
V-FIRE
Virtual Fire In Realistic Environments

Design

Grant Kelly, Juan Quiroz, Michael Penick

Advisors
Sergiu Dascalu, PhD., Brian Westphal, M.S.C.S., Frederick C. Harris, PhD.

University of Nevada, Reno
CS 426

3/20/2005

V-FIRE Virtual Fire In Realistic Environments

Page 2 of 32

Table of Contents

Introduction... 3

High Level and Medium Level Design .. 5

System Level Diagram .. 5

Class Diagram... 7

Class Method Descriptions.. 8

Detailed Design .. 18

User Interface Design... 24

References ... 28

Contribution of Team Members .. 30

Glossary of Terms .. 31

V-FIRE Virtual Fire In Realistic Environments

Page 3 of 32

Introduction

Computer modeling of fires is an effective tool for scientists to experiment, study, and
forecast the patterns of wildfires. Mathematical models of fires exist, but none of them
correctly reflect the true behavior of fire. Fire is such a dynamic and chaotic system, that
a true model representation of it is hard to create. There are many factors that need to
be taken into consideration. Most models make simplifications and assumptions in order
to obtain results, that is, in order to make the system solvable. Furthermore, the results
of such models are data, possibly graphs. The visualization of the model is even more
difficult. The behavior of a wildfire can change drastically by a slight change in the
atmospheric pressure or by a wind gust.

V-FIRE will be a 3D fire simulation and visualization tool. V-FIRE will allow users to
harness and observe a fire within a controlled environment. The system will be
designed to model a wildfire as realistic as possible with the use of marketable graphics,
an efficient physics model, and a mathematically based spreading algorithm. In addition,
users will also be able to visualize the interaction of fire with other objects such as
smoke, vegetation, and buildings. Furthermore, as an empirical tool, V-FIRE will also
provide the user with the ability of multiple view points for the main camera, such as
aerial and full immersion.

The long term goal of V-FIRE is to create real-time, marketable-quality graphics for fire
visualization in a CAVE. A CAVE, Cave Automatic Virtual Environment, provides a full-
immersion experience for their inhabitants. Thus, the integration of V-FIRE with a CAVE
would create a full 3D simulation in which users would be able to physically interact with
a wildfire environment.

Two months after the submission of the project proposal for V-FIRE, Team 01 has
successfully completed the software requirements specification and the design phases.
Nevertheless, details of the implementation phase have been under way. The particle
system for the V-FIRE system is at the early states of development. Furthermore, the
loading of tree models into the scene graph has successfully been achieved. Team 01
also continues to master the intricate details of OpenSG.

After careful deliberation, Team 01 has decided that it is not feasible at this time to
implement the “Fast Forward” and “Rewind” features of a wildfire simulation discussed
on the software requirements specification document. It is regrettable to make such a
decision, but the features will not be included on the final product.

Through the design phase of V-FIRE, several refinements have been made to the initial
planned structure of the system. First of all, Team 01 has decided to use emitters
placed in objects instead of treating fire and objects as separate entities. As a
consequence, the fire will emanate from the objects at a specified angle, velocity, and
direction. This will not only polish the structure and implementation of V-FIRE, but it will
also make an efficient use of the scene graph. A further refinement to V-FIRE is that a
file type will be developed in order to load data into the scene graph. This will especially
be used for the initialization of the objects in the scene. Data loaded from files will
include textures, the placement of objects and emitters, and further details.

The remainder of this paper is structured into five sections: high level and medium level
design, detailed design, user interface design, list of references, and contribution of team

V-FIRE Virtual Fire In Realistic Environments

Page 4 of 32

members. The high level and medium level design section presents a system level and
class diagram of the V-FIRE system, along with descriptions of the classes and their
corresponding methods. The detailed design section presents the low level structure of
the V-FIRE system through activity charts, flowcharts, and a sample scene graph for
rendering objects. In the user interface design section, snapshots of the graphical user
interface of V-FIRE with their corresponding descriptions are presented. The list of
references section presents annotated references of four articles and a domain book,
which were used for the design and specification phases of V-FIRE. Finally, the
contribution of team members section describes the tasks completed by each member of
Team 01.

