
Runtime Generation of Data Processors on Local
User Computers

Jigarkumar Patel, Sergiu M. Dascalu, Frederick C. Harris, Jr.
Department of Computer Science & Engineering, University of Nevada

Reno, USA
{jspatel, dascalus, fred.harris}@cse.unr.edu

Abstract—Data interoperability in scientific research is a major
challenge. Heterogeneous data file formats, data structure
formats, and data storage schemas are prevalent in the scientific
research community. This poses a great challenge for
collaboration between researchers due to data interoperability
issues. In our prior work, we have addressed these challenges by
proposing a web-enabled approach for generating data
processors initially intended for environmental science
researchers. This paper takes the solution one step further, and
describes the software that enables generating and running data
processors on local user computers. The paper details the design
of the software solution and presents the steps that the users need
to follow for running processors for a variety of data conversion
needs. The solution presented is powerful and flexible as it can be
applied to a large variety of data conversion needs and to
practically any type of data-intensive scientific research. It also
facilitates collaboration as scientists can share their custom
created data processors, thus increasing efficiency in research
activities. Researchers can benefit from the software engineering
principles used in creating and generating data processors, and
can take advantage of the reusability of numerous data
processors create by end users who do not necessarily have
software development expertise.

Keywords—data processor; data conversion; software tool; data
interoperability; research data

I. INTRODUCTION
Data interoperability is a major challenge across different

disciplines. The decision of using specific data storage
solutions, data file formats, and data structures is dependent on
data sensors, data loggers, data collection and curation
methods, research requirements, the experience and technical
expertise of the research group involved, and institutional data
policies. There have been several efforts made in the direction
of standardizing data and metadata formats, for example [1, 2,
3]. However, the overhead of standardization sometime hinders
the research process, so in many cases the scientists end up
adhering to the file formats that best suit their needs. In
addition, interoperability among models is a complex research
challenge, stemming from the heterogeneity of the models
themselves, the diversity of data types, structures, and formats
used as input and output for models, the semantics of variables
and data involved in the models, and the transformations
necessary to transfer information from one model to another.
Other aspects such as the diverse technology (e.g.,
programming languages, operating systems, APIs,

architectures) used in developing the simulation software that
runs the models further contribute to the complexity of the
model and data interoperability challenge [4]. Various
solutions exist for dealing with model coupling [5, 6] and
several major initiatives have been focused on addressing
issues pertaining to model and data interoperability, including
[7, 8, 9, 10]. An informative overview of such initiatives is
presented in [11]. Nevertheless, due to the intrinsic complexity
and variety of interoperability needs, many of such issues are
still to be resolved. In short, the combination of all the factors
mentioned above presents a substantial collaboration challenge
for scientists involved in data-intensive research.

Funded by a Nevada-wide NSF EPSCoR grant [12] and by
another NSF EPSCoR collaborative grant that involves teams
from Idaho, Nevada, and New Mexico [13], the authors of this
paper have tackled model and data interoperability on several
directions – specifically, via a web-service workflow-based
approach that has led to the creation of the Demeter framework
[4, 14, 15], through a standalone solution that emphasizes
visual object-based scenario definition, code generation,
dataflow scenario execution, and 3D data visualization [16,
17], and by proposing a data processor-focused approach that
aims to support user friendly, highly flexible definition and
manipulation of environmental datasets (both grants mentioned
above are for projects involving climate change research and
education).

Pertaining to the last direction of work (centered on data
processors), in our earlier paper [18] we have focused on data
interoperability challenges. There, we discussed general issues
related to data file formats, data filtering, and data scaling. In a
more recent paper [19] we have expanded the description of
our approach by presenting the methodological steps needed
for data processor definition. Part of this, we have designed
and described the toolkit we entitled WEDMIT (Web-Enabled
Data and Model Interoperability Toolkit). This toolkit supports
a new, innovative way of defining and processing datasets that
allows users without computer expertise or skills to flexibly
define new data structures, apply a variety of operations on
them, create data processors, and run them to apply various
transformations, including format conversions, on
observational or simulated datasets. Although initially
developed for supporting environmental science research, the
flexibility and generality of WEDMIT makes it useful for any
data-intensive area of research.

