
Network Analysis of Software Repositories:
Identifying Subject Matter Experts

Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

Abstract A software developer joining a large software project faces a steep learn-
ing curve before they are able to make real contributions. One challenge is finding
the subject matter experts who can answer questions about a specific area of the
software or to review changes. This is especially true of large projects with many
modules and a large number of authors. In this paper, we describe a method to model
a software project as a network using information mined from the project’s version
control repository, and demonstrate how network analysis techniques can be used to
identify the key authors and subject matter experts. We investigate metrics that can
be gathered using network analysis, such as which groups of authors typically work
together, and how closely knit the developers are on a project. We analyze several
specific projects to demonstrate the applicability of these techniques and several
hundred projects to show general trends.

1 Introduction

A new developer starting on a large has a lot to learn before they can be a productive
member of the team. The project contains many different modules, each of which
can be complex on its own. Typically, a junior developer will turn to a more senior
developer to ask questions, and to gain insight into the overall architecture of a
project. However, it can be difficult to identify experts for a particular area. A good
candidate to start with is the person who last modified a file in a module, but this

Andrew Dittrich
University of Nevada, Reno, e-mail: andy.dittrich@gmail.com

Mehmet Hadi Gunes
University of Nevada, Reno, e-mail: mgunes@cse.unr.edu

Sergiu Dascalu
University of Nevada, Reno, e-mail: dascalus@cse.unr.edu

1



2 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

person may have just fixed a formatting problem or a compiler warning, and might
not be the best person to ask.

Identifying the most experienced author for a specific area of the project is also a
problem for project managers. If a bug is found in a specific module of a large soft-
ware project, then ideally, the most experienced developer in that area of the project
should be assigned to fix it. Unfortunately, there is not an easy way to identify that
individual. If the manager has been working on this project for a while, then they
most likely have the experience to know who the key developer is in this area. Al-
ternatively, they can survey the team members to find someone who is familiar with
the area of the code in question.

A project manager may also be interested in how the development team works
together. If each developer works on a separate part of the project, and there is
no overlap in responsibilities, then there is increased organizational risk from team
members leaving the organization. A manager can mitigate this risk by analyzing
which members work together and organizing the team such that there is more
overlapping knowledge [12]. This risk is difficult to quantify, as there are limited
methods for measuring team cohesiveness.

Researchers have investigated collaborative networks to understand different as-
pects of collaborations [8]. This paper proposes modeling the version control repos-
itory as a network, and applying network analysis techniques to identify the key
authors for the project and to measure team cohesiveness.

The next section discusses related work. Section 3 discusses how data can be
gathered from a source control repository. Section 4 discusses how network analysis
techniques are applied. Sections 5 and 6 discuss the results of this analysis on some
specific projects, and general trends resulting from the analysis of a few hundred
projects. Section 7 analyzes the results. Section 8 concludes the article and suggests
future research in this area.

2 Related Work

There are many metrics that can be used to analyze a software project, but there
are very few metrics to identify key authors. Commonly used metrics include defect
rate, complexity, test coverage, and productivity [10]. These metrics are rarely used
to judge a specific author. Associating software metrics with specific authors can
cause authors to feel threatened, and is not recognized as a best practice in indus-
try [13]. Hence, typical software metrics are not available to solve this problem.

Other techniques have been developed to identify individuals familiar with spe-
cific areas of software. One such method is described by Linstead et.al. [6]. This
method searches the source code for keywords or topics, and associates authors
with the topics based on the history contained in the revision control repository.
This method is able to identify an author who is familiar with a particular topic
in the source code. Based on their results, this method is effective in identifying
subject matter experts for specific areas of code. However, this method does not



Network Analysis of Software Repositories: Identifying Subject Matter Experts 3

consider which authors are the core developers for the overall project, and does not
take advantage of the existing relationships between authors that are available in the
version control repository.

Another network analysis method is described by Lopez-Fernandez et.al. [7].
This method mined open source version control repositories to identify networks
of authors and gain insight into the overall structure of a group of developers. The
approach connects two authors if they have contributed to the same module, and
produces an author network. General data is then gathered from this network in
order to characterize the project overall.

