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ABSTRACT 
We present an eyes-free text entry method for mobile 
touchscreen devices. Input progresses by inking Graffiti 
strokes using a finger on a touchscreen. The system 
includes a word-level error correction algorithm. Auditory 
and tactile feedback guide eyes-free entry using speech and 
non-speech sounds, and by vibrations. In a study with 12 
participants, three different feedback modes were tested. 
Entry speed, accuracy, and algorithm performance were 
compared between the three feedback modes. An overall 
entry speed of 10.0 wpm was found with a maximum rate 
of 21.5 wpm using a feedback mode that required a 
recognized stroke at the beginning of each word. Text was 
entered with an overall accuracy of 95.7%. The error 
correction algorithm performed well: 14.9% of entered text 
was corrected on average, representing a 70.3% decrease in 
errors compared to no algorithm. Where multiple 
candidates appeared, the intended word was 1st or 2nd in the 
list 94.2% of the time. 
Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – input devices and strategies (e.g., mouse, 
touchscreen) 

General Terms 
Performance, Design, Experimentation, Human Factors 

Keywords 
Eyes-free, text entry, touchscreen, finger input, gestural 
input, Graffiti, auditory display, error correction, mobile 
computing. 

INTRODUCTION 
Mobile phones are an integral part of modern day 
communication, enhancing both information exchange and 

social interaction in the physical world.  One simple 
example is the coordination of face-to-face meetings using 
text messaging. Although initially designed for voice calls, 
mobile phones are now used for text messaging, 
multimedia sharing, email, web connectivity, media capture 
and playback, GPS mapping, and so on. 

Recently, there is an increased use of touch sensitive 
technologies on mobile phones. Consumer products 
employing such interactions were initially limited and 
unsuccessful, with early products requiring pixel-point 
accuracy and stylus input.  Such accuracy is difficult in 
mobile contexts. The shift from stylus to finger input 
changed the landscape and increased user adoption – the 
Apple iPhone is a classic example. Following the iPhone’s 
release in June 2007, many competing products emerged 
such as Nokia’s 5230, HTC’s Touch HD, LG’s Prada, and 
RIM’s BlackBerry Storm. 
Text input on mobile devices varies considerably.  Most 
devices employ either physical, button-based input or 
touch-based input using soft controls. Common button-
based techniques include the 12-key keypad or a mini-
QWERTY keyboard. Because the keys are physical, users 
feel the location of buttons and eventually develop motor 
memory of the device.  This facilitates eyes-free operation. 
Eyes-free use is important since mobile interaction often 
involves a secondary task, such as walking or shopping.  

Text input on touch systems typically uses a soft keyboard 
or gesture recognition. Without physical buttons, tactile 
feedback is absent, however. This limits the user’s ability 
to engage the kinesthetic and proprioceptive senses during 
interaction, and imposes an increased need to visually 
attend to the device. The effect is particularly troublesome 
if the user is engaged in a secondary task.  Consequently, 
the high visual demand of touch input compromises the 
“mobile” in “mobile phone”. 

In the following section, we briefly describe our original 
prototype.  This is followed with a review of related work 
on automatic error correction.  A redesign of the original 
prototype is then described followed by details of a user 
study to test the prototype.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
NordiCHI 2010, October 16–20, 2010, Reykjavik, Iceland. 
Copyright 2010 ACM  ISBN: 978-1-60558-934-3...$5.00. 
 
 



Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

512

OVERVIEW OF THE ORIGINAL PROTOTYPE 
In earlier work, we presented a gesture-based text entry 
interface using Graffiti (an example of Unistrokes [5]) for 
eyes-free input on a touchscreen device [16]. The system 
provided visual feedback but eyes-free entry was also 
possible using auditory and tactile stimuli.  The system 
described here includes several improvements (described 
later). 
To enter text, users draw strokes on the display surface 
using a finger. Digitized ink follows the user’s finger until 
it is raised. At the end of a stroke, the application analyses 
the stroke shape to identify the intended character. A 
recognized character is complemented with speech 
feedback: the letter is spoken. Upon word completion, a 
SPACE is inserted and the word is appended to the message 
(see Figure 1). If a stroke is unrecognized, the user is 
alerted with a short pulse of vibration from the built-in 
actuator. 