978-1-4673-6404-1/13/$31.00 ©2013 IEEE 76

Based on the work described in [18] and [19], we present in
this paper details of how a data processor is generated and runs
on local user machines. While WEDMIT is a web-enabled
software environment, parts of data processor definition and
generation need to be performed on local computers, as
explained later in the paper. Our proposed solution is
significant because it is novel and contributes to addressing
existing challenges pertaining to model and data
interoperability without forcing scientists to make radical
changes to their research practices. The proposed data
processor generation approach fits well with existing research
data and models and aims to handle a variety of time
consuming and complex data processing tasks. Notably, it does
not take more than few minutes of the users’ time to generate
executable software that automatically performs such tasks.

The paper in its remaining parts is organized as follows:
Section 2 provides background information pertaining to model
and data interoperability; Section 3 gives an overview of the
steps needed to create a data processor using the WEDMIT
approach; Section 4 provides detailed descriptions on
generating and running data processors on local user computers
using this approach; Section 5 discusses WEDMIT’s
advantages and its limitations; and Section 6 presents our
concluding remarks and outlines several possible directions of
future work.

II. BACKGROUND
Larger scientific problems are broken into smaller problems

for mathematical and computational simplicity. These small
problems are often represented as mathematical models, which
are then translated into computational simulation models (or, in
short, just models). To simulate larger systems and get an
understanding of more complex phenomena, two or more
models are often combined, a process which is known as
model coupling. The model coupling can be parallel, where
two or models run in parallel while interacting with each other,
or sequential, where output from one model is fed as (part of)
input into the another model. The key challenge in the entire
process is the passing of data between the models. Scientific
models are notoriously varied, being designed by many
different researchers, and using many different data types,
structures, file formats, scales, units, and semantics [4, 18].

Several solutions exist to address model and data
interoperability challenges [5, 6, 7, 8, 9, 10, 11]. However,
many of them are limited to providing a framework,
environment, API, or set of standards and/or guidelines that
require researchers not only good knowledge of their resources
but also using these resource to develop simulation software
from the scratch. To the best of our knowledge, there is no
current solution similar to WEDMIT, which is a web-enabled,
flexible, and user-oriented approach and supporting toolkit for
generating and running data processors and assisting model
and data interoperability. The architecture of the WEDMIT
web-based software was previously described in [18]. In this
ongoing project, we have addressed so far web-enabled
creation of data structures, data structure operations, data
processors, and data processor definitions. The approach and
its associated tool also supports user access to stored data
processors and models, which makes it possible to persistently

save user generated content for later reuse and sharing with
other users. While at this time WEDMIT supports data
interoperability, in future releases it will aim to provide
operational support for model coupling. Presenting the current
state of the project, this paper is focused on how to generate
and run data processors created on local user computers.

III. CREATING DATA PROCESSORS USING THE WEDMIT
APPROACH

As discussed in previous sections, researchers use different
data formats and file formats. The specific data and file formats
needed in a given research activity are dictated by the
simulation models that the researchers use. Researchers often
use model coupling techniques to benefit from knowledge
across multiple domains and/or disciplines. In the simpler
version of a model coupling scenario (involving two models),
the output of one model is used as input into the other model.
This coupling process often involves some level of data
massaging. Many models, without being part of the coupling
process, also require data to be prepared in specific formats. To
perform model simulations, researchers typically spend a lot of
their valuable time to prepare (using available data) datasets in
the format required by these simulations. Such tedious
preparation activities could involve a combination of manual
data filtering, some computer programming, and not
infrequently some much needed help from others (particularly
from people with good computer knowledge and/or software
development skills). To avoid these repetitive error prone
methods we have suggested the WEDMIT approach and
developed its associated toolkit [18].