Huang et.al. describe a similar analysis technique where an author network is
created using data from a source control repository [3]. Authors are connected if
they have worked on a file in the same directory. The resulting author graph is an-
alyzed using distance centrality to separate the network into kernel and peripheral
developers.

Several articles have been written on methods for gathering data from source con-
trol repositories. Voinea et.al. describe a framework for querying CVS repositories,
parsing the data, and analyzing it. They also propose a method to visualize the result-
ing data to highlight patterns in the development of a project, such as changes in the
development team over time [14] [15]. Kagdi et.al. describe a method to recover the
ordered sequence of changed items in a Subversion repository using several heuris-
tics, and a method for analyzing the results [5]. These advanced repository mining
techniques were not required for this study. The data needed from a repository can
be easily obtained from a log file and converted into a graph for further analysis, as
described in the next section.

Several studies have been performed to identify connections between members
of networks. Extensive analysis of authors of academic papers has been performed
to identify relationships between authors and author groups [9]. This analysis takes
a similar approach by linking authors that worked on the same paper, and using this
information to create an author network. This differs slightly from the software col-
laboration. Coauthorship of an academic paper consists of multiple authors working
together at the same time, whereas two developers may work on the same source
code at separate times with less collaboration between authors.

3 Gathering the Data

The first step in this analysis is to create a bipartite graph that links each unique
author with the files that they changed. One set of vertices in the graph are authors
and the other set are files. An edge is created for each author that changes a file. For
a basic analysis, each edge has equal weighting.

The primary source for this data is a log file produced from the version control
system. In this case, projects using Subversion were analyzed, and an xml-format
log was produced containing details on every modification to every file in the repos-



4 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

windinthew

larsl

richardash1981

vjohnson
martynshaw

mbrubeck

habes

jamescrook

dmazzoni

(a)

dm

habes

larsl

windinthew

richardash1981

vjohnson

martynshaw

mbrubeck

jamescrook

(b)

Fig. 1 Graph representations of the Audacity project. (a) A portion of the bipartite graph repre-
senting the Audacity project. Authors are blue and files are red. (b) The author graph resulting
from the projection of the bipartite graph.

itory. Other projects using other version control systems such as Mercurial, Git,
CVS, or Perforce could have also been used.

The log data was analyzed to produce a list of author-file pairs for each author
that made a change to each file. This was interpreted as an edge list for a graph that
represents the repository, i.e., a bipartite graph where one type of vertex represents
a file and another type of vertex represents an author. A subsection of the bipartite
graph produced for the open source Audacity project is shown in Figure 1a.

In some cases, only a subset of the repository needs to be analyzed. To accom-
plish this, the input data can be filtered to get more specific results using several
methods. This can be done by analyzing a log for only one section of a repository,
e.g., a single folder or module. The data could also be filtered by file name filters,
e.g., ’*.cpp’.

Another problem is with the initial addition of files. The author that adds a file
will be associated with that file, even if they are not an expert in that area. To avoid
this, the initial addition of files can be ignored, and only modifications are consid-
ered in the analysis.

Filtering the data by the date may also be necessary for long-term projects. Over
many years of development, authors will tend to make connections to each other by
working on the same file. This may give the incorrect impression that a develop-
ment team works closely together while certain individuals might have never met.
Filtering the data by a specific time period will avoid this problem.

4 Analyzing the Data

The graph that was produced by analyzing the data is a bipartite graph with edges
between authors and the files that they modified. This can be projected into two
undirected one-mode graphs that show the relationships between authors and the



Network Analysis of Software Repositories: Identifying Subject Matter Experts 5

relationships between files separately. The one-mode author graph produced from
this projection has a vertex for each author, and an edge connects two authors if
they made changes to the same file. This one-mode graph represents the network
of connections between authors. For instance, the author graph resulting from the
projection of the graph in Figure 1a is shown in Figure 1b.

The core developers for a project can be identified by analyzing the author graph.
These are the authors that are the most connected in the author graph. If an author is
well connected, then it indicates that they have worked on many different files with
many different authors, and most likely have a wide range of knowledge in the area.

