
1

Unit-Level Test Adequacy Criteria for Visual
Dataflow Languages and a Testing
Methodology

MARCEL R. KARAM

American University of Beirut

TREVOR J. SMEDLEY

Dalhousie University

and

SERGIU M. DASCALU

University of Nevada Reno

Visual dataflow languages (VDFLs), which include commercial and research systems, have had a
substantial impact on end-user programming. Like any other programming languages, whether
visual or textual, VDFLs often contain faults. A desire to provide programmers of these languages
with some of the benefits of traditional testing methodologies has been the driving force behind our
effort in this work. In this article we introduce, in the context of prograph, a testing methodology
for VDFLs based on structural test adequacy criteria and coverage. This article also reports on the
results of two empirical studies. The first study was conducted to obtain meaningful information
about, in particular, the effectiveness of our all-Dus criteria in detecting a reasonable percentage
of faults in VDFLs. The second study was conducted to evaluate, under the same criterion, the
effectiveness of our methodology in assisting users to visually localize faults by reducing their
search space. Both studies were conducted using a testing system that we have implemented in
Prograph’s IDE.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging; D.2.6
[Software Engineering]: Programming Environments; D.1.7 [Programming Techniques]:
Visual Programming

General Terms: Algorithms, Languages, Verification.

Additional Key Words and Phrases: Software testing, visual dataflow languages, fault detection,
fault localization, color

This article is revised and expanded version of a paper presented at the IEEE Symposium on
Human-Centric Computing Languages and Environments (HCC’01) [Karam and Smedley 2001] c©
IEEE 2001.
Authors’ address: M. R. Karam, Department of Computer Science, American University of Beirut,
3 Dag Hammarskjold Plaza, eighth floor, New York, NY 10017; email: marcel.karam@aub.edu.lb.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1049-331X/2008/09-ART1 $5.00 DOI 10.1145/1391984.1391985 http://doi.acm.org/
10.1145/1391984.1391985

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:2 • M. R. Karam et al.

ACM Reference Format:
Karam, M. R., Smedley, T. J., and Dascalu, S. M. 2008. Unit-level test adequacy criteria for visual
dataflow languages and a testing methodology. ACM Trans. Softw. Engin. Method. 18, 1, Arti-
cle 1 (September 2008), 40 pages. DOI = 10.1145/1391984.1391985 http://doi.acm.org/10.1145/
1391984.1391985

1. INTRODUCTION

Visual dataflow languages (VDFLs) provide meaningful visual representa-
tions for the creation, modification, execution and examination of programs.
In VDFLs, users code by creating icons (operations) and linking them together.
In this article, we refer to this activity as visual coding. The icons, or visual
constructs, are the source code, rather than merely visual representations of a
textual code that lies beneath the icons. In VDFLs, the order of execution, when
not explicitly defined by the user, is determined by the visual language’s editing
engine. That is, the computation is governed by the dataflow firing rule, which
states that a computational element can execute as soon as sufficient incoming
data has arrived to begin the computation. This model of execution, known as
the dataflow computational model, has inspired several visual programming
languages (Bernini and Mosconi [1994], Kimura et al. [1990], and Fisk [2003]).
It is, in general, conceptualized as a kind of fluid that flows through linkages
between computational elements. The elements can be thought of as filters or
processors that use the incoming data to produce a new stream of outgoing data.
In a pure dataflow computational model, control constructs are not explicitly
specified by the programmer; rather, the order of execution is implied by the
operations’ data interdependencies. To allow the user to explicitly add control
constructs such as those found in imperative languages, VDFLs [Shafer 1994;
Marten 2005] extended the pure computational dataflow model to include the
necessary control constructs. This extension, as some researchers believe, is
necessary for a dataflow language to have any practical use in developing tra-
ditional software. Thus a visual program that is based on the dataflow compu-
tational model can be characterized by both its data and control dependencies.

VDFLs are widely used, by researchers and end-users alike for a variety of
research and development tasks. For example, there is research into steering
scientific visualization [Burnett et al. 1994], using VDFLs for writing func-
tional programs [Kelso 2002], writing and evaluating XML and XPath queries
[Boulos et al. 2006; Karam et al. 2006], developing general-purpose applications
[Shafer 1994], building domain-specific applications such as those used for lab-
oratory instrumentations [Paton 1998], and buffering of intermediate results in
dataflow diagrams [Woodruff and Stonebraker 1995]. In general, researchers
feel that it is in these directions that visual dataflow programming languages
show the most promise.

Despite claims that the use of graphics in VDFLs allows direct and concrete
representations of problem-domain entities, and that the direct representa-
tions can simplify the programming task of researchers and developers alike,
we found that many informal investigations into VDFLs reveal that, like any
other languages, they contain faults. A possible factor in the existence of these

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:3

faults, as argued by Meyer and Masterson [2000], is most likely related to incor-
rect control annotations and datalinks. In spite of this evidence, we have found
no related discussions in the research literature of techniques for testing or eval-
uating a testing methodology that can reveal faults and assist in fault localiza-
tion in VDFLs. In fact, there has been some work on testing in other paradigms.
For example, in the domain of form-based languages, recent work has focused
on testing visual form-based languages [Rothermel et al. 2001]. Although the
visual dataflow paradigm is similar to the visual form-based paradigm in that
they are both visual, several characteristics of the form-based paradigm, such as
the dependency-driven nature of its evaluation engine and the responsiveness
of its editing environment, suggest a different approach when testing dataflow
languages. There has also been work on specification-based testing for impera-
tive languages [Kuhn and Frank 1997; Ouabdesselam and Parissis 1995]. Since
most VDFLs are intended for use by a variety of researchers and professional
end-users alike, few of these users are likely to create specifications for their
programs [Wing and Zaremski 1991]. Moreover, even when specifications exist,
evidence suggests that code-based testing techniques can provide an effective
mechanism for detecting faults [Hutchins et al. 1994; Wong et al. 1995] and in-
creasing software reliability [Del Frate 1995]. Other research (e.g., Azem et al.
[1993], Belli and Jack [1993], and Luo et al. [1992]) considered problems of test-
ing and reliability determination for logic programs written in Prolog. Although
VDFLs are comparable to logic-based programs in that both are declarative (i.e.,
declaring data and control dependencies between operations), several features
of the logic paradigm, such as the bidirectional nature of unification, and back-
tracking after failure, are so different from VDFLs that the testing techniques
developed for Prolog cannot be applied to VDFLs.

On the other hand, there has been extensive research on testing impera-
tive programs (e.g., Clarke et al. [1989], Frankl and Weiss [1993], Frankl and
Weyuker [1988], Harrold and Soffa [1988], Hutchins et al. [1994], Korel and
Laski [1983], Ntafos [1984], Offutt et al. [1996], Perry and Kaiser [1990], Rapps
and Weyuker [1985], Rothermel and Harrold [1997], Weyuker [1986, 1993], and
Wong et al. [1995]). In fact, the family of testing criteria we present for VDFLs
in this article is rooted in the body of the aforementioned work on impera-
tive testing. There are significant differences between VDFLs and imperative
languages, and these differences have ramifications for testing strategies of
VDFLs. These differences can be divided into three classes, as described
next.

The first class pertains to the evaluation or execution order. The order of ex-
ecution of nonpredicate operations or statements is not predetermined by the
programmer, but is simply based on data dependencies. If we were to construct,
as with imperative languages, a control flow graph (CFG) that represents the
flow of control in VDFLs, taking into consideration all possible execution orders,
it would be extremely large and complex. It would also most likely be impossible
to satisfy any criteria using this graph, since most dataflow language imple-
mentations choose a specific execution ordering for non-predicate operations,
and use it for every execution. This is, in fact, the execution behavior of VDFLs.
The execution order is maintained by a topological sort that is performed on

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:4 • M. R. Karam et al.

all operations during the phases of visual coding and modification of the code.
Since we are not considering, for the purpose of our current work, operations,
that can have side-effects (object-oriented features such as the get and set op-
erations that read and respectively write objects’ data, and global variables),
any execution order of a sequence of non-predicate operations will yield the
same result. Thus we need only consider one order—the one determined by the
editing engine of the language. In future work we intend to address the side
effects issues.

The second class of differences pertains to performing static source code
analysis in VDFLs. With imperative languages, a wide range of techniques
for computing source code (control-flow and dataflow) analysis in individual
procedures and programs are well known [Aho et al. 1986] and have been used
in various tools, including data-flow testers (e.g., Korel and Laski [1985], Frankl
et al. [1985], and Harrold and Soffa [1988]). With VDFLs, however, the variable
declaration process and the visual constructs’ characteristics have impact on
how precisely and efficiently source code analysis can be done. First, in general,
variables in VDFLs cannot be explicitly defined; that is, users write programs
by creating icons that are connected via datalinks. In general, a datalink is
created between an outgoing port on one icon, and an incoming port on another.
In VDFLs such as the one we are considering in this work, outgoing ports
are known as roots, and incoming ports are known as terminals. One way to
deal with the implicit declaration of variables is to think of roots as variable
definitions, and terminals connected to those roots as variable uses. Second,
although formal grammars for pictures [Zhang and Zhang 1997] and parsing
algorithms for pictorially represented programs have been investigated [Chang
et al. 1989], none of these techniques is applicable to VDFLs for the purpose
of efficiently performing source code analysis. One of the solutions to overcome
this difference is to take advantage of the control-flow and data-flow information
that can be obtained from the data structures maintained by the editing engine
of VDFLs.

The third class of differences pertains to the reporting mechanisms of test
results. With imperative languages, the use of textual logs as a way to view test
results, albeit difficult to read and interpret, is practically impossible in VDFLs.
Test results of VDFLs should be reported in a way that complements the visual
constructs, given their unique characteristics and properties. For example, some
indication should be given to the tester when a datalink connecting a variable
definition to its use is not exercised. Therefore, the reporting mechanism should
be visual and well incorporated within the integrated development environment
(IDE) that supports the implementation of the VDFL.

In Section 2 of this article, we present Prograph’s syntax and its formal se-
mantics. In Section 3, we present a family of structural unit-based test adequacy
criteria for VDFLs. In Section 4, we examine the applicability of several code-
based data-flow applicability criteria for testing VDFLs. In Section 5, we intro-
duce our a methodology that takes advantage of the aforementioned classes of
differences to achieve efficient and precise control-flow and dataflow analyses
in VDFLs, and provides a testing environment that implements, in particular,
the all-Dus. The testing environment accommodates the user base of VDFLs

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:5

Fig. 1. A Prograph program for quicksort.

with a visual interface that is augmented with a color mapping scheme [Jones
et al. 2002] that facilitates the task of localizing faults by reducing their search
space without requiring a formal testing theoretical background. In Section 6,
we describe the design of our experiments and present the empirical results
obtained. Section 7 concludes the article with a summary of our contributions
and an outline of planned directions of future work.

2. VISUAL DATAFLOW LANGUAGES

Since much of our work is based on the visual programming environment of
Prograph [Shafer 1994], we will next informally introduce its syntax and se-
mantics using the example that is depicted in Figure 1.

2.1 Prograph

Figure 1 shows a Prograph implementation of the well known algorithm quick-
sort for sorting a list into ascending order. The bottom right window entitled
Universals of “Quicksort” in this figure, depicts two icons for the methods, call
sort and quicksort. Note that Prograph is an object-oriented language; hence
the term method or universal is used to refer to entities known as procedures
in imperative programming languages.