 For the reader’s convenience we summarily recap here the
steps needed to create data processors with WEDMIT. The first
step in the creation of a new data processor is to define a new
data structure, which can be done by using several pre-defined
data types and providing names for the data structure’s
elements (or columns). For example, a newly created data
structure for a river hydrology is shown in Figure 1. Notably,
the design of the new data structure is entirely up to the user
(typically, a researcher), which provides great flexibility in
terms of what datasets the user can work with. Usually, in
WEDMIT’s terminology a data structure describes the
composition of an existing or future dataset (in our case, a
river’s hydrology dataset) or defines the organization of a
model simulation’s output. The second step in the process is to
define data operations on data structures by means of
providing filtering conditions (such as threshold or range
comparisons) on columns, sorting the items in a column,
applying pre-defined functions (such as math functions) on the
columns, and splitting the output data structure in multiple
files. This part of the process of defining a new data processor
is shown in Figure 2. The final step in the process is to
complete the definition of a data processor based on an
available WEDMIT data structure and the data operation set
associated with it. Part of a data processor’s definition, in this
step the user also needs to specify the processor’s input file
format and its desired output file format. This step is illustrated
in Figure 3 where the user selected NetCDF as input file format
and Text as output file format in a data processor designed to
be applied on the newly created river hydrology dataset.

77

Figure 1. Example of river hydrology data structure.

Figure 2. Sample filtering data operations.

Figure 3. Example of data processor definition.

 As noted in [18], a data processor applies desired
transformations on an input data file of a specified file format
(whose data structure and set of operations are part of the
processor’s definition). By applying these transformations an
output file is generated in the format also specified in the
definition of the processor. Thus, the data processor concept is
powerful and flexible, as it can be used in many kinds of data
processing activities, needed in a broad range of research and
development areas.

IV. CREATING DATA PROCESSORS USING THE WEDMIT
APPROACH

The data processor creation (or design) process is entirely
based on using the WEDMIT web application, whereas
independent from the web the data processor itself is generated
and run on the users’ local machines. This entire process,
involving code generation and execution, is illustrated in
Figure 4.

The first step in the process is to download a generic data
processor which, in WEDMIT terms, is an executable file with
an associated set of class libraries that need to reside on the
user’s computer. This generic data processor is available on the
WEDMIT web application download area, and the users need
to download and save it on their computer only once. Based on
the user designed data processor, which as shown in Section 3
includes a data structure, data structure operation set, and data
processor input/output file formats, WEDMIT generates an
XML-based data processor definition (or, in short, a data
processor). As shown in Figure 4, the next step in the process
is to download on the user’s local computer the XML-based
data processor definition of the processor. This definition is
actually a serialized representation of a data processor object
that contains all the information about data structure columns,
data structure operations, and input/output file formats (an
example is shown in Figure 5). The users are required to place
the downloaded XML file under the XML subdirectory of the
generic data processor folder. The next step in the process is to
update the generic data processor configuration file as
illustrated in Figure 6. The generic data processor encapsulates
the running of the actual data processor. It is designed to run
any user created data processor, hence the user must specify
the data processor that he or she wants to run. The name of the
data processor is the name of the data processor definition
XML file without file extension. For code generation purposes,
the generic processor will look under the XML subdirectory to
find the user created data processors at runtime. Users also
must specify the full path to the input file and the output file
with appropriate file extensions. It is worth noting that the
configuration can be easily extended to a desktop GUI.
However, to ensure portability for the time being we decided
not to use any GUI framework that would be bound to a
specific operating system. The use of a cross platform GUI
framework would require separate installation on each required
machine, whereas the XML-based configuration that we use
enables cross-platform compatibility for the generic processor,
without requiring any additional set of libraries.

After the above configurations are completed, the generic
processor is ready for use, and the users can invoke the generic
processor from their console. The generic processor runtime

78

sub-process is highlighted in Figure 4 using grey rectangles
and the output of running the generic processor is shown in
Figure 7. Procedurally, the generic processor first reads the
configuration file and loads the data processor’s XML file. At
this time, the XML-based data processor is de-serialized into a
programming object. Classes for the input data structure,
output data structure, and data processor are generated next (an
example of an automatically generated class for the input data
structure is shown in Figure 8, while Figure 9 shows the data
processor class generated as a part of the same sub-process).
Because this is vital in reading and writing data structures, the
auto generated class for the data structure incorporates the
column order, as shown in Figure 8 (although the programming
object itself has no notion of class fields order). The auto
generated data processor class includes all the code required to
run the user created data processor as well as several comments
to guide the user, as displayed in Figure 9. Next, the generic
processor compiles the generated classes into a dynamic class
library. This class library essentially covers start-to-end data
processor requirements for the user. This compiled DLL is
loaded into the generic data processor at runtime, and it carries
outs the user created data processor operations. At the end of
the processor’s run the user can retrieve the resultant file using
the specified output file path.

