEEE Workshop on
Intelligent Distributed Surveillance Systems, pp. 56-60, 2004.

[5] D. Duque, H. Santos, P. Cortez, "Prediction of Abnormal Behaviors
for Intelligent Video Surveillance Systems Computational

358

Intelligence and Data Mining," IEEE Symposium on Computational
Intelligence and Data Mining, pp. 362-367, 2007.

[6] UCI Machine Learning Repository, “http://mlearn.ics.uci.edu/
MLRepository.html,” last accessed on 05/09/08.

[7] D. Doermann, and D. Mihalcik, “Tools and Techniques for Video
Performances Evaluation,” International Conference on Pattern
Recognition, pp. 167-170, 2000.

[8] V.Y. Mariano, J. Min, J.-H. Park, R. Kasturi, D. Mihalcik, D.
Doermann, and T. Drayer, “Performance Evaluation of Object
Detection Algorithms,” International Conference on Pattern
Recognition, 2002, pp. 965-969.

[9] ViPER toolkit, “http://viper-toolkit.sourceforge.net/”, last accessed on
03/22/08.

[10] ODViS toolkit, “http://www.metaverselab.org/software/odvis/”, last
accessed on 03/22/08.

[11] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos,
“Detection and Classification of Vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 3, no. 1, pp. 37-47, 2002.

[12] D. Comaniciu and P. Meer, “Mean Shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, 2002.

[13] Microsoft Visual C#, “http://msdn2.microsoft.com/en-us/vcsharp/
default.aspx,” last accessed on 04/12/08.

[14] A. Ambardekar, M. Nicolescu, and G. Bebis, “Efficient Vehicle
Tracking and Classification for an Automated Traffic Surveillance
System,” Proceedings of the International Conference on Signal and
Image Processing, Kailua-Kona, Hawaii, pp. 220-225, 2008.

[15] D. Benyon, P. Turner, and S. Turner, “Designing interactive
systems,” Addison-Wesley, 2005.

359