The left side window, entitled 1:1 call sort in Figure 1, shows the details of the
method call sort, a dataflow diagram in which three operations are connected
and scheduled to execute sequentially. The first operation in this diagram, ask,
is a primitive that calls system-supplied code to produce a dialogue box request-
ing data input from the user (or a list of numbers typed into the dialogue box).
Once the ask primitive has been executed, the data entered by the user flows
down the datalink to the operation quicksort, invoking the method quicksort.
This method expects to receive a list, which it sorts as explained below, out-
putting the sorted list, which flows down the datalink to the show operation.
The show produces a dialogue displaying the sorted list. The small circle icons
on the top and bottom of an operation, representing inputs and outputs, are

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:6 • M. R. Karam et al.

called terminals and roots, respectively. Note that the 1:1 in the window enti-
tled 1:1 call sort, indicates that the method call sort has only one case associated
with it. In general, a method consists of a sequence of cases. More on what a
case is and how it executes can be found next.

The method quicksort consists of two cases, each represented by a dataflow
diagram as shown in the windows entitled 1:2 quicksort and 2:2 quicksort of
Figure 1, respectively. The first case, 1:2 quicksort, implements the recursive
case of the algorithm, while the second, 2:2 quicksort, implements the base case.
The thin bar-like operation at the top of a case, where parameters are copied
into the case, is called an input-bar, while the one at the bottom, where results
are passed out, is called an output-bar. In the first case of quicksort, the first
operation to be executed is the match operation , which tests to see if the
incoming data on the root of the input-bar is the empty list. The check mark icon
attached to the right end of the match is a next-case on success control, which
is triggered by success of the match, immediately terminating the execution
of the first case and initiating execution of the second case. If this occurs, the
empty list is simply passed through from the input-bar of the second case to its
output-bar, and execution of quicksort finishes, producing the empty list.

If the input list is not empty, the control on the match operation in the first
case is not triggered, and the first case is executed. Here, the primitive operation
detach-l (or detach left) outputs the first element of the list and the remainder
of the list on its left and right roots respectively. Next, the operation, , is exe-
cuted. This operation is an example of a multiplex, illustrating several features
of the language. First, the three-dimensional representation of the operation
indicates that the primitive operation >= will be applied repeatedly. Second,
the terminal annotated as is a list-terminal, indicating that a list is ex-
pected as data, one element of which will be consumed by each execution of the
operation. In this example, when the multiplex is executed, the first element of
the list input to the case will be compared with each of the remaining elements.
Finally, the special roots and indicate that this particular multiplex is a
partition, which divides the list of items arriving on the list annotated terminal
into two lists items for which the comparison is successful, and those for which
it is not. These two lists appear on the and roots, respectively.

The lists produced by the partition multiplex are sorted by recursive calls to
the quicksort method. The final sorted list is then assembled using two primitive
operations: attach-l, which attaches an element to the left end of a list, and (join),
which concatenates two lists.

The execution mechanism of Prograph is data-driven dataflow. That is, an
operation executes when all its input data is available. In practice, a linear
execution order for the operations in a case is predetermined by topologically
sorting the directed acyclic graph of operations and subject to certain con-
straints. For example, an operation with a control should be executed as early as
possible.

In our example the method quicksort has only one input and one output,
and therefore does not illustrate the relationship between the terminals of an
operation and the roots of the input-bar in a case of the method it invokes.
These terminals and roots must be of equal number, and are matched from

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:7

left to right. A similar relationship exists between the roots of an operation
and the terminals of the output-bar in a case of a method invoked by the
operation.

One important kind of operation not illustrated in the above example is the
local operation. A local operation is one that does not call a separately de-
fined method, such as the quicksort method shown above. Instead, it contains
its own sequence of cases and their operations, and is therefore analogous to
a parameterized begin-end block in a standard procedural language. A local
operation is often referred to as local method, and can also have roots and
terminals attached to it. Roots and terminals on a local operation can be anno-
tated with a loop to create a repeating case or cases. Terminate on success ,
and Terminate on failure , as the names indicate, are controls that can be
applied to operations in a local operation to stop the iterations during execu-
tion. More information on the operations and possible control can be found in
Section 3.2.

The formal semantics of Prograph are defined by specifying an execution
function for each operation in a program. Each execution function maps a list
X to a pair (Y, c), where c is a control flag, Y is a list, and the lengths of the lists
X and Y are, respectively, equal to the number of terminals and the number of
roots of the operation, and the elements X and Y are from a domain � containing
all values of simple types and instances of classes. Execution functions may
produce the special value error; for example, if a list terminal receives a value
that is not a list. By defining execution functions for operations, the input/output
behavior of a program is specified. To find more on the language syntax and
semantics, see Shafer [1994].

3. A FAMILY OF TEST ADEQUACY CRITERIA FOR VISUAL
DATAFLOW LANGUAGES

As previously mentioned, test adequacy criteria have been well researched for
imperative languages. In this section, we explore the appropriate applicability
of several of these criteria (e.g., Laski and Korel [1983], Ntafos [1984], and
Rapps and Weyuker [1985]) to VDFLs. We argue that an abstract control-flow
model, which is common to all these test adequacy criteria, can be appropriately
adapted to VDFLs. Moreover, we argue that code-based data-flow test adequacy
criteria, which relate test adequacy to interactions between definitions and
uses of variables in the source code (definition-use associations), can be highly
appropriate for VDFLs; in particular that of Rapps and Weyuker [1985]. There
are several reasons for this appropriateness. The first reason involves the types
of faults that have been known to occur in VDFLs, the largest percentage of
which have been observed to involve errors in incorrect or missing controls, and
datalinks [Meyer and Masterson 2000]. Second, the application of [Rapps and
Weyuker 1985] criteria, combined with the use of the color mapping scheme of
Jones et al. [2002] on the datalink constructs of VDFLs, can be shown to provide
significant advantages including a relative ease of applicability to individual
datalinks (or, as we show later in Section 4.2 definition-use associations) and
an increased ability to localize faults.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:8 • M. R. Karam et al.

3.1 The Abstract Model for Prograph

Test adequacy criteria are often defined on models of programs rather than on
the code itself. We have created such a model for VDFLs [Karam and Smedley
2001] that we call the operation case graph (OCG). In this article we augment
the OCG to represent the complete set of Prograph’s operations and their ap-
plicable controls. These are: input-bar; output-bar; locals; and universal meth-
ods or functions; Constants; match; and primitives or system defined methods.
These operations may have the following control annotations: next-case, finish,
terminate, fail, continue, or repeat annotation. Roots and terminals on locals
or universals may have list or loop annotations. An operation that is control
annotated is referred to as a predicate operation otherwise it is a non-predicate
operation.

Given a Prograph procedure p in a program P, we say that since each pro-
cedure consists of one or more cases, we define an abstract graph model for
Prograph by constructing an OCG for each case c in p or OCG(c). Each OCG(c)
has a unique entry and exit nodes ne, and nx respectively, and will be assigned
the name and label of its corresponding case in Prograph. For example, if a
method X has two cases 1:2 X and 2:2 X denoting X case one of two and X
case two of two, respectively, the OCG graphs will be labeled OCG(1:2X) and
OCG(2:2X). A local operation, as previously mentioned, has its own sequence of
cases, and each case will also have its own OCG. We next describe the build-
ing process of the control-flow abstract model of OCG(p) = {OCG(c1), OCG(c2),
. . ., OCG(cn)} in the context of the example of Figure 2, which is designed to
introduce all the control constructs of Prograph.

3.2 The Building Process of the OCGs

Most test adequacy criteria for imperative languages are defined in terms of
abstract models of programs, rather than directly on the code itself. This means
that the code is translated into a control-flow graph (CFG) and testing is applied
to the graph representing the code. This definition reflects explicitly the code
constructs, and program execution follows the flow of control in the CFG. In
general, to construct a CFG for a function f or CFG(f), f is decomposed into a set
of disjoint blocks of statements. A block is a sequence of consecutive statements
in which the flow of control enters at the beginning of the block and leaves at
the end without halt or the possibility of branching, except at the end. A control
transfer from one block to another in CFG(f) is represented by a directed edge
between the nodes such that the condition of the control transfer is associated
with it.

With VDFLs, the dataflow computational model (control and data depen-
dency) makes grouping several non-predicate operations in one block not very
desirable, since the execution order is determined by the editing engine. There-
fore, to deal with the first class of differences between imperative languages
and VDFLs that we mentioned in Section 1, we represent each procedure
p ∈ P with an OCG(p) that preserves two properties of p’s operations: data
and control dependencies. With regard to preserving the data dependen-
cies, we say that for each procedure p, there is a sequence of operations,

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:9

Fig. 2. Universal method Main, and Locals A, B, C, and D.

O = {o1, o2, o3, . . . , om}, whose order corresponds to a valid execution order-
ing with respect to the data dependencies in the procedure (in particular, this
will be the execution order chosen by the editing engine). Thus, to model the
data dependencies in OCG(p) and preserve the execution order, we represent
each noncontrol nonlocal operation oi ∈ O, with a node ni ∈ OCG(c) ∈ OCG(p)
linked together with an edge to ni+1, the node representing the next operation
oi+1 ∈ O, provided that oi+1 is a nonlocal operation. If oi+1 is a local operation,
then we construct the edge to the entry node ne of the local operation’s. For
example, as depicted in Figure 2, the operation labeled n2 is represented with
node 21 in OCG(Main), and an edge is constructed to node n3e , the entry node of
the local operation represented by OCG(1:1A). For each non-control local opera-
tion oi ∈ O, we construct the appropriate OCG(oi) with ne and nx , the entry and
exit nodes of OCG(oi), respectively, and construct an edge from nx to ni+1, the
node representing the next operation oi+1 ∈ O, provided that oi+1 is not a local
operation. If oi+1 is a local operation, then we construct an edge to its entry
node ne.

To represent the control dependencies between operations in O, we clas-
sify the set of operations O into two subsets, Os and Ox , where Os ∈ O is the

1It is assumed that when we say nk we make reference to an operation in the Prograph code, and
when we say node k we make reference to nk ’s corresponding node in the OCG.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:10 • M. R. Karam et al.

subset of operations that always succeed by default, and Ox ∈ O is the sub-
set that do not. This classification is necessary to accurately represent and
account for the flow of control in OCG(p), since control annotated operations ∈
Os (on failure) do not change the control flow of the program. For example, in
Figure 2, the primitive operation show that is labeled n13, which is annotated
with a next-case on failure . Since n13 succeeds by default, the control flow
in OCG(1:2Main) will not be affected. However, had the control been applied (on
success) to n13, the flow of control would have been affected, and subsequently,
when the operation is evaluated, the control will be transferred to the next case
2:2 Main or OCG(2:2Main). The output-bar, among other operations, belongs to
Os.

Therefore, to represent the control dependencies between operations in O,
we perform static analysis on each control annotated operation oi ∈ O. Next,
we present each control and discuss how it is represented in the OCG.

Next-Case annotation. An operation oi with a next-case annotation will be rep-
resented as follows: If oi is a nonlocal operation ∈ Ox , then oi will be represented
by a node ni with two edges coming from it (true and false), one connected to ni+1,
which is the node representing the next sequential operation oi+1 in the current
case, and the other to entry node ne of the next case. If oi is a nonlocal operation
∈ Os, we check the type of the control annotation, if it is next-case on failure ,
we ignore the control; however, if it is a next-case on success , we construct an
edge to the entry node ne of the next case. For example, as depicted in Figure 2,
the operation labeled n23 is annotated with a next-case on success, so we con-
struct an edge from node 23, its corresponding node in OCG(1:2Main), to the entry
node of the OCG(2:2Main). If oi is a local operation ∈ Ox , we construct the ap-
propriate OCG(oi), with its ne and nx , respectively. We recursively process all
of oi ’s content, and then construct two edges on nx of oi to represent the flow of
control (true and false): one to ni+1, the node representing the next sequential
operation oi+1 in the current case; and the other to ne, the entry node of the next
case. For example, as depicted in Figure 2, since the local operation labeled n3
is annotated with a next-case on Failure, we represent it with OCG(1:1A), and
construct two edges on its nx , one to the next operation n13, and the other to ne
of OCG(2:2Main).