To measure how well connected an author is, we can check the centrality of
the author. Measuring the degree of the author is a straightforward way to mea-
sure. However, this ignores the degree of the other authors to which this author is
connected. If an author has connections to others with many connections, then this
can indicate that the author works with other important authors, and should have a
higher weight. Another measure of centrality that takes this into consideration is the
eigenvector centrality. Measuring the eigenvector centrality for an author is a good
indication of how well connected this author is in the author network, and can be
used as a proxy to find the experts in this area.

It is important to know which authors typically work together on a software
project. This is very useful for a project manager when assigning resources to a spe-
cific project. Authors who have a history of working well together tend to make a
more productive team than those who don’t. Hence, identifying these authors might
be beneficial. One way to do this is to identify the communities of authors in the au-
thor graph. There are several algorithms for doing this. The algorithms that gave the
best results in our analysis were the greedy method, the modularity maximization
method, and the spinglass method.

The greedy method is a very simple algorithm that runs in O(n log 2 n) time, and
is well suited for extremely large networks [9]. This algorithm is implemented in
iGraph’s community fastgreedy method [4]. The projects analyzed in this study had
between 4 and 158 authors, so the simplicity of the greedy algorithm was not nec-
essary, and more complex algorithms could be explored.

The modularity maximization method is discussed in Newman [9]. This method
breaks the network into communities such that the total modularity of the network
is maximized. This algorithm is also implemented in iGraph’s community-leading-
eigenvector method [4]. This algorithm resulted in many small communities. Hence,
it may be useful if identifying small teams of programmers to work together or for
pair programming.

The spinglass method is a complex algorithm that simulates the cooling of a hot
system into a grounded state [9]. It associates negative modularity with the energy
of an infinite range spin glass and attempts to minimize the energy of the system
to find communities [11]. This algorithm is implemented in iGraph’s community-
spinglass method, as well [4]. This method produced a few large communities in the
projects analyzed, and seemed to give the best results among all methods.

The communities determined by either of the methods can be used to set up the
optimal team structure for a project by selecting people with a collaboration history



6 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

Table 1 Top 10 authors as measured by centrality metric

Audacity Subversion Super TuxKart
1.000 richardash1981 1.000 cmpilato 1.000 cosmosninja
0.971 dmazzoni 0.998 maxb 0.976 hikerstk
0.969 llucius 0.997 kfogel 0.955 auria
0.968 vjohnson 0.995 hwright 0.924 mbjornstk
0.964 jamescrook 0.995 dlr 0.896 coz
0.964 msmeyer 0.994 blair 0.880 hiker
0.954 mchinen 0.992 julianfoad 0.805 grumbel
0.953 windinthew 0.991 brane 0.791 thebohemian
0.951 martynshaw 0.991 ehu 0.791 scifly
0.947 mbrubeck 0.989 sussman 0.744 donconso

for new projects. Alternatively, a project manager could pick people from different
communities to encourage cross-team cooperation.

The author graph can be analyzed to determine how the authors work together.
Ideally, each author would be connected to each other author. This would indicate
that every author had worked together with every other author, and there are at least
two authors familiar with every file. So the risk of losing a key employee would be
mitigated because there is always a backup who is familiar with the code.

This can be measured by the transitivity or clustering of the author graph. A high
clustering coefficient indicates that many authors are connected, and a low clustering
coefficient indicates that authors typically work alone.

5 Results for Specific Projects

The analysis methods described above were applied to three specific open source
projects, namely, Audacity, Subversion, and Super TuxKart.

Audacity is an open source audio editing program. The Audacity project was first
hosted on SourceForge in May of 2000, and has 60 unique authors, 9450 unique
files, and 24,377 modifications connecting them. The core developers identified by
the analysis techniques described above are shown in Table 1. The results were con-
firmed based on developer credits available on the Audacity website, and indicates
that this technique can identify the core developers of the project.

Communities of developers in the Audacity project were identified using the sp-
inglass technique as in Figure 2. It is difficult to verify that these communities are
accurate without knowledge of the developers or experience working on this project.

The Subversion project started using Subversion for source control (self-hosting)
in August of 2001 [1], so there is an extensive history consisting of 158 unique
authors, 6752 unique files, and 92,775 modifications connecting them. The core
developers identified are shown in Table 1. Again, these results were confirmed
using information available on the Subversion website.