In our case, the river hydrology dataset with the structure
shown in Figure 1 will be processed using the operations
presented in Figure 2 and following the specifications of the
data processor described in Figure 3. The result will be, as
indicated in the processor’s definition, a Text file that contains
the processed river hydrology data.

Notably, the class generation and compilation process is not
required every time. To speed up the process, once the generic
processor has the dynamically compiled library available, it
will skip the code generation and compilation part in
subsequent runs of the same processor. It is also plausible that
the user might want to make some changes to a data processor
design and generate a new XML definition file for it. In this
scenario, the generic processor must regenerate all the classes
associated with that particular data processor. To help with
this, there is a configurable option for the generic data
processor, as shown in Figure 5. Certainly, it is quite possible
that the data processing tools provided by WEDMIT might not
be able to fulfill a user’s all specific requirements. In such
cases the user has the possibility to change source code of the
auto generated data processor classes. For this reason and to
take advantage of object-oriented design principles, the
generated classes are separated in multiple files where the users
need to work with only a single source code file. The generic
processor will not overwrite this user modified source code
file, however it will automatically recompile it and generate a
new DLL class library. The overall design and main
relationships among the classes of the generic data processor
code are shown in Figure 10. This class diagram doesn’t
include dynamically generated data processor classes based on
the XML-definition of the user-designed data processor.

Figure 4. Using data processors on local user computers.

79

Figure 5. Sample XML data processor definition.

V. DISCUSSION
The proposed WEDMIT approach offers a new solution for

dealing with data interoperability issues. The first part of the
solution is a web-based application, which makes it possible to
access the toolkit from different computers located practically
anywhere. The second part relies on the concept of generic data
processor, which in essence is a software resource that has to
reside and run on a user’s local computer. The generic
processor has been designed and developed using the
Mono/.Net framework, thus making it portable enough to run
on computers operating on Windows, Linux, or Mac. The
generic processor was designed with extensibility as the

Figure 6. Generic data processor XML-based configuration file.

Figure 7. Console output for the generic data processor run.

primary goal in mind. As such, new file formats can be easily
added by implementing a base interface with a small number of
methods. It also provides a set of strongly typed data object
classes for data processing, which reduces significantly the
code (that is, the programming effort) needed to load and
populate data objects. Researchers necessitating complex data
processor solutions can leverage the ready-to-use code created
by others via the WEDMIT approach, where most of the
“heavy lifting” (intensive programming work) has been already
done for them. In such cases, the researchers are encouraged to
modify existing data processors to fit their needs. Saving a
considerable amount of time, all changes are automatically
compiled and incorporated into the newly generated executable
files. The only requirements for implementing the changes are
a basic knowledge of programming and a text editor for source
code modification.

 Even though WEDMIT has several notable benefits, our
solution still has several drawbacks. Specifically, at this time it

<configuration>
 <!-- Don't modify runtime section -->
 <runtime>
 <assemblyBinding xmlns="urn:schemas-
microsoft-com:asm.v1">
 <probing privatePath="libs"/>
 </assemblyBinding>
 </runtime>

<!-- Users can modify following sections -->
<!-- Only change value fields. Don't change key
field. All values must be quoted -->
 <appSettings>
<!-- Name of the processor without XML extension.
Place XML file associated with processor in XML
directory. -->
 <add key="Processor" value="Processor4"/>
<!-- If you want to regenerate code because of
change in XML file. -->
 <add key="GenerateCode" value="true"/>
<!-- If you want to recompile the code because of
changes you made to class files. It will also
recompile the library-->
 <add key="RecompileCode" value="true"/>
<!-- Full path to input file with extension
csv,nc,xml,xlsx,txt -->
 <add key="InputFilePath" value="C:\input.nc "/>
<!-- Full path to output file with extension
csv,nc,xml,xlsx,txt-->
 <add key="OutputFilePath" value="C:\output.txt "/>
<!-- <add key="OutputFilePath"
value="C:\VMC\DataProcessor\Sample Data\Nevada
Portal Sample Result.xml"/> -->
 </appSettings>
</configuration>