Finish annotation. An operation oi with a finish annotation is unique in the
sense that, when evaluated/activated in non-repeated or looped case, the flow
of control does not change upon the outcome of the finish control. This means
that if the outcome is either true or false, the next node that gets evaluated
or executed is the same. The same situation occurs when the finish annotated
operation happens to be in a repeated or looped case; however, here the true
or false outcome may set a flag that will indicate whether successive iterations
will take place after finishing the current iteration. Thus, to handle a finish
annotated operation, whether in a repeated or nonrepeated case, and represent
both its true and false outcomes, an operation oi with a finish annotation will
be represented as follows: if oi is a nonlocal operation ∈ Os, we simply ignore
the evaluation of its control (on success or failure), and represent oi with a node

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:11

ni with one edge connected to ni+1, the node representing the next sequential
operation oi+1. If oi is a nonlocal operation ∈ Ox , we represent oi with a node
ni with two edges coming out from it (true and false), one edge connected to
ni+1, the node representing the next sequential operation oi+1 in the current
case, and the other edge to a dummy node d. From the dummy node d, we also
construct an edge to ni+1. The reason for constructing this edge is to allow the
flow of control to go to ni+1 when the outcome of the finish control goes through
the dummy node d. When d exists in a looped-local and is traversed, it sets a
flag value that indicates whether the loop edge can be traversed. For example,
as depicted in Figure 2, the operation labeled n8 is annotated with a finish on
success . We therefore represent n8 with node 8 in OCG(1:1C), and construct
two edges from it, one to the next operation n9, and the other to d, the dummy
node. If oi is a local operation ∈ Ox , we construct the appropriate OCG(oi), with
its ne and nx , respectively. We recursively process all of oi ’s content, and then
construct two edges on nx of oi to represent the flow of control (true and false):
one to ni+1, the node representing the next sequential operation oi+1 in the
current case; and the other to dummy node d.

Terminate annotation. An operation oi with a terminate annotation will be
represented as follows: if oi is a nonlocal operation ∈ Os, we check the type of
the control annotation, if it is terminate on failure , we ignore the control. For
example, as depicted in Figure 2, the operation labeled n21 is annotated with a
terminate on success, so we construct an edge from node 21, its corresponding
node in OCG(1:2C), to node ni+1 or node 22. However, if oi is annotated with a
terminate on success , we construct an edge to nx , the exit node of the current
case. If oi is a nonlocal operation ∈ Ox , we represent oi with a node ni with
two edges coming from it (true and false): one edge connected to ni+1, the node
representing the next sequential operation oi+1 in the current case; and the
other edge to nx , the exit node of the current case. If oi is a local operation ∈
Ox , we construct the appropriate OCG(oi), with its ne and nx , respectively. We
recursively process all of oi ’s content, and then construct two edges on nx of oi to
represent the flow of control (true and false): one to ni+1, the node representing
the next sequential operation oi+1 in the current case; and the other to nx ,
the exit node of the current case. For example, as depicted in Figure 2, the
operation labeled n14 is annotated with a terminate on failure, so we construct
its OCG(1:1B), and construct on the nx of OCG(1:1B) or node 14x two edges, one
to node ni+1 or node 23, and the other to the exit node x of OCG(1:2Main).

Fail annotation. The evaluation of an operation oi with a fail annotation is
analogous to exception throwing in imperative languages. An operation oi with
a fail annotation will be represented as follows: if oi is a nonlocal operation
∈ Os, we check the type of the control and if it is fail on failure we ignore
the control. For example, as depicted in Figure 2 the operation labeled n27 is
annotated with a fail on failure, so we ignore the control, and we just construct
an edge from node 27, to the exit node x of OCG(2:2Main). However, if the control
is fail on success , we construct an edge to the entry node ne of the next case.
If oi is a nonlocal operation ∈ Ox , oi will be represented by a node ni with

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:12 • M. R. Karam et al.

Fig. 3. Illustrating the list and partition control.

two edges coming from it (true and false): one connected to ni+1, which is the
node representing the next sequential operation oi+1 in the current case; and
the other to nx , the exit node of the current case. If oi is a local operation ∈
Ox , we construct the appropriate OCG(oi), with its ne and nx , respectively. We
recursively process all of oi ’s content, and then construct two edges from nx of oi,
to represent the flow of control (true and false) one to ni+1, the node representing
the next sequential operation oi+1 in the current case, and the other to nx , the
exit node of the current case. For example, as depicted in Figure 2, the local
looped operation labeled n16 is annotated with a fail on failure. We therefore
represent it with OCG(1:1D), and construct two edges from its exit node 16x , one
to the next operation node 21, and the other to the exit node of OCG(1:1C) or
node 14x .

List, repeat, partition, or loop annotation. An operation oi with a list, repeat,
partition, or a loop annotation, will be represented according to the type of the
operation. If oi is a nonlocal operation ∈ Os, we represent it with a node ni, and
construct an edge that goes out of ni and back into ni, and construct another
edge to ni+1, the next node in the case. For example, as depicted in Figure 2,
the operation labeled n26 is annotated with a list control, and we therefore
represent it with node 26 and construct one edge that goes out of node 26 and
back into it, and another edge to node 27. If oi is annotated with a second control
on success, we construct the appropriate edges; otherwise we simply ignore it
because it will not have any effect on the control flow of the program. If oi is a
nonlocal operation ∈ Ox , we represent it with a node ni, construct an edge that
goes out of ni and back into ni, and construct another edge to ni+1, the next
node in the case. We then check to see if oi is annotated with a second control.
If oi is annotated with a control annotation, we construct the appropriate edges
that represent the control. For example, as depicted in Figure 3, the operation

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:13

labeled n4 is annotated with a partition control, and therefore we represent it
with node 4 and construct an edge that goes out of node 4 and back into it. We
then construct, as previously described for the terminate control, two edges: one
to node 5, and the other to the exit node. Another example is the list annotated
operation n5 in Figure 3. It should be noted that although the operation labeled
n7 is annotated with a partition control, it does not alter the control flow of the
program, and therefore, as depicted in Figure 3, we represent it by constructing
node 7, and an edge that comes out of node 7 and back into it. If oi is a local
operation ∈ Ox , we construct an edge from the node representing the output-bar
of OCG(oi) to the node representing the input-bar. For example, in OCG(1:1C) of
Figure 2, the OCG representing the local operation labeled n6 that is annotated
with a loop control, we construct an edge from the output-bar of OCG(1:1C) or
node 10 to its input-bar or node 7. If oi is control annotated, as it is the case
with the local operation labeled n16, we then construct the appropriate edges,
as previously described for the fail control: one to node 21, and the other to node
14x .

3.3 Control-flow Test Adequacy Criteria For Visual Dataflow Languages

In imperative languages, a test adequacy criterion fails to be applicable if it
requires coverage of nonexecutable code constructs, often referred to as dead
code. For such code, it is a common practice to render the applicable criterion
and redefine it so that it is applicable to executable code only. In VDFLs, a
similar approach applies; we next define our applicable node and control test
adequacy criteria for VDFLs. Before we do that, however, we need to first define
a test case and a test suite for VDFLs. Formally, a test suite can be defined as
follows:

Definition 3.1 (A test suite T in VDFLs). We define a test case t for a universal
method p to be the tuple (z, i, ov/i , cn), where: z is the test case number; i is a
set of input values for t; ov/i is p’s output valid/invalid results, and cn is the set
of exercised nodes in OCG(p) that is obtained as the result of executing t on p.
We say that t is valid or t = (z, i, ov, cn) if the actual output for an execution
of p with t is the same as the expected output for t; otherwise, t is invalid or
t = (z, i, oi, cn). Having defined what a test case is, a test suite T can then be
defined as the tuple (Z, I, OV/I , CN), where: Z = {z1, z2 , . . . , zk} is the set of test
case numbers; I = {i1, i2, . . . , ik}, OV/I (ov/i ∈ OV/I) is p’s output valid/invalid set
of results of executing p with all test cases t ∈ T; and CN is the set of covered
nodes in OCG(p) that is obtained as the result of executing p with all test cases
t ∈ T.

Definition 3.2 (all-nodes criterion for VDFLs). Formally, given a VDFL uni-
versal method p with an operation case graph OCG(p), a test t exercises a node
n ∈ OCG(p) if t causes the evaluation of p, and traverses a path through OCG(p)
that includes n. A test suite T is node-adequate for p and for each dynamically
executable node n in OCG(p) if there is at least one t ∈ T that exercises n.

Definition 3.3 (all-edges criterion for VDFLs). Formally, given a VDFL uni-
versal method p with an Operation Case Graph OCG(p), a test t exercises an
edge e = (ni, n j) ∈ OCG(p) if it causes the execution of p, and that execution

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:14 • M. R. Karam et al.

traverses a path through OCG(p) that includes e. A test suite T is edge-adequate
for a p if, for each dynamically executable edge e in OCG(p), there is at least one
t ∈ in T that exercises e.

As with imperative languages, if all edges in OCG(p) are covered, all nodes
are necessarily covered. This observation leads to the conclusion that branch
coverage in VDFLs is stronger than node coverage. When a testing criterion
A is stronger than another testing criterion B, we say that A subsumes B.
Thus branch coverage subsumes node coverage, and a test suite T that satisfies
branch coverage, must also satisfy node coverage.

3.4 Dataflow Analysis in OCGs

The data interaction model in VDFLs, although visual, is somewhat analogous
to that of imperative languages. In imperative languages, data interaction be-
tween variables is made by explicitly defining and referencing the names of
variables in a procedure. For example, the statement s1: x = 3 explicitly de-
fines x and writes to its memory location, whereas the statement s2: y = x + 3
explicitly uses or references x by reading from its memory location. In VDFLs,
variables cannot be explicitly defined, and their interactions are modeled as
datalinks connecting operations’ roots to other operations’ terminals. In this
interaction model, roots serve as implicit variable definitions and terminals
connected to those roots serve as variable uses. In general, when a root r, on an
operation oi is connected to a terminal t on an operation o j (i and j > 1), we say
that t in o j references r in oi. In other words, r is used in o j . For example, as
depicted in Figure 4, in 1:1 C root r1 is connected to terminal t1 on the universal
method D.

The basic structure of a Prograph universal method is similar to a procedure
in imperative languages. The roots on the input-bar of a universal represent
the method’s inputs, and correspond to reference parameters in imperative lan-
guages. The terminals on the output-bar of a universal represent the method’s
outputs, and correspond to variables returned in imperative languages. The
reader should note that Prograph, unlike imperative languages, allows more
than one root on the output-bar. When a universal method has more than one
case, roots on the input-bar of each case are essentially the same variables. A
similar situation exists for terminals on the output-bar. For example, in Figure
4, the roots on the input-bars of cases 1:2 A and 2:2 A are the same. Likewise,
the terminals on the output-bars of cases 1:2 A and 2:2 A are also the same.

Operations in the body of a universal that are connected to roots on the uni-
versal’s input-bar get their values from the roots which are connected to the
terminals at the call site. For example, in Figure 4, the reference parameter
labeled i1 in 1:1 D gets its value from the root labeled r1 in 1:1 C. As with
imperative languages, reference parameters and actual parameters in visual
dataflow languages are bound at call sites. Thus we say that the reference pa-
rameter or i1 in 1:1 D is bound to the actual parameter or r1 in 1:1 C. Since we
are only interested in unit-based data-flow analysis in VDFLs, a call site is con-
sidered a primitive operation. Work is underway to deal with inter-procedural
dataflow analysis and testing for interactive units in VDFLs.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:15

Fig. 4. Universal method A, B, C, and D.