Network Analysis of Software Repositories: Identifying Subject Matter Experts 7

ra

bmg300

dmazzoni habes

larsl

llucius
vjohnson

richardash1981

alexandre.prokoudine

gswillia

otey

nestifyjamescrook

rbdannenberg
airon911

prokoudine

martynshaw

mbrubeck

mchinen

BusinessmanProgrammerSteve

v.audacity businessmanprogrammersteve

msmeyer

james.k.croo

greg-

bpfowler

l_r_nightmare
vincea

andrepinto

aldimond

dhorgan

windinthew

clayton.otey@gmail.com

amicheler

doytch

buanzo

jmarty

pvanbaren

elvum

uid89776

mgolden

cannam

dwritten

arunkishore

xiphmont
sl_contrib

l_d_allan

salven

donfede

prlivesey

bosseb

martynshaw99

LRN1986

lllu

webbp

cqfma

japj

plivesey

msmeyer3

friedelwolff

Fig. 2 Communities of authors in the Audacity project

Three communities of developers were identified using the spinglass algorithm
to analyze the entire subversion project. Due to the lengthy history of the project,
the results are difficult to interpret. Over such a long time, it is likely that many
developers would develop connections to many others. For example, if a single file
has a history of 20 revisions, then an author could potentially make 20 connections
when this file is changed. This leads to a highly connected author graph without
clearly defined communities.

Super TuxKart is an open source multiplayer racing game. It was based on
TuxKart, and became Super TuxKart in 2006. The project consists of 36 unique
authors and 12,597 unique files. The core developers identified by the analysis tech-
niques described above are shown in Table 1. These results were verified based on
the list of core developers listed on the Super TuxKart website, as well.



8 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

6 General Results

This analysis technique was automated and applied to a large number of projects.
These results can be used as a guideline to see how a specific project’s metrics
compare to projects in general.

Open source projects from SourceForge were analyzed in bulk. The top 10,000
projects as measured by weekly downloads were gathered. Of these 10,000 projects,
5,031 used a Subversion repository. 1,063 of these repositories had no data available
and were discarded. Many of the remaining projects had only a few authors, which
would not give meaningful results. In order to get meaningful data about the rela-
tionships between authors, a minimum of 15 authors was chosen. This eliminated
3,665 projects, which left 303 projects for this analysis. This included projects with
up to 158 authors and between 377 and 192,121 files.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0 0.2 0.4 0.6 0.8 1

%
 o

f P
ro

je
ct

s 

Clustering Coefficient 

Fig. 3 Clustering coefficient distribution of all projects

Each project was ana-
lyzed to identify the core
developers, author com-
munities, and clustering
coefficient for the author
graph. The clustering co-
efficient was of the most
interest. The distribution
of the clustering coeffi-
cient for the author graphs
in Figure 3 reveals that
most projects have a clus-
tering between 0.7 and
0.9. Audacity had a clus-
tering of 0.783, Subver-
sion had a clustering of
0.880, and Super TuxKart had a clustering of 0.626.

The project with the lowest clustering was wxCode with a clustering of 0.036
and its author graph is shown in Figure 4a. This project is a collection of add-on
components and libraries for use with wxWidgets. Each component is separately
maintained by a different author, which explains why the authors in this project
typically don’t work together.

The project with the second lowest clustering was Axiom 3D Engine with a clus-
tering of 0.208 and its author graph is shown in Figure 4b. This project is a cross
platform 3D rendering engine, and has 17 authors for 20,890 files. The low cluster-
ing coefficient indicates that the authors typically don’t work together, which makes
sense considering that there are a few authors and many files.