<?xml version="1.0" encoding="utf-16"?>
<SerialProcessor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="CodeGenerator">
 <Name>Quality Control Processing</Name>
 <Input>
 <Name>NetCDF Files</Name>
 <Extension>nc</Extension>
 <IsGridded>false</IsGridded>
 </Input>
 <Output>
 <Name>Text Files</Name>
 <Extension>txt</Extension>
 <IsGridded>false</IsGridded>
 </Output>
 <Structure>
<Name>River Hydrology Data</Name>
<VariableName>RiverHydrologyData</VariableName>
 <Columns>
 <Column>
 <Name>Stage</Name>
 <VariableName>Stage</VariableName>
 <Index>1</Index>
 <DataType>
 <Name>Floating Point Number</Name>
 <SystemName>float</SystemName>
 </DataType>
 </Column>
 ...
 </Columns>
 </Structure>
 <Operations>
 <FilterOperations>
 <FilterOperation>
 <ColumnIndex>1</ColumnIndex>
 <Condition>></Condition>
 <CompareValue>-2</CompareValue>
 </FilterOperation>
 ...
 </FilterOperations>
 <SortOperations>
 <SoftOperation>
 <ColumnIndex>14</ColumnIndex>
 <Ascending>false</Ascending>
 </SoftOperation>
 </SortOperations>
 <FunctionOperations />
 <IgnoreColumnOperations />
 </Operations>
 <ID>5</ID>
</SerialProcessor>

80

cannot handle complex data processor scenarios via the web
application. Furthermore, it currently has a limited set of pre-
defined functions and the filtering functions themselves are
limited to comparisons based on range and threshold
conditions. Moreover, the researchers cannot incorporate their
existing programs with the WEDMIT-generated code unless
they were developed using Mono/.Net framework.

VI. CONCLUSIONS AND FUTURE WORK
Data interoperability is a complex challenge and researchers
would certainly welcome any help they can get. Researchers
with non-technical background might face even greater
challenges dealing with interoperability issues. WEDMIT, our
proposed approach for helping with data interoperability,
provides an easy to use, user-centric solution aimed at
addressing most of related software development challenges
with minimal programming needs. This is a new approach with
great potential for applications across many areas of scientific

Figure 8. Automatically generated input data structure class.

Figure 9. Automatically generated input data processor class.

//Auto generated code
using System;
using WEDMIT.Formats;
using WEDMIT.Processor;
namespace UserProcessor{

public partial class Input5 : Record{

public Input5 (){//Constructor

this.ColumnIndex<Input5>(i=>i.Stage);
this.ColumnIndex<Input5>(i=>i.Temperature);
this.ColumnIndex<Input5>(i=>i.SurfaceTemperature)
;
this.ColumnIndex<Input5>(i=>i.BottomTemperature);
this.ColumnIndex<Input5>(i=>i.Salinity);
this.ColumnIndex<Input5>(i=>i.SurfaceSalinity);
this.ColumnIndex<Input5>(i=>i.BottomSalinity);
this.ColumnIndex<Input5>(i=>i.Discharge);
this.ColumnIndex<Input5>(i=>i.FilteredDischarge);
this.ColumnIndex<Input5>(i=>i.SpecificConductance
);
this.ColumnIndex<Input5>(i=>i.SurfaceSpecificCond
uctance);
this.ColumnIndex<Input5>(i=>i.BottomSpecificCondu
ctance);
this.ColumnIndex<Input5>(i=>i.Turbidity);
this.ColumnIndex<Input5>(i=>i.MeasurementDateTime
); } //End of contructor

public float Stage {get;set;}
public float Temperature {get;set;}
public float SurfaceTemperature {get;set;}
public float BottomTemperature {get;set;}
public float Salinity {get;set;}
public float SurfaceSalinity {get;set;}
public float BottomSalinity {get;set;}
public float Discharge {get;set;}
public float FilteredDischarge {get;set;}
public float SpecificConductance {get;set;}
public float SurfaceSpecificConductance
{get;set;}
public float BottomSpecificConductance {get;set;}
public float Turbidity {get;set;}
public DateTime MeasurementDateTime {get;set;}
}}