A local operation is similar in structure to a universal method; however, the
roots on the local’s input-bar are not considered reference parameters; rather,
they correspond to the roots to which the local operation’s terminals are con-
nected to. For example, as depicted in Figure 4, roots r2 and r3 on the input-bar
of case 1:1 aLocal corresponds to the root labeled r1 on the ask primitive in
method 1:1 B. Therefore, r2, and r3 in 1:1 aLocal can be considered as refer-
ences to r1 in 1:1 B.

The terminals on a local’s output-bar carry the values of the roots to which
they are connected to, and through an assignment at the output-bar assign
those values to the local operations’ roots. To illustrate, consider the local op-
eration 1:1 alocal in Figure 4, where, the terminal labeled t5 carries the value
of the root labeled r4, and through the r2 = r4 assignment at the output-bar,

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:16 • M. R. Karam et al.

Fig. 5. Method E and its looped-Local bLoop.

assigns the value of r4 to r2 in 1:1 B. Roots corresponding to actual parameters
can be redefined only when they are used as loop roots. To illustrate, consider
the looped-local operation 1:1 bLoop in Figure 5, where the assignments r2 =
r1 and r2 = r4 occur at the at the loop root in 1:1 E and output-bar of the 1:1
bLoop, respectively. The first assignment r2 = r1 is necessary to carry the flow
of data in case the flow of execution breaks before it reaches the output-bar of
1:1 bLoop. The second assignment is necessary to increment the index of the
loop or r2. In this work, we make no distinction between atomic data such as a
root representing an integer and aggregate data such as a root representing a
list or root-list. Thus a datalink connecting a root-list or partition control list
root as it is the case on the left or right root on the operation that is labeled n4
in Figure 3, to a list-terminal (the left or right list-terminal on the operation
that is labeled n5 in Figure 3), is regarded as definition-use association on the
whole list datum.

4. APPLICABLE DATAFLOW TEST ADEQUACY CRITERIA FOR VDFLS

Most code-based dataflow test adequacy criteria for imperative programs are
defined in terms of paths that define and use variables through the control
flow graph of a program. In this section we examine the applicability of several
code-based test adequacy criteria to VDFLs.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:17

4.1 Background: Traditional Dataflow Analysis

In imperative languages, dataflow analysis in a control flow graph of a function f
or CFG(f) focuses on how variables are bound to values, and how these variables
are to be used. Variable occurrences in a CFG(f) can be either definitions or
uses, depending on whether those occurrences store values in, or fetch values
from memory, respectively. Two types of uses are of interest to dataflow testing:
computational use or c-use; and predicate use or p-use. Given a definition of a
variable x in a block bi corresponding to a node ni ∈ CFG(f), we say that a block
b j corresponding to a node n j ∈ CFG(f) contains a computational use or c-use
of x if there is a statement in b j that references the value of x. We also say that
a node nk ∈ CFG(f) contains a predicate use or p-use of x if the last statement
in bk contains a predicate statement where the value of that variable is used to
decide whether a predicate is true for selecting execution paths. A conditional
transfer statement in a node n ∈ CFG(f) has two executional successors: nl ;
and nm, such that l is different from m.

Paths in the CFG(f) that trace a definition to all or some of its uses is com-
monly known as definition-use chains or du-chains.

Dataflow analysis techniques for computing du-chains for individual proce-
dures [Aho et al. 1986] are well known, and dataflow test adequacy criteria have
been well researched for imperative languages, and various criteria have been
proposed (e.g., Clarke et al. [1989], Frankl and Weyuker [1988], Laski and Ko-
rel [1983], Ntafos [1984], Perry and Kaiser [1990], and Rapps and Weyuker
[1985]). Dataflow test adequacy criteria can be particularly applicable to
VDFLs. There are many reasons for that. The first reason involves the types
of faults (missing or erroneous datalinks) that have been observed to occur in
VDFLs [Meyer and Masterson 2000]. The second reason involves the relative
ease of application to VDFLs. As mentioned in Section 1, the dataflow infor-
mation maintained by the editing engine of VDFLs languages allow, unlike
their imperative counterparts, efficient and more precise algorithms to be used
for obtaining dataflow analysis, thus allowing dataflow testing to be realized
for VDFLs with less cost than its imperative counterparts—a fact that shall
become more clear in Section 4.3.

4.2 Dataflow Associations for VDFLs

Dataflow test adequacy concentrates, on interactions between definitions and
uses of variables in the source code. These are called definition-use associa-
tions or simply DUs. DUs can be appropriately modeled in VDFLs as datalinks.
There are several reasons for this appropriateness. First, as with imperative
languages, we recognize two types of variable uses in VDFLs: c-use or computa-
tional use; and p-use or predicate use. A c-use occurs when a datalink connects
a root r on one operation oi to a terminal t that exists on a noncontrol annotated
operation o j (j > i). For example, as depicted in Figure 4, the root labeled r2 in
method 2:2 A is c-used in the Primitive operation show. A p-use occurs when
a datalink connects a root r on an operation ok to a terminal t that exists on
a control annotated operation ol (k > l). For example, as depicted in Figure 4,
the root labeled r1 in case 1:2 A, is p-used in the control annotated Match 2. In

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:18 • M. R. Karam et al.

VDFLs we consider two types of DUs: definition-c-use (def-c-use) association;
and definition-p-use (def-p-use) association. Given a universal method p, let
O = {o1, o2, . . . , on} be the set of operations in p, and N be the set of blocks or
nodes in an OCG (p), representing p. Let R = {r1, r2, . . . ,rx} be the set of roots on
an operation oi, where 1 < i < n, and let T = {t1, t2, . . . ,t y } be the set of terminals
on an operation o j , where 1 < i < j < n, we have the following definitions:

Definition 4.1 (def-c-use association for VDFLs). A def-c-use association is
a triple (ni, n j , (r, t)), such that, ni and n j are nodes ∈ OCG(p) representing
operations oi ∈ O and o j ∈ O respectively, r ∈ R in oi, t ∈ T in o j , there is
a datalink between r and t, o j is a noncontrol annotated operation, and there
exists an assignment of values to p’s input, in which ni reaches n j . For example,
the def-c-use with respect to r5 at n12 and its c-use at t7 in n13 in 2:2 E of Figure 5
is (n12, n13, (r5, t7)).

Definition 4.2 (def-p-use association). A definition-p-use association is a triple
(ni, (n j , nk), (r, t)), such that, ni, n j , and nk are nodes or blocks in ∈ OCG(p)
representing the subset of operations {oi, o j , ok} ∈ O, r ∈ R in oi, t ∈ T in o j ,
there is a datalink between r and t, o j is a control annotated operation, and
there exists an assignment of values to p’s input, in which ni reaches n j , and
causes the predicate associated with n j to be evaluated such that nk is the next
node to be reached. For example, the def-p-use with respect to r1 at n2 and its
p-use at n3 in 1:2 E of Figure 5 is: {(n2, (n3, n4e), (r1, t1)), (n2, (n3, e(2:2E), (r1, t1))}.

There are three points to consider about these definitions.

—We make a distinction between p-uses and c-uses, and that lets us track
whether a test suite T that exercises all du-associations in OCG(p), also exer-
cises both outcomes of each control annotated operation that has a datalink
connecting the root of some other operation to one of its terminals. This dis-
tinction, as we shall see, has consequences in the visual reflection technique
we use in our color mapping scheme to show exercised du-associations or
datalinks.

—In the absence of Persistents or global variables, the redefinition of a variable
or root r does not arise, except on the output-bar of a case that has been anno-
tated with loop control, and thus will not interfere with any other definition
or redefinition of r along any particular path in OCG(p). To illustrate, consider
the example that is depicted in Figure 5; r2 is defined at the entry node of the
loop (n4e), and always redefined at the output-bar (n8) of every case belonging
to the loop operation. Therefore, any du-chains that are applicable to r2 in
n4e are also applicable to r2 in n8. This fact is one factor that facilitates more
efficient dataflow analysis in VDFLs. Aside from extracting non-Loop-roots
related du-associations from the editing engine, accounting for the Loop-root
related ones, is a simple exercise of knowing where the definition is (node) and
associating that definition with the same uses as those of the original defini-
tion, since it is not possible to have a redefinition on any path in the OCG(p).

—Analogous to the definition of du-associations for imperative programs in
(Clarke et al. [1989], Frankl and Weyuker [1983], Korel and Laski [1983],
Ntafos [1984], Perry and Kaiser [1990], and Rapps and Weyuker [1985]

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:19

Fig. 6. k-dr interactions.

our du-associations, which can be determined statically may not all be
executable. There may be no assignment of input values to a program that
will cause a definition of a root r to reach a particular use on a terminal t.
Determining whether such du-associations are executable is shown to be
impossible in general and often infeasible in practice [Frankl and Weyuker
1988; Weyuker 1983]; thus, dataflow test adequacy criteria typically require
that test data exercise (cover) only executable du-associations. In this re-
spect, our criterion (as we shall show) is no exception and can indeed contain
nonexecutable du-associations. In the rest of this article, to distinguish the
subset of the static du-associations in a VDFLs that are executable, we refer
to them as executable du-associations.

The second reason for the appropriateness of modeling datalinks as DUs in
VDFLs can be attributed to the visual reflection of tested or exercised DUs
that are associated with a datalink during testing or after a test suite has
been exercised. In general, there is visually, a one-to-one mapping between
every datalink and its associated DUs. A more detailed description of our color
mapping technique to datalinks is found in Section 5.1.

4.3 Applicable Dataflow Testing Criteria

Having introduced the definition and use associations in VDFLs, we next briefly
examine the applicability of three major dataflow testing criteria: Ntafos [1984];
Laski and Korel [1983]; and Rapps and Weyuker [1985].

Ntafos [1984] proposed a family of test adequacy criteria called the required
k-tuples, where k is a natural number > 1. The required k-tuples require that a
path set P = {p1, p2, . . . , pn} covers chains of alternating definitions and uses, or
definition-reference interactions called k-dr interactions (k > 1). An example of
k-dr interactions is depicted in Figure 6. In n1, there is a definition of a variable
x1, that is used to define variable x2 in n2 such that x1 ∈ n1 reaches n2 via path
p1. Therefore, the information assigned to variable x1 ∈ n1 is propagated to vari-
able x2 ∈ n2. This information is further propagated to another variable, say, x3
∈ n3 such that x2 ∈ n2 reaches n3 via path p2. This information propagation pro-
cess continues until it reaches nk . Thus the set of paths {p1, p2, . . . , pk−1} form
k-dr interactions. The required k-tuples requires some subpath propagating
each k-dr interaction such that (1) if the last use is a predicate the propagation
should consider both outcome (true and false), and (2) if the first definition or
the last use is in a loop, the propagation should consider either a minimal or
some larger number of loop iterations. The required k-tuple coverage criterion,
or k-dr interaction chain coverage criterion, then requires that all feasible
k-dr-interaction chains should be tested.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:20 • M. R. Karam et al.

Fig. 7. Paths that are definition-clear with regard to x1, x2,,, xk .

Laski and Korel [1983] defined and studied another kind of testing path se-
lection criteria based on dataflow information. They observed that a given node
may contain uses of several variables. Each variable may be defined at more
than one node. Different combinations of the definitions constitute different
contexts of the computation at the node. Figure 7 depicts one of their strongest
criteria; ordered context coverage.

In an OCG(f), it is possible to apply either the Ntafos [1984] or the Laski and
Korel [1983] criteria; however, there are two main reasons why these criteria
would not be feasible in VDFLs. First, accounting for the dataflow information
required by these criteria requires complex and costly dataflow analysis neces-
sitating backward propagation of variables and their uses, which, as we shall
show, is more expensive then the chosen [Rapps and Weyuker 1985] criteria.
Second, required paths in k-dr interactions and ordered context paths, do not
have a direct one-to-one mapping with datalinks in VDFLs—a strategy that
makes it possible to color an exercised datalink when the path that is associ-
ated with it has been traversed—and would be too complex and overcrowding
for the tester to have to deal with, both visually and theoretically.