V-FIRE Virtual Fire In Realistic Environments

Page 5 of 32

High Level and Medium Level Design

System Level Diagram

The system architecture is composed of several subsystems, as shown in Figure 1.
Each subsystem contains classes that are logically similar in functionality. Links
between subsystems are provided by a single class in each subsystem.

Fig. 1 V-FIRE System Architecture

Descriptions of subsystems are as follows:

GUI
The GUI subsystem contains the classes that interface with Qt, OpenSG, and control
user interaction with the system. This subsystem also connects the viewable front-end
and the simulation back-end.

Simulation
The Simulation subsystem contains the back-end that controls the simulation. Through
a generic interface, a programmer can control the simulation with little knowledge of the
other subsystems’ implementations. This subsystem is also responsible for the
placement and overall density of models on the terrain.

Terrain
The Terrain subsystem contains classes that describe the topographic features of the
visible terrain and provide methods to load a terrain map from a file.

V-FIRE Virtual Fire In Realistic Environments

Page 6 of 32

Model
The Model subsystem contains classes that describe the visible state of 3D models used
in the simulation. Such models include vegetation and inhabitable structures. This
subsystem is responsible for the loading of models from files and maintaining a model’s
visible state throughout its life of combustion.

Fire and Smoke
The Fire and Smoke subsystem contains classes that describe the visible fire and
smoke used in the simulation. The state of this subsystem is controlled by logic in the
simulation subsystem.

Material
The Material subsystem contains classes that describe the properties and states of
burnable materials in the simulation.

V-FIRE Virtual Fire In Realistic Environments

Page 7 of 32

Class Diagram

The class diagram shows the structure of V-FIRE in program units.

Fig. 2 V-FIRE Class Diagram

V-FIRE Virtual Fire In Realistic Environments

Page 8 of 32

Class Method Descriptions

In this section, each class method is briefly described with respect to visibility,
parameters, and return type.

ParticleGroup Class

The ParticleGroup class maintains the states and attributes of particles in a particle
group. Groups of particles make up the visual elements, such as fire and smoke.
Particle attributes include texture and color. On the other hand, states of particles
include position, velocity, size, and life.

Class ParticleGroup
Method translate
Visibility public
Return type void
Parameters, types magnitudes:Vec3f
Description This method translates the particle group by setting its

transformation node.

Class ParticleGroup
Method rotate
Visibility public
Return type void
Parameters, types angles:Vec3f
Description This method rotates the particle group by setting its

transformation node.

V-FIRE Virtual Fire In Realistic Environments

Page 9 of 32

Emitter Class

The emitter class initializes and animates particles contained in particle groups. This is
done by modifying attributes, that is, their position, velocity, color, etc.

Class Emitter
Method translate
Visibility public
Return type void
Parameters, types magnitudes:Vec3f
Description This method translates the particle group by setting its

transformation node.

Class Emitter
Method rotate
Visibility public
Return type void
Parameters, types angles:Vec3f
Description This method rotates the particle group by setting its

transformation node.

Class Emitter
Method update
Visibility public
Return type void
Parameters, types none
Description This method animates the particles contained in the particle

groups.

Class Emitter
Method setStatus
Visibility public
Return type void
Parameters, types status:boolean
Description This method is used to start and stop the animation of the

particles.

Class Emitter
Method loadFromFile
Visibility public
Return type Boolean
Parameters, types fileName:String
Description This method loads emitter data from a file, for initialization

purposes.

V-FIRE Virtual Fire In Realistic Environments

Page 10 of 32

BurnableMaterial Class

The BurnableMaterial class maintains the appearance of a BurnableModelGroup
instance based on material properties loaded from a file and particle interaction.

Class BurnableMaterial
Method loadFromFile
Visibility public
Return type Boolean
Parameters, types fileName:String
Description This method loads material data from a file.

Class BurnableMaterial
Method reset
Visibility public
Return type void
Parameters, types none
Description This method resets the material of an object to its unburned

state.

Class BurnableMaterial
Method changePercentBurned
Visibility public
Return type void
Parameters, types percent:float
Description This method changes the level at which an object’s material

appears to be burned.

Class BurnableMaterial
Method incrementPercentBurned
Visibility public
Return type void
Parameters, types none
Description This method increments the level at which an object’s

material appears to be burned.

Class BurnableMaterial
Method decrementPercentBurned
Visibility public
Return type void
Parameters, types none
Description This method decrements the level at which an object’s

material appears to be burned.