//User is allowed to modify this code.
using System;
using System.Collections.Generic;
using System.Linq;
using WEDMIT.Formats;
using WEDMIT.Processor;
namespace UserProcessor
{
public partial class Processor5 :
DefaultProcessor<Input5,Output5,#InputDataFormat#
<Input5>,#OutputDataFormat#<Output5>> ,
IProcessor<Input5,Output5,#InputDataFormat#<Input
5>,#OutputDataFormat#<Output5>> {

public Processor5():base(){
//Set some of the values that might be unique to
your requirement
}

public override void Process (){
/* If you want to override Process then comment
following line and write your own code for
process. * */
base.Process (); //Leave this line uncommented
for default process
}

public override Input5 MapInputRecord (object[]
values){ /** In the case where you want to
write your own code to map values to object then
write your code here. This function is called
only when you have Default Process is used. */
 return base.MapInputRecord (values);
}

public override bool FilterOperation(Input5
Record)
{/* Check for filter conditions. Return false if
it doesn't meet filtering criteria else return
true by default. You can add more conditions as
per your need without affecting processor. By
default all conditions are combined with &&(AND)
operator. You can combine them as per your need.
*/
 bool condition1 = (Record.Stage > -2);
 bool condition2 = (Record.Temperature >= 2);
 bool condition3 = (Record.Temperature <= 45);
 bool condition4 = (Record.MeasurementDateTime <=
DateTime.Parse("2010/01/01"));
 bool condition5 = (Record.MeasurementDateTime >=
DateTime.Parse("2001/01/01"));
 if(!(condition1 && condition2 && condition3 &&
condition4 && condition5)) return false;
 return true;
}

public override void SortOperation()
{/* Sort output dataset/records. By default
records are sorted descending hence use of
OrderByDescending. If you want to order Ascending
then just user OrderBy method.*/

OService.NewDataSet(OService.DataSet.Order
ByDescending(c=>c.MeasurementDateTime).ToL
ist());

}}}

81

research. As a web-enabled application, WEDMIT supports
reusability and fosters collaboration – the research community
can certainly benefit from sharing a variety of user tailored data
processors.

While WEDMIT provides an effective solution for dealing
with certain data interoperability challenges, it still has
significant room for improvement. For example, currently the
users must download the generic processor and run it on their
local computers, but in the future we would like to enable
researchers to run it on the web (from a web server). This is
currently under consideration, the main aspects under scrutiny
being potential security issues and potentially very large data
files that might inundate the server. Part of our future work it to
also deploy this web-based application on the Nevada Climate
Change Portal [20, 21, 22], and thus make it easily accessible
to the public. Furthermore, adding an ability to read/write new
file formats is currently available to web developers only. In
the future, a useful extension would be to allow web-
application users to contribute source code or compiled library
files to support new file formats.

Figure 10. Class diagram of the generic data processor.

ACKNOWLEDGMENT

This work was made possible through the support provided by
the National Science Foundation under Cooperative
Agreements No. EPS-0814372 and No. EPS-0919123.

REFERENCES
[1] ISO 19115, Geographic Information Metadata. Acccessed Feb. 28, 2013

at http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
[2] Dublin Core Metadata Initiative. Accessed February 28, 2013 at

http://dublincore.org/
[3] CSDGM – Content Standard for Digital Geospatial Metadata. Accessed

February 22, 2018 at http://www.fgdc.gov/metadata/csdgm/
[4] S. Dascalu, E. Fritzinger, S. Okamoto and F.C. Harris, Jr., “Towards a

software framework for model interoperability,” in Proceedings of the
9th IEEE International Conf. on Industrial Informatics (INDIN 2011),
Lisbon, Portugal, IEEE Computer Society, July 2011, pp. 705-710.

[5] T. Bulatewicz, Support for Model Coupling: An Interface-based
Approach. PhD thesis, University of Oregon, 2006.