Therefore, our approach to defining a dataflow test adequacy criterion for
VDFLs adapts the all-dus dataflow test adequacy criterion defined for imper-
ative programs in Rapps and Weyuker [1985]. The all-dus, is concerned with
tracing all definition-clear subpaths that are cycle-free or simple-cycles from
each definition of a variable x to each use reached by that definition and each
successor node of the use. Thus, adapting the all-dus testing criterion of Rapps
and Weyuker [1985], the all-Dus for VDFLs can be defined as follows:

Definition 4.3 (all-dus). Given a VDFL universal method p with its OCG(p),
the set of complete feasible paths M in OCG(p), a set of execution paths
Q ⊂ M, and a test suite T for p, we say that T satisfies this criterion iff for
each feasible definition-use association = {(ni, nj , (r, t)), (ni, (nj , nk), (rm, tn)) or
(ni, (nj , nl), (rm, tn))}, there is some test case t in T such that, when p is exe-
cuted on t, there exists at least one path q in Q on which every DU in OCG(p)
is exercised.

There are several advantages associated with the applicability of the all-
dus criterion to VDFLs. First, since variables in VDFLs cannot be redefined,

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:21

accounting for the all-dus can be obtained from the editing engine, and account-
ing for the redefinition of loop-associated variable definitions (loop-root) can be
easily calculated since they always occur at the same place (output-bar of a
case). A second advantage is the ease of visually mapping every path corre-
sponding to a du-association to a datalink. The du-associations corresponding
to the redefinition of a loop-root on an output-bar of a case are constructed
during a testing session as indirect datalinks. The construction process of the
indirect links will be discussed in Task 2 of Section 5.1, in the context of the
example in Figure 13. The third advantage is the color mapping scheme that
can be applied to each exercised du-associations or datalink. Our color map-
ping scheme uses a continuous coloring technique to color datalinks that are
exercised only during failed executions (incorrect results), passed executions
(correct results), or both.

5. A METHODOLOGY FOR TESTING VDFLS

Several algorithms for collecting static control-flow and dataflow analysis tech-
niques [Aho et al. 1986] have been developed for imperative languages. All these
algorithms process the program’s textual source code to build the flow of con-
trol and extract static analysis by propagating variable definitions along control
flow paths to conservatively identify executable du-associations. As previously
discussed in Section 1, the second class of differences between VDFLs languages
and traditional ones (the iconic nature of the VDFLs) makes it impossible to
use conventional text scanners to: construct the OCG; preserve the control and
data dependencies among operations; extract all-Dus; or probe the code for dy-
namic tracking purposes. To compensate for these fundamental differences, we
have augmented a Prograph-to-Java translator in a way that allowed us to ex-
tract the topologically sorted operations2 , and perform LR parsing on them
(before they are translated to Java) to accurately build the OCGs, as well as
integrate support for our testing methodology into Prograph’s environment at
a fine granularity, providing functionalities that gave us the ability to:

—Determine the source code static control-flow and dataflow analysis.
—Probe the Java code to automatically track execution traces of every test case

t in T, which provide the information necessary to determine the exercised
du-associations that is involved in producing valid or invalid output values
in a test case.

—Visually communicate, through the use of a coloring scheme, the coverage
of datalinks, which in turn play an important role in helping users locate
potential faults in the visual code.

—launch a user-accessible test sessions facility—developed through the tools
add-on in Prograph—to visually pronounce validations output, and commu-
nicate to the user how well exercised a function is.

2The topological sorted order of operations is performed automatically by the editing engine while
editing the program. This sorting preserves both the control and data dependencies in developed
programs.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:22 • M. R. Karam et al.

5.1 The Details of the Methodology

The approach we chose to gain access to the set of operations that is stored
and maintained by the editing engine, involved the design and implementation
of a component that acts as an interface to the editing engine’s application
programming interface (API). This approach has proven to be very useful in the
phases of: (1) constructing the OCG and extracting dataflow analysis, using a
one-pass LR parsing technique, (2) probing of the code as it is translated to Java,
and (3) coloring and visual validation of datalinks after testing. We next discuss
details related to each phase. The code used in all phases in our prototype was
mainly written in Prograph, with the exception of a few libraries that were
written in C++. We next explain each phase of our methodology in the context
of the example that is depicted in Figure 5.
Task 1—constructing the OCG and computing static dataflow analysis.
Using the API interface component, we were able to access an indexed set of
operations that is stored and maintained by the editing engine of Prograph.
This information made it possible to perform a one-pass over the set, build-
ing the OCGs, and collecting their relevant du-associations. A portion of the
design and algorithms of our object-oriented one-pass solution is depicted in
Figure 8. Figure 8(a) depicts part of the operation class hierarchy (implemented
in Prograph). Each inherited class in the hierarchy has a method buildOper()—
depicted in Figure 8(c) and Figure 8(d) for primitive and input-bar operation,
respectively—that determines the type of operation, its control, and then builds
the appropriate node, edge(s), and extract relevant du-associations. The algo-
rithm in Figure 8(a) is invoked on all operations in the set. To illustrate how
its main function (biuldOper()) works, without getting wrapped up in infinite
details, we next describe our one-pass technique in the construction context of
the input-bar (n1), and the primitive operations ask and integer? of Figure 5
that are labeled n2 and n3, respectively.
� When the input-bar operation is fetched from the set, the buildOper() al-

gorithm in Figure 8(d) is invoked. Line 2 constructs n1 in the OCG of
Figure 5. Line 3 creates the edge between n1 (already fetched) and n2 the
next operation to be fetched. Line 4 records the edge (n1, n2), and assign a
false value to it. This false value will be true when this edge is traversed.

� When the operation ask is fetched from the set, the buildOper() algorithm in
Figure 8(c) is invoked. Since the ask primitive is not annotated with any type
of control, the first case of the switch statement in the algorithm of Figure 8(c)
on line 4 is executed. Line 5 determines O1 (or n3) in the OCG in Figure 5. Line
6 creates the edge between n2 (already fetched) and n3 the next operation to
be fetched. Line 7 records the edge (n2, n3) in the OCG and assigns a false
value to it. Line 8 makes a call to extractDUs (O, null, null, null) algorithm
of Figure 8. Since n2 does not have any control annotations, the first switch
case on line 2 of the extractDUs algorithm is chosen. The for loop however
does not execute, since n2 does not have any terminals. Now consider the
integer? primitive. When the operation integer? is fetched from the set, the
buildOper() algorithm in Figure 8 (c) is invoked. Since the integer? primitive
is annotated with next-case control, the fourth case of the switch statement

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:23

Fig. 8. Algorithms in (b), (c), and (d) for building the OCG and extracting dataflow information.

in the algorithm of Figure 8(c) on line 28 is executed. Line 29 determines O1
(or n4) in the OCG in Figure 5. Line 30 creates the edge between n3 (already
fetched) and n4 the next operation to be fetched. Line 31 records the edge (n3,
n4) in the OCG and assigns a false value to it. Line 32 determines and returns
OT the type of n3 (Os or Ox). You may recall from The building process of the

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:24 • M. R. Karam et al.

OCGs that Os ∈ O is the subset of operations that always succeed by default,
and Ox ∈ O is the subset that does not. Line 33 determines and returns
OC the type of control (i.e. fail, finish, next-case, or terminate} (in this case,
it is next-case on failure). Line 34 invokes determineNThTargetOper(O, OT ,
OC) which determines O2 the nth operation to which the other edge of the
evaluation of the integer? is built to (in this case its the input-bar or n15 in
the OCG). Line 38 creates the edges between n3 and n15; (shown in Figure
5 as an edge from n3 to the Entry node 1:2 E, and from that to n11). Line 39
records the edge (n3, n11), and finally line 40 makes a call to extractDUs (O,
e1, e2, null). Since n3 has a control annotation, the first switch case on line 2
of the extractDUs algorithm is chosen.

� As previously mentioned, with the presence of loops in Prograph, roots as-
sociated with a loop or loop-roots are first defined at the local’s loop-root,
and then implicitly redefined at the Output-Bar of each case in the looped-
local. For example, as depicted in Figure 5, the loop-root r2 is first defined at
the looped operation bLooped, and subsequently redefined at the operation
labeled n8 with the implicit statement r2 = r4. Thus the du-associations
related to a loop-root lr are divided into two sets. One set that satisfies
the du-associations with regard to the definition of lr on the looped-local,
and a second set that satisfies the du-associations with regard to the im-
plicit redefinition of lr on the output-bar of the looped-local. The first set is
collected by computing the du-associations with regard to the definition of
lr that is connected or has uses, via wrap-around datalinks, to operations
inside the looped-local. For example, the definition of the loop-root r2 on
node 4e in Figure 5 has a c-use on the operation labeled n7, and a p-use on
the operation labeled n6. The second set is collected by computing the du-
associations with regard to the implicit redefinition of lr (at the output-bar)
that has uses on operations inside the looped-local. For example, the implicit
redefinition of the loop-root r2 at n8 has a c-use on the operation labeled
n7, and a p-use on the operation labeled n6. Since the implicit redefinition
of a loop-root always occurs at the output-bar of the looped cases, collecting
the du-associations associated with a loop-root before the implicit redefini-
tion can be resolved statically by relying on the automatic collection of the
dataflow information provided by the editing engine during the visual coding
phase.

Task 2—tracking execution traces, and visual representation of results.
To track the dynamic execution, we have simply instrumented the Prograph-
to-Java translator in a way that allows us to probe each operation/control an-
notated operation before it is translated. Once the Java textual code has been
compiled, test suites are then run on the Java code. The probes allowed our
testing environment to record, under each test case t in T, the execution traces
and maintain the states (true or false) of each operation, predicate operation, or
du-associations, as collected by the algorithms in Figure 8 and Figure 9. To ap-
ply our color mapping scheme to exercised datalinks, our testing environment
also maintained a set of pointers for each operation, root, and terminal to allow
us to effectively color these datalinks after the execution of each test case t in

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:25

Fig. 9. Collecting the dus.

a test suite T. To illustrate the use concept of these pointers, consider the ask
and integer? operations in 1:2 E of Figure 5 and their root r1 and terminal t1,
respectively. Figure 10 depicts in Window (a) and its related windows (b, c, d,
e, and f), a series of connected arrows that starts in the highlighted item of (a)
and ends in the highlighted item in (e). The series of arrows shows the various
highlighted window items’ value, when double clicked in the same order as that
of the arrow sequence. The sequence, when followed from (a) to (e), shows the
primitive operation integer? in (a); its pointer value in (b) as the first item in
the Window; the terminal pointer of t1 in (d); its connected operation ask in (e);
and finally, the pointer value of operation ask in the top item of (f). The various
values of operations, terminals, and roots are used in the color mapping scheme
during testing.

The visual illustrations and colors we used to represent all-dus coverage re-
flect two constraints that we believe to be important for the integration of visual
testing into VDFLs. We derived these constraints from literature on cognitive
aspects of programming (Gren and Petre [1996] and Yang et al. [1997]), and
the use of color in fault localization [Agrawal, et al. 1995; Jones et al. 2002].
The constraints we placed on the visual representation and colors of exercised
datalinks under test should: (1) be courteous of screen space and maintain
consistency of visual constructs; and (2) be accessible and recognizable.

To satisfy the first constraint when reflecting through color the all-dus cov-
erage of datalinks and their associated du-associations, we introduced only one
additional artifact to existing datalinks; indirect datalinks. Direct datalinks are
of course created by the user at the visual coding phase. Indirect datalinks, how-
ever, are constructed, after the user initiates a testing session, from loop-roots to

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:26 • M. R. Karam et al.