The project with the highest clustering was pkgbuild with a clustering of 0.991
and its author graph is in Figure 5a. This project is a tool for building Solaris SVr4
or IPS packages, and has 70 unique authors for 4,145 unique files. Another exam-
ple of a project with a high clustering coefficient is MegaMek with a clustering of



Network Analysis of Software Repositories: Identifying Subject Matter Experts 9

moskvichev

janchudy

cecilios

frm

erd_1507

utellecursorstar

troelsk
jrl1

mszeftel

arst

je-be

nuklearzelph

garyjh

MichalBliznak

michalbliznak

lucc

jblough

clesenne

gmittone

brice_andre

mcspecky

koansoftware

amandato
whschultz

auria

wyo

bevz

janknepper

nu

mmarsirccircle

(a) wxCode

borrillis

c0d3g33k

leedgitar

Falagard

jsw

helloweenscot

rridge

bostich1983

bekas

jendave

crashfourit

iainmckay

antiarc

arilouhelloweenScot

davidclifton

root

(b) Axiom 3D Engine

Fig. 4 Author graphs with the lowest clustering coefficient. (a) wxCode project with a clustering
of 0.036. (b) Axiom 3D Engine project with a clustering of 0.208.

0.980 and its author graph is in Figure 5b. This project is an online version of the
BattleTech board game, and has 31 unique authors for 10,735 unique files.



10 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

laca_

jurikm

moinakg

drdoug007

dauphing

daymobrewnonsea

pradhap

sh162551
markwright

tom68 viskov yippi
jchoi42

glynnfoster

jerryyu

trisk

hawklu

wangke

joyfuture

simonjin

opensoars

simonzheng

dnsbrnrd

ananthshrinivas

elaine_sun

sartek

eric_boutilier

sergiusens

acruiz

alex67

alfredpeng

alobbs

askwar

bewitched

bfriesen

bmarkgraf

bnitz
brx75

cypromis

darrenkenny

deliriumsky

donuthole

erwannc

evanyanhaiplu
holylightcn

jedywang

jeffcai

jim-li

kah

lewellyn

liyuan_

lukasoborilm_olivier

mattman_iflaf
migi

oninoshiko

padraigob

realfaro

rtarnell

shinsui

slubman

sobi

timmiao

wickedwicky

wwalker

yongsun

willmurnane hc

(a) pkgbuild

darkisi

beerockxs

mev

schoelling

suvarov454

bombaijin

coelocanth

bmazur

dirkwalter

swang30

oscarmm

torren

nalleolsson

itmo

endersdouble

fastsammy

jasonsmyr

stainedglass

hawkprime

deadeye00

eldragon

kipsta

mcwizard

nemchenk

Torren

s_

zipp32

xylaan

spiker

uid129720

uid76661

(b) MegaMek

Fig. 5 Author graphs with the highest clustering coefficient. (a) pkgbuild project with a clustering
of 0.991. (c) MegaMek project with a clustering of 0.980

7 Analysis

There are several things that can impact the results from this analysis. Our method
assumes that the changes made by each author are relevant to the file being modified.
This is not always true. An author could make a change to the formatting of a file



Network Analysis of Software Repositories: Identifying Subject Matter Experts 11

or correct a typo in a comment. This author would then be linked to that file and
all of the authors who had modified it previously. This should not be a common
occurrence, but it has the potential to affect the results of the analysis and make
some authors seem to be core developers when they really are not.

A developer’s personal software practice could also skew the results. If an author
makes many small changes to a file, then their connection to that file will have
a higher weight than an author who makes one large change. If edge weights are
ignored, then this is not a problem, but that could also skew the results towards
authors who made a single change.

Another potential problem is anonymous contributions or multiple online iden-
tities for the same person. The projects analyzed in this study did not allow anony-
mous users to change the source code. If a project did allow anonymous users, then
there would be a disproportionate number of changes associated with the anony-
mous user, and this anonymous user could appear to be a core developer, even
though it represents many unique individuals in reality. To protect against this, each
anonymous user should be considered as a separate developer [2]. Similarly, one
person may have several different online identities that are used to make changes,
which could prevent this person from being identified as a core developer, or even
put that person in multiple developer communities.

8 Conclusion and Future Work

It can be difficult to identify the subject matter experts for a software project or
module within a project. Several techniques have been explored in the past to extract
software metrics from a version control repository, and each is specific to the data
being sought. This paper describes a network analysis technique that can be used to
accurately identify the core developers for a specific software project, and measure
how often the developers work together on the same area of code. The analysis was
performed on 303 open source projects. Specific details were presented for 3 of
these projects, and the general trends were identified based on the analysis of 303
projects. The accuracy of this analysis was confirmed based on credits and other
information available on the project websites. Information related to communities
of authors within a project was difficult to verify.