V-FIRE Virtual Fire In Realistic Environments

Page 11 of 32

Class BurnableMaterial
Method setVisible
Visibility public
Return type void
Parameters, types visible:Boolean
Description This method toggles a model group’s visibility.

BurnableModelGroup Class

The BurnableModelGroup class contains the geometry, appearance, and the way things
burn depending on the group type and placement of emitters. It also manages the
location of the emitters and the angle at which particles are emitted.

Class BurnableModelGroup
Method reset
Visibility public
Return type void
Parameters, types none
Description This method resets a model group to its original unburned

state.

Class BurnableModelGroup
Method update
Visibility public
Return type void
Parameters, types none
Description This method updates a model group’s particle systems and

materials states.

Class BurnableModelGroup
Method rotate
Visibility public
Return type void
Parameters, types angles:Vec3f
Description This method rotates the particle group by setting its

transformation node.

Class BurnableModelGroup
Method translate
Visibility public
Return type void
Parameters, types magnitudes:Vec3f
Description This method translates the particle group by setting its

transformation node.

V-FIRE Virtual Fire In Realistic Environments

Page 12 of 32

BurnableModel Class

The BurnableModel class contains the logical division of the model into
BurnableModelGroups. The division of groups is loaded from a file. It is also used to
update the states of groups contained in a model.

Class BurnableModel
Method rotate
Visibility public
Return type void
Parameters, types angles:Vec3f
Description This method rotates the particle group by setting its

transformation node.

Class BurnableModel
Method translate
Visibility public
Return type void
Parameters, types magnitudes:Vec3f
Description This method translates the particle group by setting its

transformation node.

Class BurnableModel
Method loadFromFile
Visibility public
Return type void
Parameters, types fileName:String
Description This method loads geometric, group, emitter, and material

data from a file.

Class BurnableModel
Method update
Visibility public
Return type void
Parameters, types none
Description This method updates the state of its model groups.

Class BurnableModel
Method reset
Visibility public
Return type void
Parameters, types none
Description This method resets the model to its unburned state.

V-FIRE Virtual Fire In Realistic Environments

Page 13 of 32

Class BurnableModel
Method setEmitterStatus
Visibility public
Return type void
Parameters, types groupID:int, emitterID:int, status:boolean
Description This method toggles an emitter status by using its

identification number and groups.

Terrain Class

The Terrain class maintains the map and where the sky, trees, buildings, and models in
general are placed.

Class Terrain
Method translate
Visibility public
Return type void
Parameters, types magnitudes:Vec3f
Description This method translates the terrain by setting its

transformation node.

Class Terrain
Method rotate
Visibility public
Return type void
Parameters, types angles:Vec3f
Description This method rotates the terrain by setting its transformation

node.

Class Terrain
Method loadFromFile
Visibility public
Return type void
Parameters, types fileName:String
Description This method loads terrain information from file.

Class Terrain
Method addModel
Visibility public
Return type void
Parameters, types x:int, y:int, numberID:int
Description This method adds a model to the specified position on the

terrain.

V-FIRE Virtual Fire In Realistic Environments

Page 14 of 32

Class Terrain
Method deleteModel
Visibility public
Return type void
Parameters, types x:int, y:int
Description This method deletes a model from the specified position on

the terrain.

Class Terrain
Method getModel
Visibility public
Return type int
Parameters, types x:int, y:int
Description This method returns the id of the model at the specified

position on the terrain. If not found returns -1.

Display Class

The Display class is the interface between the simulation back-end and the graphical
user interface. Input devices such as the keyboard and mouse can be used to control
different aspects of the scene and simulation.

Class Display
Method paintGL
Visibility protected
Return type void
Parameters, types none
Description This method is called by Qt to render scene using OpenGL

renderer.

Class Display
Method initializeGL
Visibility protected
Return type void
Parameters, types none
Description This method is called in by after the constructor to initialize

OpenGL states.

V-FIRE Virtual Fire In Realistic Environments

Page 15 of 32

Class Display
Method resizeGL
Visibility protected
Return type void
Parameters, types width : int, height : int
Description This method is called when a window is resized. Its function

is to resize the scene according to the window size and
aspect ratio.