Fig. 10. A fragment tof Prograph’s implementation showing the pointers used in tracking and
coloring of operations ask and integer, and root r1 and terminal t1 in the example of Figure 5.

terminals inside a looped-local operation. For example, as depicted in Figure 13,
four indirect datalinks are constructed from the loop-roots on the looped-Local
factorial operation to the terminals on operations 0, -1, and ∗ to represent their
associated du-associations. While indirect datalinks do introduce additional ar-
tifacts to the visual code, their presence is necessary to communicate, through
color, their testedness. The indirect datalinks appear and disappear depending
on whether the looped-local window that is associated with the use (c-use or
p-use) is opened. That is, if the looped-local window is closed/minimized, the
indirect datalinks are made to disappear and the loop-roots that are associated
with the indirect datalinks are made to blink to indicate that user attention
is needed. Once the user double clicks on a blinking loop-root, the looped-local
window is opened and the indirect datalinks are made to reappear. The blink-
ing, as a metaphor, has been used commercially in many of today’s operating
systems and applications to draw a user’s attention to a specific area on the
screen. For the sake of simplicity, direct and indirect datalinks will be referred
to in the rest of this article as datalinks.

To satisfy the second constraint, and assist the analyst in identifying and
minimizing the fault search space, we incorporated a color mapping scheme

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:27

that uses a continuous level of varying color (hue) to indicate the ways in which
the datalinks participate in the passed and failed test cases in a test suite. We
selected colors along the red (danger), yellow (cautious), and green (safe), to
improve our goal of drawing users’ attention to testing results and potential
fault locations. A similar approach [Jones et al. 2002; Liblit et al. 2005] that
used color to localize faulty statements in imperative languages, found these
color combinations to be the most natural and the best for viewing. Other stud-
ies found that, due to the physiology of the human eye, red stands out while
green recedes [Christ 1975; Murch 1984; Shneiderman 1998]. The color map-
ping scheme measurements and testing results will be described in Section 6.2.

The testing system we have implemented in Prograph’s IDE and used to
produce Figure 10 and Figure 13 in this article, provide users with the ability to
initiate an all-dus testing session, and use the static and dynamic data collected
from Task 1 and Task 2 to present the user with testing results in a debug-like
window. This approach provides, in Prograph, an integrating environment of
testing and debugging. Creating these debug-like windows was made possible
through the API and external library that are available to third part developers
of Prograph.

6. EXPERIMENTAL DESIGN AND EMPIRICAL RESULTS

To obtain meaningful information about the effectiveness of our all-dus ade-
quate testing methodology in: (a) revealing a reasonable percentage of faults
in VDFLs; and (b) assisting users in visually localizing faults by reducing their
search space, we designed and conducted two studies. We next describe the de-
sign setup, measurements analysis, and empirical results for Study 1. Study 2
is discussed in Section 6.2.

6.1 Study 1

In setting up the design of our first study, we used a set F = { f1, f2, . . . , f8}
of 8 programs/functions3 we called the base functions set, and produced, for
each f ∈ F a test pool4 tp(f). Next, we used tp(f) to create for each f ∈ F (i)
DU T (f) = {T1, T2, . . . , Tk} the set of du-adequate test suites with regard to f,
and (ii) RST (f) = {T ′

1, T ′
2, . . . , T ′

k} the set of randomly selected test suites for
f such that, for each j < k, Tj = {t1, t2, . . . , td } and T ′

j = {t ′
1, t ′

2, . . . , t ′
d } are of

equal size, and t and t ′ are test cases in T and T ′, respectively. We then created
V(f) = {v1(f), v2(f), . . . , vn(f)} the set of faulty versions for each f ∈ F, where each
faulty version vi(f) ∈ V(f) contained a distinct single fault. Finally, for each
faulty version vi(f) ∈ V(f) ∈ F , we ran on vi(f): (1) every du-adequate test suite
Tj ∈ DU T (f) and recorded its fault detection ability; and (2) every randomly
selected test suite T ′

j ∈ RST (f) and recorded its fault detection ability. We say
that a fault is detected when: in (1) the output of vi(f) when executed on t
∈ T, produce results that differ from that of f when executed on t; in (2) the
output of vi (f) when executed on t ′ ∈ T ′, produce results that differ from that

3We use the words program and function interchangeably in the rest of this article.
4Details of creating test pools and other experimental steps will be explained later in this section.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:28 • M. R. Karam et al.

of f when executed on t ′. Similar studies, design approach, and fault-detecting
abilities of several varieties of test suites applied to imperative and form-based
programs, have been used in Frankl and Weiss [1993]; Hutchins et al. [1994];
and Rothermel et al. [2001]. We next describe the rest of our study design setup
and results.

6.1.1 Base Programs and Test Suites. Our base programs’ specifications
for this study were chosen not to be overly complex. The logic behind this was
to allow people involved in this study to seed faults in these programs, cre-
ate their test pools, and examine their code for infeasible du-associations. The
subject programs had to however be complex enough to be considered realis-
tic, and permit for the seeding of many hard-to-find faults. Each function was
chosen to be compilable and executable as a stand-alone unit. Since our testing
methodology has been implemented in Prograph’s IDE, we obtained 8 Prograph
programs from examples that were shipped with Prograph, and were thus con-
sidered to be commercially produced. Table I lists the numbers of operations,
control annotated operations, and du-associations for each base program. These
base programs provided the oracle to check the results of test cases executed
on the faulty versions.

6.1.2 Base Programs’ Test Pools and their Test Suites. Since it is easy to
show that, for VDFLs, as well as for imperative programs, dataflow adequacy
criteria (Definition 4.4) can produce test suites that are stronger then state-
ment (Definition 3.2) or decision coverage criteria (Definition 3.3), we elected
to acquire du-adequate test suites for our base programs to evaluate the effec-
tiveness of our testing methodology. To obtain these, we began by asking one
Prograph expert to generate TP (F) = {tp(f 1), tp(f 2), . . . , tp(f 8)} the set of test
pools containing for each base function fi ∈ F its own test pool tp(fi). To popu-
late each tp(fi) ∈ TP(F), the user first created an initial set of test cases based
on his understanding and knowledge of exercising fi ’s functionality and special
values and boundary points that are easily observable in the visual code. The
tester then examined the du-coverage achieved by the initial test cases set, and
modified/augmented the initial set of test cases, to ensure that each executable
du-association was exercised by at least 7 test cases. The resulting test pools
for each fi ∈ F, as depicted in Table I, ranged in size from 143 to 524 test cases.

To obtain the du-adequate test suite dut(fi) = {t1, t2, . . . , tm} from each tp(fi),
we first determined, for each test case t ∈ tp(fi) it’s exercised du-associations, and
then created dut(fi) by randomly selecting a test case t from tp(fi), and adding
it to dut(fi) only if it incrementally added to the overall cumulative coverage
achieved by test cases added to dut(fi). We repeated this process until dut(fi)
was du-adequate; yielding, for each fi ∈ F a dut(fi) of size m. This process re-
sulted, after discarding duplicate test suites, between 12 and 17 du-adequate
test suites for each fi ∈ F. Finally, to create a randomly selected test suite rst(fi)
for each function fi ∈ F, we performed the random function t ′ = ran (tp(fi) =
{t1, t2, . . . , tm}), m times, where m is the size of dut(fi), = {t ′

1, t ′
2, . . . , t ′

m} to ran-
domly select test cases from tp(fi) of the same sizes as that of the latter.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:29

Table I. The Number of Operations, Edges, Du-Associations (Dus), Number of Faulty
Versions, and Test Pool Size (Number of Test Cases) for Each Base Program

Faulty Test pool size
Programs Operations Edges Dus Version for each f
Bubble Sort 54 32 49 11 267
Factorial 27 6 32 15 179
Fibonacci 49 8 50 13 192
Gaussian elimination 88 32 106 19 481
Matrix multiplication 64 28 56 9 318
Replace subtree 31 10 29 16 298
Topological sort 66 28 74 18 143
Word place: finding the
place of a word in a sentence. 82 31 107 20 524

6.1.3 Faulty Versions. Ideally, the most desirable type of faults to study
would be real faults that have been recorded in the course of the development
of the software; however, due to inadequate information available to us about
faults of that type, we created V(f) the set of n faulty versions for each base
function fi ∈ F. To do that, we asked 8 different individuals with different per-
ceptions of fault-related production in Prograph programs (ranging in expertise
from intermediate to experts), and mostly without knowledge of each other’s
work, to introduce in each vi (f) ∈ V(f), a single fault that reflects, as realistically
as possible, their experience with real Prograph development, in an effort to
preserve the accuracy of our study. The fault seeding process yielded, as de-
picted in Table I, between 9 and 20 faulty versions for each fi ∈ F. The seeded
faults were mostly changes to a single feature of the visual code, and took the
form of creating erroneous or missing: datalink; control; input; or primitive.

6.1.4 Measuring the Effectiveness of Fault Detection. Let T ∈ DUT(f)
and T ′ ∈ RST (f) be two test suites for f ∈ F, respectively, and V(f) =
{v1(f), v2(f), . . . , vn(f)} is the set of faulty versions in f each containing a sin-
gle known fault. We say that if TS = (T or T ′) detects (e < = n) of the faults in
V(f), then the effectiveness of TS can then be measured by percentage of faulty
versions whose faults are detected by TS, and is given by (e/k ∗100). A fault
is detected by TS if there exists at least one test case t = (z, i, ov/i , cn) ∈ TS
(recall Definition 3.1) that, when applied to vi (f) and f, causes the production of
the tuple (z, i, oi, cn) in vi (f), and the tuple (z, i, ov, cn) in f. As mentioned earlier,
base programs provided the oracle to check the output (ov for valid or oi for
invalid) of a test case executed on a faulty versions.

6.1.5 Data Analysis and Overall Results. Figure 11 contains a separate
graph for each of the eight base program f ∈ F. Each graph contains every
faulty version vi (f) of f, and each vi (f) occupies a vertical bar position along the
x-axis and is represented by an overlapping pair of vertical bars. The two over-
lapping bars depict the percentage of the du-adequate test suites (black bars)
and the percentage of the randomly generated test suites (light grey), respec-
tively, that detected the fault in that faulty version. The legend and informa-
tion on the X-axis and Y-axis are depicted in the lower part of Figure 11. As

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:30 • M. R. Karam et al.

Fig. 11. Percentages of test suites that revealed faulty versions, per program, per version. Black
bars depict results for du-adequate test suites; gray bars depict results for randomly generated test
suites.

the overlapping bars of each program and its faulty versions indicate in Figure
11, both DUT(f) and RST(f) missed faults in Study 1 which involved 121 faulty
versions. Figure 12 indicates three vertical bars on the X-axis: the first bar rep-
resents, with the Y-axis, the number of faulty versions in which the DUT(f) was
more effective than RST(f); the second bar indicates, with the Y-axis, the num-
ber of faulty versions in which the RST(f) was more effective than DUT(f); and
the third bar indicates, with the Y-axis, the number of faulty versions in which
the RST(f) was as effective as the DUT(f) in detecting the fault. As depicted
in Figure 12, there were across the entire study 80 faulty versions in which
the DUT(f) were more effective then RST(f), 20 faulty versions in which the
RST(f) were more effective then DUT(f), and 21 faulty versions in which RST(f)
were as effective as DUT(f). These results clearly indicate that du-adequate test
suites are more effective at revealing faults than their randomly generated
counterparts. Two similar studies by Hutchins et al. [1994] for imperative lan-
guages, and Rothermel et al. [2001] for form-based languages also showed that
du-adequate test suites were more successful at detecting faults.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:31

Fig. 12. This graph captures for each program and its versions, three vertical bars on the X-axis
containing the numbers of: DUT(f) > RST(f); DUT(f) < RST(f); and DUT(f) = RST(f).