 
Figure 1.  Text entry interface for eyes-free 

input.   The stroke map is enhanced for clarity. 
The Graffiti alphabet is overlaid on the screen to promote 
learning. In related work, the strokes were displayed away 
from the interface [9, 18], thus demanding visual attention 
at a separate location from the interface.  This could 
potentially affect throughput. The stroke alphabet was 
display-only; so, the entire display surface was available as 
the drawing surface. 
An evaluation with 12 participants comparing eyes-on and 
eyes-free modes found an overall entry speed of 7.3 wpm 
(7.0 wpm eyes-on and 7.6 wpm eyes-free). A higher KSPC 
(keystrokes per character) was observed in the eyes-free 
mode, suggesting that the lack of visual feedback decreases 

input accuracy, necessitating more corrective strokes.1 The 
results of the initial evaluation were promising; however, 
areas of improvement were apparent. One deficiency was 
the lack of system-assisted error correction. In this paper, 
we present an improved version of the system. One of the 
main features is an algorithm for automatic error 
correction.  

ERROR CORRECTION 
Error correction methods use algorithms for approximate or 
exact text matching [e.g., 1, 7, 12, 13, 15, 17]. Three 
temporal points of error identification and correction in text 
entry are error prevention, automatic error correction, and 
user-initiated spell checking. The following sections review 
error correction techniques based on this categorization.  

Error Prevention 
At first, it seems paradoxical to consider correcting an error 
before it is committed. The idea is error prevention, rather 
than error correction. MacKenzie et al. proposed 
LetterWise, where a prefix determines the most likely 
character(s) to follow [10]. Some systems deal with errors 
in the prefix as well, but we discuss these in the next 
section. With fixed vocabularies, prefix-based methods 
provide an efficient means to prevent user errors before 
they occur. An example is the entry of street and city names 
on a GPS device. As the prefix length increases, the list of 
names narrows. Once the list is small enough, it is 
displayed to the user as options. 
In a similar vein, Hoffman et al. presented a hardware-
based solution called TypeRight [6]. Based on a prefix 
sequence, a dictionary, and grammar rules, the keyboard 
decreases errors by dynamically increasing the tactile 
resistance of less likely keys. Error correction rates were 
decreased by 46%. 

Automatic Error Correction 
Automatic Whiteout++ corrects common errors during 
entry, such as hitting a neighboring key, character 
substitution, or transposition (“the” instead of “teh”) [3]. 
When tested on data from previous mini-QWERTY 
keyboard experiments, the system corrected 32% of the 
errors automatically. Instead of using a dictionary, the 
algorithm detects errors based on keypress timings and 
letter (di-graph) frequencies. 
Kristensson and Zhai proposed an error correction 
technique using geometric pattern matching [8]. For 
example, entering “the” on a QWERTY keyboard forms a 
spatial pattern. With their method, it is possible to enter 
“the” even if the user actually enters “rjw”, because the 
patterns are geometrically similar. Pattern recognition was 
performed at the word level, when SPACE was entered. 
Overall, their system had a success rate of 83%. 

                                                             
1 The “K” for keystrokes in KSPC applies to any primitive action, 

including stylus or finger strokes. 
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Some input techniques make corrections when the prefix is 
erroneous or when a delimiter appears at the end of a word. 
The default error correction software on the Apple iPhone 
uses both these methods. The approach is to analyze the 
prefix in the input stream for each word. If the prefix is 
erroneous, while neighboring keys of the prefix yield a 
valid dictionary word, the valid word is presented as a 
suggestion. At the same time, the system learns and 
reorders the dictionary based on the user’s accept/reject 
selections, thus influencing future suggestions. 
Other methods are more familiar such as the capitalization 
and de-capitalization of letters and the reordering of letters 
(“adn” to “and”). These methods are part of the auto-
correct feature found on most word processors. If multiple 
matches are found for a sequence of characters, the word is 
marked with a dotted or squiggly red underline. At this 
point the user can correct a misspelled word, or run a “spell 
checker” to correct words one by one. 
The Apple Macintosh supports error identification and 
correction at the operating system level, independent of the 
application. In addition to the basic techniques, the system 
uses context and grammar to determine if a correction is 
needed. For instance, entering “teh byo adn” identifies all 
three words as errors. Entering “teh byo adn girl” corrects 
the text to “the boy and girl”. This is an interesting 
behaviour, since correcting each word individually reveals 
multiple suggestions. This is a departure from the way 
many word processors handle spelling errors (i.e., at the 
word level). 
The idea of automatic correction described by Robinson et 
al. in a U.S. patent comes close to the solution we describe 
[14]. The patent does not present a concrete system or an 
evaluation, but articulates the following concept (some 
details omitted). Receive handwriting input  determine a 
list of word candidates based on the input  use frequency 
indicators to decide which words to present  present one 
or more candidates for user selection. 