Class Display
Method mousePressEvent
Visibility protected
Return type void
Parameters, types event : QMouseEvent*
Description This method responds to events where a mouse button is

pressed and allows the scene to respond in an appropriate
manner.

Class Display
Method mouseReleaseEvent
Visibility protected
Return type void
Parameters, types event : QMouseEvent*
Description This method responds to events where a mouse button is

released and allows the scene to respond in an appropriate
manner.

Class Display
Method mouseMoveEvent
Visibility protected
Return type void
Parameters, types event : QMouseEvent*
Description This method responds to events where the mouse is moved

and allows the scene to respond in an appropriate manner.

Class Display
Method keyPressEvent
Visibility protected
Return type void
Parameters, types event : QKeyEvent*
Description This method responds to events where a keyboard button is

pressed and allows the scene to respond in an appropriate
manner.

V-FIRE Virtual Fire In Realistic Environments

Page 16 of 32

Class Display
Method keyReleaseEvent
Visibility protected
Return type void
Parameters, types event : QKeyEvent*
Description This method responds to events where a keyboard button is

released and allows the scene to respond in an appropriate
manner.

Simulation Class

The Simulation class is responsible for placing models on the terrain and controlling the
spread of fire. In essence it contains all the information that describes the scene. The
abstract classes allow a general interface for driving the simulation.

Class Simulation
Method loadFromFile
Visibility public
Return type boolean
Parameters, types fileName : String
Description This method loads a terrain, models and simulation data

from a file.

Class Simulation
Method saveToFile
Visibility public
Return type boolean
Parameters, types fileName : String
Description This method saves the current state of the terrain and

model density to a file

Class Simulation
Method runSimulation
Visibility public
Return type void
Parameters, types none
Description This method is used to update the current state of the

simulation. A model for animating and spreading fire is
defined in the method.

V-FIRE Virtual Fire In Realistic Environments

Page 17 of 32

Class Simulation
Method resetSimulation
Visibility public
Return type void
Parameters, types none
Description This method is used to initialize or reset a simulation to its

original state before a simulation is run.

V-FIRE Virtual Fire In Realistic Environments

Page 18 of 32

Detailed Design

This section contains diagrams depicting low-level details of pieces of the V-FIRE
system.

Figure 3 depicts an activity chart before the simulation has started. Activity includes
opening a map from a file, saving a map to a file, editing an existing map, changing the
point of view, selecting a location to start a fire, and viewing the system help.

Fig. 3 V-FIRE Activity Chart

V-FIRE Virtual Fire In Realistic Environments

Page 19 of 32

Figure 4 depicts the activity available after the simulation has been started.

Fig. 4 V-FIRE Activity Chart During Simulation

V-FIRE Virtual Fire In Realistic Environments

Page 20 of 32

Figure 5 is a flow chart showing the method
BurnableMaterial::incrementPercentBurned() which adjusts a material’s burn-level both
visually and statistically.

Fig. 5 The incrementPercentBurned() method from the BurnableMaterial class.

V-FIRE Virtual Fire In Realistic Environments

Page 21 of 32

Figure 6 shows the details of the Emitter::update() method for a single particle.

Fig. 6 The update() method from the Emitter class.

V-FIRE Virtual Fire In Realistic Environments

Page 22 of 32

Figure 7 shows the details of the Terrain::addModel() method.

Fig. 7 The addModel() method from the Terrain class.

V-FIRE Virtual Fire In Realistic Environments

Page 23 of 32

Figure 8 is a representation of scene data that would be rendered by OpenSG. The
subsystems of V-FIRE manipulate this graph to fulfill their responsibilities.

Fig. 8 An example scene graph.

V-FIRE Virtual Fire In Realistic Environments

Page 24 of 32

User Interface Design

This section contains screen shots of a prototype for the V-FIRE user interface.

Fig. 9 A screen shot of the main simulation window. The user can visualize and control a simulation from

the main simulation window.

V-FIRE Virtual Fire In Realistic Environments

Page 25 of 32

Fig. 10 A screen shot of the File Open dialog. The user can open terrain maps from the dialog.

Fig. 11 A screen shot of the File Save As dialog. If a terrain map has been modified the user can save

change through this dialog.

V-FIRE Virtual Fire In Realistic Environments

Page 26 of 32

Fig. 12 A screen shot showing the View menu, providing different point of view presets.