6.1.6 Study Conclusion. In this study, we conducted a highly accurate
measurement of the test suites (T ∈ DUT(f) and T ′ ∈ RST(f)) effectiveness in
detecting faults. There are, however, some aspects of this study that would
limit our ability to generalize the results pertaining to the capabilities of our
test suites. We thus need to make it clear that (i) our base programs may not be
large enough, and may not unnecessarily capture the program space in VDFLs;
(ii) our faulty versions creation method may not necessary represent the fault
space in VDFLs; and (iii) our test pools were generated based on the correct
base programs, and it may be worth investigating the effectiveness of our test
suites had we included the faulty version in the test pool extraction. Second,
we cannot claim any knowledge on different groupings of faults. For example,
we were not able to determine, after an exhaustive examination of the faults
in our programs, why some faults were easily detected by DUT(f), others easily
detected by RST(f), and several other faults were equally well detected by both
RST(f) and DUT(f). We did conclude that there is no clear strategy to follow to
bring about such groupings.

6.2 Study 2

Thus far, we have not demonstrated that our testing methodology, combined
with our color mapping scheme and visual feedback, can assist users in

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:32 • M. R. Karam et al.

visually localizing faults by reducing their search space. In Study 2, we use
the DUT(f) of Study 1 (since it was proven to be more effective at detecting
faults) to measure how effective our color mapping scheme is in helping to
locate faults after a test suite set is executed on a faulty version. The proce-
dure in this study was as follows: for every f ∈ F, we executed each vi (f) ∈ V(f)
on each T ∈ DUT(f), and then applied, for to each (vi (f), T) pair, the continu-
ous color scheme and visual feedback to the datalinks (du-associations: c-use
and p-use). We then calculated for each vi (f), over all test suites T ∈ DUT(f),
the continuous color of each datalink in vi (f). The datalinks’ colors were then
used in this study to investigate the space faults and the user’s ability to localize
faults. We next describe our color mapping scheme, empirical results, and study
conclusion (see Figure 13).

6.2.1 Color Mapping Scheme. The fundamental idea of our color mapping
scheme revolves around continuously coloring (red to yellow to green5), ac-
cording to the relevant percentage of test cases that produce valid results when
executing the du-associations to the test cases that exercise the du-associations
but produce invalid results. As such, the color of a datalink can be anywhere in
the continuous spectrum of colors from red to orange to yellow to green. A sim-
ilar color mapping scheme was used in Agrawal et al. [1995] and Jones et al.
[2002] to study the localization of faulty program lines or statements. Other
similar studies colored cells for validation in form-based languages [Rothermel
et al. 2001].

For every direct and indirect datalink in vi (f) ∈ V(f), our color mapping scheme6

is as follows:
� If the percentage of the test cases in DUT(f) that exercise a direct and indirect

datalink and produce valid results, when run on vi (f), is much higher than
the percentage of test cases that produce incorrect results, then the hot spot
appears more green; otherwise it appears more red. The intuition here is that
datalinks that are executed primarily by test cases that produce valid results
are not likely to be faulty, and thus are colored green to denote a possible
safe neighborhood; otherwise, datalinks that are executed primarily by test
cases that produce invalid results should be suspected as being faulty, and
thus are colored red to denote a possible faulty neighborhood. The notion of
neighborhood is necessary in VDFLS since, unlike imperative languages, the
code constructs are graph-like, and distributed over many cases. Hence our
notion of localizing faults through color mapping differs from that introduced
for imperative languages [Agrawal et al. 1995; Jones et al. 2002]. In our study,
the fault space is considered to be found if it is located in the neighborhood of
one or more datalinks that are colored suspiciously or in the reddish-orangish
color range in a case containing the fault. The intuition here is that this can
direct a user’s attention to a faulty neighborhood, and minimize the search
space of faults.

5These color combinations were found to be the most natural in [Jones et al. 2002], and they also
complement the blue colored program constructs in Prograph.
6The reader is encouraged to read the PDF file of this article or print a colored copy.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:33

Fig. 13. The factorial main under test showing color reflections on datalinks.

� If the percentage of the test cases in DUT(f) that produce valid results, when
run on vi (f), is near-equal to the percentage of test cases that produce incorrect
results, then the hot spot is colored yellow. The intuition here is that datalinks
that are executed by test cases that produce a mixture of valid and invalid
results are consider a cautious neighborhood, and are thus colored yellow.

� If 100% of the test cases in DUT(f), run on vi (f), do not exercise a particular hot
spot, then that hot spot is not colored, and is left blue (its original color). The
intuition here is that if a datalink is never exercised, leaving it in its original

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:34 • M. R. Karam et al.

color could give incentive to users to further investigate its neighborhood in
case of failure.

6.2.2 Color Measurements of Datalinks. Recall Definition 3.1 where we de-
fined a test suite T = (Z, I, OV/I , CN). Using Z, the test case number; I, the set of
inputs values; OV/I vi (f)’s output valid/invalid set of results of executing vi (f) us-
ing T; and CN , the set of covered nodes in OCG(vi (f)) that helped us to determine
the exercised datalinks in each t = (z, i, ov/i , cn) ∈ T, we colored a hot spot or
datalink representing a c-use as follows: color = low red + ((%valid()) (%valid()
+ %invalid()) ∗ color range). The valid() function returns, as a percentage, the
ratio of the number of test cases that executed the hot spot and produced a
valid result to the total number of test cases in the test suite. Likewise, the
invalid() function returns, as a percentage, the ratio of the number of test cases
that executed the hot spot and produced an invalid result to the total number
of test cases in the test suite. The value for the low red is the lower end of the
color spectrum, and has a value of 0. The color range corresponds to the high
end of the desired color spectrum; green in our case. For example, if a datalink
representing a c-use is executed by 50% of test cases that produced invalid re-
sults, and 100% of the test cases that produced valid results, its color will be
10/15 ∗ 120 = 80, which renders this as a green-yellowish color, as depicted in
the color legend of Figure 14. The color of a hot spot or datalink representing
a p-use is computed, using the above formula, as the average color of the du-
associations representing the true and false exercised outcome.7 For example,
if a datalink representing a p-use (true) is executed by 50% of test cases that
produced invalid results, and 100% of the test cases that produced valid results,
and its p-use (false) is executed by 100% of test cases that produced invalid re-
sults, and 50% of the test cases that produced valid results, its color will be 1/3
∗ 120 = 40, thus the datalink will be rendered at (80 + 40)/2 = 60. The indi-
rect datalinks (representing c-use and p-use associations) that are constructed
during testing are colored analogously to their direct datalinks counterpart.

6.2.3 Data Analysis and Overall Results. To evaluate our color mapping
technique, and report how frequently a fault is found in a reddish-oringish
neighborhood, we analyzed the color mapping applied to our subject program’s
faulty versions. To simplify the presentation of faulty versions and their fault
space, we decided to represent, as depicted in Figure 14, a separate graph for
each of the eight base programs’ faulty versions. Each faulty version vi (f) of
f occupies a vertical bar (with color spectrum) position along the x-axis and
represents the low and high neighborhood color of the fault space where the
fault is found. The Y-axis represents the color range (120). The color legend is
depicted in the lower part of Figure 11.

Across all versions of the base programs, there were two categories of neigh-
borhood fault space that were found to exceed the danger zone. The first

7We initially tried to color datalinks representing def-p-use associations [recall Definition 4.2: (ni,
(n j , nk), (rx , t y)), (ni, (n j , nl), (rx′ , t y ′))] by dividing them into two halves and applying the color
mapping scheme to each half separately. This approach was found to be difficult to explain to users
with regard to the overall color mapping consistency scheme.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:35

Fig. 14. This graph captures for each base program the color range of the neighborhood where the
fault was found.

category had its low color spectrum in the appropriate zone but its high color
spectrum in the inappropriate zone. For example, as depicted in Figure 14, ver-
sions 3 and 6 of the Factorial base program have their fault space approximately
between 53 and 60. In the second category, both the low and high color spectrum
were not found in their appropriate zone. For example, as depicted in Figure 14,
version 11 of the Factorial base program has its fault space approximately be-
tween 60 and 70. Across all faulty versions of the base programs, less than 6%
was found to be in category 1, and less than 3% was found in category 2. We
were not very concerned with category 1, since the majority of the datalinks in
all instances were in the low color spectrum, and were very indicative to the
user as to where the fault space is. As for the second category, we examined
their versions, and discovered that the fault was in erroneous datalinks that
initialize root values that were used in datalink executions by all or most test
cases.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:36 • M. R. Karam et al.

Versions 11 and 15 of Factorial and Topological sort, in particular, were found
to have more than one faulty space. This is not considered a threat to our testing
techniques, since users can use the process of elimination in examining the
faulty spaces or neighborhoods.

6.2.4 Study Conclusion. One significant problem in Study 2 was the pres-
ence of infeasible paths and their related du-associations in the faulty versions.
There are two different causes to infeasible paths. The first cause is semantic
dependencies that always hold. These dependencies in the single fault versions
of our subject programs varied in nature from a du-association on a path that
is directly related to conditional statements whose either true or false outcome
can never be realized to loops-related du-associations paths that could never be
traversed. The presence of these du-associations is usually referred to as dead
du-associations. The second cause of infeasible paths is due to the limitation or
lack of input data to exercise them.

Not being able to color datalinks was difficult to explain to users. It is our
intention to deal with the first cause by trying to detect, using static analysis
similar to that of Clarke [1976], and color identified infeasible datalinks green.

As for the category of the fault space spectrum, we intend to address this
situation by using a more advanced visualization technique that could perhaps
make use of the dependency analyses and slicing of the code. Computing static
output slices can be achieved by either using iterative dataflow equations [Aho
et al. 1986; Weiser 1984], or using a dependence graph [Horwitz et al. 1990].
The second approach is particularly applicable to VDFLs, since OCG is already
a graph representing both data and control dependencies.

7. CONCLUSIONS

The recently increasing popularity in the visual paradigm in general, and
VDFLs in particular, has resulted in many languages that are being used to pro-
duce much research and commercial software. Further, this popularity is likely
to grow due to the users’ anticipation of moving into the visual age of program-
ming. VDFLs are prone to faults that can occur at the visual coding phase. To
provide users of this paradigm with some of the benefits that are enjoyed by
their imperative counterpart, we have developed a testing methodology that is
appropriate for VDFLs. Our methodology and algorithms are compatible with
and accommodate all visual languages with a dataflow computational engine.
Our algorithms are also efficient, especially when given the fact that our static
dataflow analysis is derived from probing the same data structures used to exe-
cute the visual code. This article presented an implementation overview of a tool
that we have developed that implements our testing methodology, along with
the results of two studies that evaluate the effectiveness our fault detection
and fault localization technique.

Our empirical results from Study 1 suggest that our testing methodology
can achieve fault detection results comparable to those achieved by analogous
techniques for testing imperative languages. To investigate the importance of
these results and evaluate their potential benefits to VDFLs users, we imple-
mented, for Study 2, a color mapping technique that is based on our all-DUs

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:37

Table II. Hot Spots of Interest in the Visual Code.

Hot Spot Hot spot color scheme
Operation A non control annotated operation’s borders are

colored to indicate it’s correspondent OCG’s node
participations in a test suite.

Predicate The borders and the check/cross marks represent
Operation the hot spots of interest, and they are associated

with the True and False edges in the OCG, respec-
tively. If the operation o ∈ Os, then both hot spots
will be proportionately colored when the edge e
∈ OCG that is associated with o is exercised. If o
∈ Ox, then the borders are appropriately colored
when the when the true edge e ∈ OCG is exercised,
and the check/cross mark is appropriately colored
when the when the true edge e ∈ OCG is exercised

Loop The loop arrows are appropriately colored to in-
dicate the “loop back edge” participation in the
OCG after a test suite.