The information gathered from this analysis is useful for a new developer in
order to identify subject matter experts to answer their questions, and for a project
manager when assigning resources. The clustering coefficient of the author graph is
a useful indicator for a project manager. If the clustering is too low, then there may
be increased risk of key team members leaving the organization. The distribution of
clustering coefficients of all projects can be used by a project manager as a basis of
comparison.

This analysis should be expanded in the future to attempt to improve the accuracy
of the results and to obtain more insight into the project structure. One area that can
be explored is how the data is filtered. This study allowed a user to filter the data by



12 Andrew Dittrich, Mehmet Hadi Gunes and Sergiu Dascalu

file name and to exclude the original addition of files to the repository. The ability to
filter by a time period would be useful to limit the analysis for long-lived projects.
Other filtering techniques could be developed to limit the analysis to only a certain
set of authors, or files containing certain text.

Another area of future research is analyzing how the author graph changes over
time. As new developers start work on the project, how do they get incorporated
into the author network, and how to older developers transition away from a central
role? This may offer insight into the team dynamics for a project and indicate how
accepting they are of new developers.

References

1. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version control with subversion (2007).
URL http://svnbook.red-bean.com/en/1.4/index.html

2. Howison, J., Crowston, K.: The perils and pitfalls of mining sourceforge. In: In Proceedings
of the International Workshop on Mining Software Repositories (MSR 2004, pp. 7–11 (2004)

3. Huang, S.K., Liu, K.m.: Mining version histories to verify the learning process of legitimate
peripheral participants. In: Proceedings of the 2005 international workshop on Mining soft-
ware repositories, MSR ’05, pp. 1–5. ACM, New York, NY, USA (2005)

4. The igraph website (2010). URL http://igraph.sourceforge.net/
5. Kagdi, H., Yusuf, S., Maletic, J.I.: Mining sequences of changed-files from version histories.

In: Proceedings of the 2006 international workshop on Mining software repositories, MSR
’06, pp. 47–53. ACM, New York, NY, USA (2006)

6. Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining eclipse developer contri-
butions via author-topic models. In: Mining Software Repositories, 2007. ICSE Workshops
MSR ’07. Fourth International Workshop on, pp. 30 –30 (2007). DOI 10.1109/MSR.2007.20

7. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M.: Applying social network analysis
to the information in cvs repositories. In: Software Engineering, 2004. ICSE 2004. Proceed-
ings. 26th International Conference on (2004). DOI 10.1109/ICSE.2004.1317529

8. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica 101(Suppl 1), 5200–5205 (2004). DOI 10.1073/pnas.0307545100. URL
http://www.pnas.org/content/101/suppl.1/5200.abstract

9. Newman, M.E.J.: Networks an Introduction. Oxford University Press, New York, NY (2010)
10. Ordonez, M., Haddad, H.: The state of metrics in software industry. In: Information Tech-

nology: New Generations, 2008. ITNG 2008. Fifth International Conference on, pp. 453 –458
(2008). DOI 10.1109/ITNG.2008.106

11. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1),
016,110 (2006). DOI 10.1103/PhysRevE.74.016110

12. Sommerville, I.: Software Engineering, 8. edn. Addison-Wesley, Harlow, England (2007)
13. Umarji, M., Shull, F.: Measuring developers: Aligning perspectives and other best practices.

Software, IEEE 26(6), 92 –94 (2009). DOI 10.1109/MS.2009.180
14. Voinea, L., Telea, A.: Mining software repositories with cvsgrab. In: Proceedings of the 2006

international workshop on Mining software repositories, MSR ’06, pp. 167–168. ACM, New
York, NY, USA (2006)

15. Voinea, L., Telea, A.: An open framework for cvs repository querying, analysis and visual-
ization. In: Proceedings of the 2006 international workshop on Mining software repositories,
MSR ’06, pp. 33–39. ACM, New York, NY, USA (2006)