Fig. 13 A screen shot of the Map Editor which is used to make changes to models on the terrain.

V-FIRE Virtual Fire In Realistic Environments

Page 27 of 32

Fig. 14 A screen shot of the tool used to control the status of emitters in the simulation. Emitters control the

flow of fire and smoke from an object.

Fig. 15 A screen shot of the About dialog that provides information about the V-FIRE system.

V-FIRE Virtual Fire In Realistic Environments

Page 28 of 32

References

Drysdale, Dougal. An Introduction to Fire Dynamics. New York: John Wyley & Sons,
2001.

The book An Introduction to Fire Dynamics, by Dougal Drysdale, discusses
concepts, and ideas that are fundamental for the modeling and simulation of fire
intended in V-FIRE. The modeling of fire must take into consideration numerous
factors due to the chaotic nature of fire. The book discusses the following main
topics: fire science and combustion, heat transfer, and limits of flammability and
premixed flames, diffusion flames and fire plumes, steady burning of liquids and
solids, ignition, spread of flame, spontaneous ignition within solids and
smoldering combustion, and the pre-flashover compartment fire. On chapter 1,
the author describes the physical chemistry of combustion in fires and the nature
of fuels. This information will be used in order to be able to predict accurately
how different objects ignite and burn, since such factors are dependent on the
object composition. On chapter 3 the author describes the variation of burning
velocity with experimental parameters. The experiments consisted of varying
mixture composition, temperature, pressure, the addition of suppressants, and the
effect of turbulence. This information is highly valuable due to the complexity of
wildfires. Knowing how fire behaves with variations that are certain to be present
on the simulation will help on determining how the fire will behave in the
simulation. It will also help to make the fire realistic, without going too much
into the details of fluid dynamics. Chapter 4 discusses the diffusion of flames and
fire plumes. Several types of flames are discussed, including the characteristics of
flames from natural fires.

Ahrens, James, James Bossert, Jon Reisner, Judith Winterkamp, Patrick McCormick.
Case Study: Wildfire Visualization. 10 Feb 2005.
<http://www.ccs.lanl.gov/ccs1/projects/Viz/pdfs/97wildfire.pdf>

This article describes the goal of creating a realistic simulation of wildfires, yet
without compromising scientific data. The intended use of such a simulation is to
be able to predict wildfire phenomena in order to reduce the cost of lives and
damages. That is, to be able to forecast the evolution of a wildfire. The results
described in the article state that the simulation runs slower than real-time, which
is one of the main requirements for V-FIRE. It is also described that the
volumetric rendering of smoke and fire is based on temperature data, taken from
actual fires, which is inputted into the simulation. Topographic data from the
sites of fires is also inputted into the simulation in order to create a polygonal
mesh.

V-FIRE Virtual Fire In Realistic Environments

Page 29 of 32

Enright, Doug, Duc Nguyen, Ron Fedkiw. Simulation and Animation of Fire and Other
Natural Phenomena in the Visual Effects Industry. 5 Feb 2005.
<http://graphics.stanford.edu/~fedkiw/papers/stanford2003-11.pdf>

This article describes methods used in the computer graphics industry for the
simulation and animation of fire, smoke, and explosions. The methods described
include the use of two-dimensional Euler equations, the Navier-Stokes model for
incompressible flow, and a particle based animation of fire. All methods
described would be of great use in our program, however, the math involved is
quite advanced. Furthermore, having to compute the flow of fire with such
methods in real time would create a large overhead. Furthermore, the results
shown on the article are attractive and realistic, yet the differential equations used
and the fluid model were too advanced for the team to understand.

Fernando, Randima. GPU Gems: Programming Techniques, Tips, and Tricks for Real-
Time Graphics. Boston: Addison-Wesley Professional, 2004.

This book describes advanced rendering techniques in the field of real-time
graphics. The specific article "Vulcan Fire Simulation" outlines a method of
creating very realistic fire in real-time. It specifically aimed at developers who
might want to use this rendering method in games or real-time visualizations. The
method describes uses volumetric data in the form of three dimensional textures
which offers blending between frames of animation. The textures are placed on
top of billboarding particles which are emitted off of a creature. Emitters are
placed on three dimensional objects to simulate that they are on fire. This is one
of the most influential articles that we will use to create the project.