User-Initiated Spell Checking 
As interfaces are increasingly intelligent, the number of 
applications that identify and correct errors after text entry 
is decreasing. However, certain applications are still 
available for dynamic error identification and correction. 
Many online web applications, such as blogs and site 
builders, are examples. Usually, they rely on a spell 
checker run by the user after text entry is complete (post-
processing). However, this is rapidly changing. Web 
applications are improving in this regard (e.g., Google 
Wave2). Furthermore, some browsers provide spell 
checking at the application level. 
Note that error correction techniques often fail. Failures are 
due to a variety of reasons such as high ambiguity, 

                                                             
2 http://wave.google.com/ 

insufficient context, etc. These techniques enter a fallback 
mode where error correction is initiated by the user, and 
performed by the system in cooperation with the user on a 
word-by-word basis. For each erroneous word, the user 
selects from a list of options or provides one. 

THE REDESIGN PROCESS  
Issues Found 
In the original prototype, the first shortcoming was the 
speech feedback. Although of good quality, informing the 
user of every letter via speech was tedious – even for the 
eyes-free mode. In addition, users invested time confirming 
each letter after each stroke. This added significantly to the 
overall text entry time, thus lowering throughput. 
Furthermore, there was no feedback at the end of a word, 
making it difficult to determine what word was entered in 
the eyes-free mode. This increases the potential for the user 
to forget her position in a phrase. 
Second, the interaction provided vibrotactile feedback 
when a stroke was not recognized (unrecognized stroke). 
The device vibrated to alert the user and allowed for 
repeated attempts. Users acknowledged this as useful 
during training, but found it cumbersome and time-
consuming. Because novice users are unaware of the 
nuances of Graffiti, this led to multiple retries for certain 
strokes until they were learned. This generated many 
vibrations and frustrated users. 
Lastly, the lack of automatic error correction meant that the 
system did not assist users when entering text. Automatic 
error correction (“system help”) can potentially improve 
interaction quality, particularly in the eyes-free mode. 

Speech and Vibrotactile Feedback 
From our observations, we decided on a different approach 
to system feedback. The first enhancement involved 
shifting the speech feedback from the character-level to the 
word-level.  Users are alerted to the word entered, via 
speech, when a SPACE is entered (double-tap).  
Redesigning the interaction can produce new problems, 
however. For instance, providing word-level feedback 
suggests removing the character-level vibrotactile feedback 
for unrecognized strokes.  Without the vibrotactile effect, 
users would be unaware of unrecognized strokes and 
without character-level speech, users would be unaware of 
misrecognized strokes.  
In the redesigned system, users hear a short, non-speech 
“click” with each character/stroke received.  The click is 
sounded even if the stroke is unrecognized. Once the word 
is complete, users double-tap to enter a SPACE. At this 
point, the system speaks the word entered (subject to the 
results of the error correction algorithm; see below). 
Chunking text at the word level allows for fewer 
interruptions during text entry and alerts users to the last 
entered word instead of the last entered character. It is 
anticipated that this will improve the flow of the interaction 
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and increase throughput. However, this approach has the 
potential to produce more errors, since no feedback is 
provided at the character-level other than the click sound.  
To handle this, an error correction algorithm was 
employed. 

Error Correction Algorithm 
We designed an algorithm with several goals in mind. The 
algorithm handles errors that occur when a character is 
unrecognized, misrecognized, or wrong (i.e., a spelling 
error). As well, it assists users in finding the right word 
using a dictionary if multiple candidate words are found. 