[6] T. Bulatewicz and J.E. Cuny, “A domain-specific language for model
coupling,” in Proceedings of the 38th Winter Simulation Conference
(WSC-06), 2006, pp. 1091-1100.

[7] OpenMI. Accessed February 28, 2013 at http://www.openmi.org/
[8] CSDMS - Community Surface Dynamics Modeling System. Accessed

Feb. 28, 2013 at http://csdms.colorado.edu/wiki/Main_Page
[9] ESMF – Earth System Modeling Framework. Accessed February 28,

2013 at http://www.earthsystemmodeling.org/
[10] The Kepler Project. Accessed February 28, 2013 at https://kepler-

project.org
[11] H.R.A. Jagers, “Linking data, models, and tools: an overview,” in

Proceedings of the International Congress on Environmental Modeling
and Software (IEMSS-2010), Ottawa, Canada, July 2010.

[12] Nevada Climate Change Portal (NCCP)/About the Project/Funding.
NSF EPSCoR Coop. Agr. No. EPS-0814372. Accessed Feb. 15, 2013 at
http://sensor.nevada.edu/NCCP/The%20Project/Funding.aspx

[13] Collaborative Research: Cyberinfrastructure Developments for the
Western Consotrium of Idaho, Nevada, and New Mexico. NSF EPSCoR
Cooperative Agreement No. EPS-0919123. Accessed Feb. 15, 2013 at
http://nsf.gov/awardsearch/advancedSearchResult?PI
Organization=Nevada%20System%20of%20Higher%20Education&

[14] E. Fritzinger, S. Dascalu, D.P. Ames, K. Benedict, I. Gibbs, M.J.
McMahon Jr., and F. C. Harris Jr., “The Demeter framework for model
and data interoperability,” in Proceedings of the International Congress
on Environmental Modeling and Software (IEMSS-2012), Leipzig,
Germany, July 2012, pp. 1535-1543.

[15] S. Okamoto, E. Fritzinger, S. Dascalu, F.C. Harris Jr., S. Latifi, and M.J.
McMahon Jr.,. “Towards an intelligent software tool for enhanced
model interoperability in climate change research,” in Proceedings of
the World Automation Congress (WAC-2010), Kobe, Japan, September
2010, IEEE Computer Society, pp. 1/1-6.

[16] S. Okamoto, R.V. Hoang, S.M. Dascalu, F.C. Harris Jr., and N.
Belkhatir, “SUNPRISM: An approach and software tools for
collaborative climate change research,” in Proceedings of the 13th Intl.
Conference on Collaboration Technologies & Systems (CTS-2012),
Denver, CO, May 2012, pp. 583-590.

[17] S. Okamoto, SUNPRISM: A Software Framework for Climate Change
Research. PhD thesis, University of Nevada, Reno, 2011.

[18] J. Patel, S. Okamoto, S.M. Dascalu, and F.C. Harris Jr., “Web-enabled
toolkit for data interoperability support,” in Proceedings of the 21th
International Conference on Software Engineering and Data Engineering
(SEDE-2012), Los Angeles, CA, June 2012, pp. 161-166.

[19] J. Patel, S. Okamoto, S.M. Dascalu, and F.C. Harris Jr., “A Web-
enabled approach for generating data processors,” in Proceedings of the
International Conference on Information Technology: New Generations
(ITNG-2013), Las Vegas, NV, April 2013, in press.

82

[20] The Nevada Climate Change Portal (NCCP). Accessed February 15,
2013 at http://sensor.nevada.edu/NCCP/

[21] S. Dascalu, “Imagine a million file cabinets of climate data: The Nevada
Climate Change Data Portal,” invited talk, the Nevada Climate Change
Seminar Series. University of Nevada, Las Vegas, September 7, 2011.
Available at http://digitalscholarship.unlv.edu/climate_change/6/

[22] M.J. McMahon Jr., S.M. Dascalu, F.C. Harris Jr., S. Strachan, and F.
Biondi, “Architecting climate change data infrastructure for Nevada,” in
Advanced Information Systems Engineering Workshops CAISE-2011,
Lecture Notes in Business Information Processing, LNBIP-83, C.
Salinesi and O. Pastor, Eds. Springer, 2011, pp. 354-365.

83