Nguyen, Duc Quang, Ronald Fedkiw, Henrik Wann Jensen. Physically Based Modeling
and Animation of Fire. 6 Feb 2005.
<http://graphics.ucsd.edu/~henrik/papers/fire/fire.pdf>

This article describes the use of physically based modeling and animation of fire.
It specifically focuses on the rendering of realistic fire, with little emphasis on
smoke. Planck’s formula is used to reproduce the color of fire, which computes
the emitted spectral radiance. The model described can be used to render realistic
“turbulent flames from both solid and gaseous fuels”. Furthermore, the article
provides good mathematical models to render fire. However, the model relies
heavily on fluid dynamics. The simulations created include a flamethrower, a
metal ball passing and interacting with a gas flame, and a flammable ball passing
through a gas flame and catching on fire.

V-FIRE Virtual Fire In Realistic Environments

Page 30 of 32

Contribution of Team Members

Grant Kelly

• High Level Design
• Detailed Design diagrams
• Design Document composition

Michael Penick

• Medium Level Design
• Class Diagram
• Class Method Descriptions
• User Interface Design

Juan Quiroz

• Introduction
• Medium Level Design
• Class Method Descriptions
• References

V-FIRE Virtual Fire In Realistic Environments

Page 31 of 32

Glossary of Terms

Advection The transfer of a property of the atmosphere, such a heat,

cold, or humidity, by the horizontal movement of an airmass.

Billboarding An efficient rendering method in which a textured quad-sided
polygon always faces the camera to simulate a more complex
three dimensional object.

Bouyancy The upward pressure exerted upon a floating body by a fluid,
which is equal to the weight of the body. This property affects
the movement of fire upward through air.

Emitter A three dimensional location where particles are spawned
from. Emitters can be placed on objects to give the illusion of
being on fire.

Flying Camera A camera in which the point of view can be controlled by the
user through a interactive hardware device i.e keyboard,
mouse, or joystick.

Fire The combustion of vaporized or gases fuel. The
transformation of fuel into carbon based product yields an
extreme release of energy in the form of light and heat.

Frustum The part of a solid, such as a cone or pyramid, between two
parallel planes cutting the solid, especially the section
between the base and a plane parallel to the base. A Frustum
is usually used in graphics to represent the visible part of
scene as from a camera.

Frustum Culling An algorithm or method of identifying objects not within the
cameras view and omitting them from a scene before it is
rendered.

Map The culmination of different stationary objects in a scene the
make up the landscape e.g. terrain, vegetation, buildings.

Mesh A collection of polygons used to create a three dimensional
surface.

Occlusion Culling An algorithm or method of identifying non-visible
objects to omit them from a scene before it is rendered.

OpenGL A multi-platform software interface to graphics hardware,
supporting rendering and imaging operations.

OpenSG A multi-platform scene graph library built on top of OpenGL. It
provides a higher level interface to graphics hardware aimed
at developing highly complex three dimensional scenes.

Particles An animated, transitory three dimensional point in space
where geometric data is rendered usually in the form of a
point, line, or billboard.

V-FIRE Virtual Fire In Realistic Environments

Page 32 of 32

Point of View (POV) The position from which a three dimensional scene is
rendered.

Polygon A plane based shape made up of three or more vertices.
Polygons, along with lines and points, are the geometric
primitives used by the OpenGL graphics system.

Real-time Graphics A branch of graphics concerned with interactive and
responsive display of complex two or three dimensional
scenes.

Smoke A carbon substance expelled form a burning body after the
loss of fuel, especially from organic material such as
vegetation.

Terrain The physical layout and characteristics of a landscape.

Texture A one, two, or three dimensional image that can be displayed
on geometric primitives, usually polygons.

Thread A light weight process used to simulate or execute with
concurrency depending on the number of central processing
units. In contrast to processes, threads share the same
memory and data.

Turbulence An eddying motion of the atmosphere that interrupts the flow
of wind.

Vegetation The plants of an area of region. Plant life such as trees,
bushes, grass, etc.

Volumetric Rendering A process of rendering or visualizing three dimensional data
sets. The geometric primitive for volumetric rendering is a
voxel as opposed to polygons or meshes which only describe
a object's surface.

Vorticity A measure of the spin of an air mass.

Voxel An abbreviation for volume pixels. A voxel is a geometric
primitive used to describe volumes.