Multiplex The 3-D like lines on the multiplexed operation
are colored to indicate the “back edge” participa-
tion in the OCG after a test suite.

testing methodologies. This coloring technique provided a visual mapping of
the participation of datalinks in testing to assist users with no formal testing
theory in minimizing the fault search space. The datalinks are colored using a
continuous spectrum from red to yellow to green. Our empirical results from
Study 2 suggest that our technique is promising for helping locate suspicious
constructs in VDFLs and point to some directions for future work. We were en-
couraged by the fact that, for our subject programs, our technique significantly
reduced the search space for the faults in a single fault version. We suspect,
however, that users who have programming experience will perform differently
using our testing approach than users who do not have such experience. Thus
we intend to examine the relative effectiveness of our testing to both of these
user populations. To build knowledge of testing skills among less experienced
users, one approach we could take wiould be to allow these users to experiment
with weaker adequacy criteria, such as all-Nodes or all-Edges.

Since Study 2 focused on single faulty versions, we are currently conducting
additional studies to further evaluate our technique with multiple faults by
applying all-Nodes, all-Edges and all-Dus in one testing session, all at once,
and evaluate the faults localization detection ability of our system. The color
mapping scheme that we are applying to the operations and control annotated
operations (hot spots) is depicted in Table II.

One approach that can be beneficial to the user is the ability to modify the
source code after locating a fault, and have our testing environment rerun the
modified program on the test suite and dynamically update the views. One ap-
proach to doing this would be to incorporate regression test selection techniques
similar to those found in Gupta et al. [1996].

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:38 • M. R. Karam et al.

Finally, the testing methodology presented in this article addresses only
one of the important problems in dealing with VDFLs errors. Other testing
problems have been examined in the context of imperative languages. These
problems include: generating test inputs, validating test outputs, and detect-
ing nonexecutable code. These problems are also important in the context of
VDFLs, and in our ongoing work we are investigating them. We are also work-
ing on a way to scale up the methodology by taking into account global and
dynamic variables.

ACKNOWLEDGMENTS

We thank Pictorius Incorporated for providing us with details and insight on
how to integrate our testing methodology into the IDE of Prograph. In partic-
ular, many thanks to Garth Smedley.

REFERENCES

AGRAWAL, H., HORGAN, J., LONDON, S., AND WONG, W. 1995. Fault localization using execution slices
and dataflow tests. In Proceedings of the 6th IEEE International Symposium on Software Relia-
bility Engineering. 143–151.

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA.

AZEM, A., BELLI, F., JACK, O., AND JEDRZEJOWICZ, P. 1993. Testing and reliability of logic programs.
In Proceedings of the 4th International Symposium on Software Reliability Engineering. 318–327.

BELLI, F. AND JACK, O. 1995. A Test coverage notion for logic programming. In Proceedings of
the 6th IEEE International Symposium on Software Reliability Engineering. IEEE Computer
Society, Los Alamitos, CA, 133–142.

BERNINI, M. AND MOSCONI, M. 1994. Vipers: A data flow visual programming environment based
on the Tcl language. In Proceedings of the Workshop on Advanced Visual Interfaces (AVI’94). ACM
Press, 243–245.

BOULUS, J., KARAM, M. R., KOTEICHE, Z., AND OLLAIC, H. 2006. XQueryViz: An XQuery visualiza-
tion tool. In Proceedings the 10th International Conference on Extended Database Technologies.
Munich, Germany, 1155–1158.

BURNETT, M., HOSSLI, R., PULLIAM, T., VANVOORST, B., AND YANG, X. 1994. Toward visual program-
ming languages for steering in scientific visualization: A taxonomy. IEEE Comput. Sci. Eng. 1,
4, 44–62.

CHANG, S. K., TAUBER, M.J., YU, B., AND YU, J. S. 1989. A visual language compiler. IEEE Trans.
Softw. Eng. 15, 5, 506–525.

CHRIST, R. 1975. Review and analysis of color coding research for visual displays. Human Factors.
17, 6, 542–570.

CLARKE, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE
Trans. Softw. Eng. SE-2, 3, 215–222.

CLARKE, L. A., PODGURSKI, A., RICHARDSON, D. J., AND ZEIL, S. J. 1989. A formal evaluation of data
flow path selection criteria. IEEE Trans. Softw. Eng. 15, 11, 1318–1332.

DEL FRATE, F., GARG, P., MATHUR, A., AND PASQUINI, A. 1995. On the correlation between code
coverage and software reliability. In proceedings of the 6th International Symposium on Software
Reliability Engineering. 124–132.

FISK, D. 2003. Full metal jacket: A pure visual dataflow language built on top of Lisp. In Pro-
ceedings of the International Lisp Conference. New York, NY, 232–238.

FRANKL, P. AND WEISS, S. 1993. An experimental comparison of the effectiveness of branch testing
and data flow testing. IEEE Trans. Softw. Eng. 19, 8, 774–787.

FRANKL, P., WEISS, S., WEYUKER, E. J. 1985. ASSET: A system to select and evaluate tests. In
Proceedings of the IEE Conference on Software Tools. 72–79.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

Unit-Level Test Adequacy Criteria for Visual Dataflow Languages • 1:39

FRANKL, P. G. AND WEYUKER, E. J. 1988. An applicable family of data flow testing criteria. IEEE
Trans. Softw. Eng. 14, 10, 1483–1498.

GREN, T. R. G. AND PETRE, M. 1996. Usability analysis of visual programming environments: A
“cognitive dimensions” framework. J. Visual Lang. Comput. 7, 2, 131–174.

GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. 1996. Program slicing-based regression testing tech-
niques. J. Softw. Test. Veri. Rel. 6, 2, 83–112.

HARROLD, M. J. AND SOFFA, M. L. 1988. An incremental approach to unit testing during mainte-
nance. In Proceedings of the Conference on Software Maintenance. 362–367.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12, 1, 26–60.

HUTCHINS, M., FOSTER, H., GORADIA, T., AND OSTRAND, T. 1994. Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In Proceedings of the 16th International
Conference on Software Engineering. 191–200.

JONES, J. A., HARROLD, M. J., AND STASKO, J. 2002. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on Software Engineering. 467–
477.

KARAM, M. R. AND SMEDLEY, T. J. 2001. A testing methodology for a dataflow-based visual program-
ming language. In Proceedings of the IEEE Symposia on Human Centric Computing Languages
and Environments. 280–287.

KARAM, M., BOULOS, J., OLLAIC, H., AND KOTEICHE, Z. 2006. XQueryViz: a visual dataflow XQuery
tool. In Proceedings of the International Conference on Internet and Web Applications and Ser-
vices. Guadeloupe, French Caribbean, IEEE Computer Society Press, 196/1–6.

KELSO J. 2002. A visual programming environment for functional languages. Ph. D. Thesis.
Murdoch University, Australia.

KIMURA, T. D., CHOI, J. W., AND MACK, J. M. 1990. Show and tell: a visual programming language.
In E. P. Glinert Ed. Visual Progrmming Environments. IEEE Computer Society Press, 397–404.

KUHN, W. AND FRANK, A. U. 1997. The use of functional programming in the specification and
testing process. In Proceedings of the International Conference and Workshop on Interoperating
Geographic Information Systems.

LASKI, J. W. AND KOREL, B. 1983. A data flow oriented program testing strategy. IEEE Trans.
Softw. Eng. SE-9, 3, 347–354.

KOREL, B. AND LASKI, J. 1985. A tool for data flow oriented program testing. In Proceedings of the
2nd Conference on Software Development Tools. Techniques and Alternatives, 34–37.

LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. 2005. Scalable statistical bug
isolation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. Chicago, IL, 15–26.

LUO, G., BOCHMANN, G., SARIKAYA, B., AND BOYER, M. 1992. Control-flow based testing of Prolog pro-
grams. In Proceedings of the 3rd International Symposium on Software Reliability Engineering.
104–113.

MARTENTM. 2007. http://www.andescotia.com.
MEYER, M. R. AND MASTERSON, T. 2000. Towards a better visual programming language: critiquing

Prograph’s control structures. In Proceedings of the 5th annual CCSC Northeastern Conference
on The Journal of Computing in Small Colleges. 181–193.

MURCH, G. M. 1984. Physiological principles for the effective use of color. IEEE Comput. Graph.
Appl. 4, 11, 49–54.

NTAFOS, S. C. 1984. On required element testing. IEEE Trans. Softw. Eng. 10, 6, 795–803.
OFFUTT, A. J., PAN, J., TEWARY, K., AND ZHANG, T. 1996. An experimental evaluation of data flow

and mutation testing. Softw. Pract. Exper. 26, 2, 165–176.
OUABDESSELAM, F. AND PARISSIS, I. 1995. Testing techniques for dataflow synchronous programs.

In Proceedings of the 2nd International Workshop on Automated and Algorithmic Debugging.
249–260.

PATON, B. E. 1998. Sensors, Transducers & LabView, Prentice Hall.
PERRY, D. E. AND KAISER, G. E. 1990. Adequate testing and object-oriented programming. J. Object-

Oriented Prog. 2, 5, 13–19.
RAPPS, S. AND WEYUKER, E. J. 1985. Selecting software test data using data flow information.

IEEE Trans. Softw. Eng. SE-11, 4, 367–375.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

1:40 • M. R. Karam et al.

ROTHERMEL, G. AND HARROLD, M. J. 1997. A safe, efficient regression test selection technique. ACM
Trans. Softw. Eng. Methodol. 6, 2, 173–210.

ROTHERMEL, G., LI, L., DUPUIS, C., AND BURNETT, M. 1998. What you see is what you test: A method-
ology for testing form-based visual programs. In Proceedings of the 20th International Conference
on Software Engineering (ICSE’98). IEEE Press, Los Alamitos, CA, 198–207.

ROTHERMEL, G., BURNETT, M., LI, L., DUPUIS, C., AND SHERETOV, A. 2001. A methodology for testing
spreadsheets. ACM Trans. Softw. Eng. Meth. 10, 1, 110–147.

SHAFER, D. 1994. The Power of Prograph CPX, The Reader Network.
SHNEIDERMAN, B. 1998. Designing the User Interface: Strategies for Effective Human-Computer

Interaction, 3rd ed. Addison-Wesley, Reading, MA.
WEISER, M. 1984. Program slicing. IEEE Trans. Softw. Eng. 10, 4, 352–357.
WEYUKER, E. J. 1986. Axiomatizing software test data adequacy. IEEE Trans. Softw. Eng. 12, 12,

1128–1138.
WEYUKER, E. J. 1993. More experience with dataflow testing. IEEE Trans. Softw. Eng. 19, 9,

912–919.
WING, J. M., AND ZAREMSKI, A. M. 1991. A formal specification of a visual language editor. In

Proceedings of the 6th International Workshop on Software Specification and Design. 120–129.
WONG, W. E., HORGAN, J. R., LONDON, S., AND MATHUR, A. P. 1995. Effect of test set minimization

on fault detection effectiveness. In Proceedings of the 17th International Conference on Software
Engineering. 41–50.

WOODRUFF, A. AND STONEBRAKER, M. 1995. Buffering of intermediate results in dataflow diagrams.
In Proceedings of the 11th International Symposium on Visual Languages. 187–194.

YANG, S., BURNETT, M., DEKOVEN, E., AND ZLOOF, M. 1997. Representation design benchmarks: a
design-time aid for VPL navigable static representations. J. Visual Lang. Comput. 8, 5/6, 563–599.

ZHANG, D. Q. AND ZHANG, K. 1997. Reserved graph grammar: A specification tool for diagrammatic
VPLs. In Proceedings of the IEEE Symposium on Visual Languages. 284–291.

Received November 2006; revised August 2007; accepted August 2007

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 1, Article 1, Pub. date: September 2008.