Handling Stroke Errors 
When an unrecognized stroke is encountered, a period is 
inserted in the text stream. As an example, consider “hello” 
where the first “l” is unrecognized. There is no interruption 
to the user. Instead the unrecognized letter is replaced with 
a period, forming “he.lo”. In essence, the period acts as a 
marker. The system knows there is a character at the 
marker position, but it is an unknown character. Auto 
correct mechanisms do not accommodate situations like 
this. 
In the event of a misrecognized stroke (or spelling 
mistake), no changes are made. The application simply 
accepts the stroke because, at this point, it is not known if 
the stroke was misrecognized. For instance, consider again 
the word “hello”, where the second occurrence of “l” is 
misrecognized as “i”. In this case, the text is “helio”. 
Combining the two errors, the text is “he.io”.  
Although bigram and trigram frequency lists can aid in 
detecting misrecognized strokes when they occur (i.e., 
during entry for a word), it is not convenient to use them in 
an eyes-free setting where there is no visual feedback.  
The next step is to handle these errors. Once the user 
finishes a word and double taps to enter a SPACE, the word 
is spoken provided the character sequence matches a word 
in the dictionary.  If there is no match, the error correction 
algorithm is invoked. The algorithm works with a 
dictionary in attempting to correct the error.  The dictionary 
in the prototype was obtained from the British National 
Corpus [2].  There are 9,000 unique words and frequencies, 
beginning as follows: 

the 5776384 
of 2789403 
and 2421302 
...  

The error correction algorithm is discussed next. 

Regular Expression Matching 
The first task involves narrowing the search space. It is 
assumed the user entered the correct length of the word. 
Based on this, the search is conducted on all words of the 
same length in the dictionary. So, for the example of 
“hello”, a search is conducted on all words of length 5.  
There are about 1200 such words in the test dictionary. 

If “hello” was entered as “he.lo” the algorithm searches for 
all words that match “he.lo” such that any matching 
character replaces the period. The result is a single match, 
“hello”. Any other word with unrecognized characters is 
dealt with similarly. If the spelling is correct and some of 
the characters are unrecognized, regular expression 
matching provides a resilient mechanism for identifying the 
correct word. However, if there are spelling errors or 
misrecognized characters, an alternative technique is 
employed. 

Minimum String Distance Searching 
The minimum string distance (MSD) between two strings is 
the minimum number of primitives – insertions, deletions, 
or substitutions – to transform one string into the other. 
Using this metric, it is possible to detect misrecognized 
characters and find matching words. Consider the following 
example where “heggo” is transformed into “hello”: 

heggo <substitute g with l> 
helgo <substitute g with l>  
hello <matches ‘hello’ in dictionary>  

The above transformation requires two substitute 
operations to transform “heggo” to “hello”.  Hence, MSD is 
2. Note that in this algorithm, the focus is on substitution 
primitives due to the assumption that the word length is 
correct. Hence, it is possible to narrow the search space 
drastically and find a viable match.  
However, a problem is determining the bounds of the MSD 
value, since it is not known how many misrecognized 
characters exist in the entered text. An MSD value of 1 may 
find nothing. On the other hand, searching for all words 
that fit into an MSD value of, say, 1-4 may result in too 
many inappropriate matches. To handle this, we used data 
from an earlier experiment to develop a heuristic. The 
resulting MSD mapping is a function of the word length, as 
follows: 

if wordLength is 1-4 
    use MSD = 1 
else if wordLength is 5-6  
    use MSD <= 2 
else if wordLength is 7-8 
    use MSD <= 3 
else // wordLength is > 8 
    use MSD <= FLOOR(wordLength/2) 

For words up to length 4, the algorithm assumes 1 
misrecognized or unrecognized character of text. For words 
that are either 5 or 6 characters long, the algorithm allows 
for 2 erroneous characters, and so on. For words with 
length >8, the number of allowable erroneous characters is 
the floor of half the word length. There is one caveat. In the 
event no matching words are found, the MSD limit is 
incremented by one and the search is repeated. This 
modifies the mapping for words with length less than 9 as 
follows: 1-4 characters  MSD ≤ 2; 5-6 characters  
MSD ≤ 3; 7-8 characters  MSD ≤ 4; 9 or more characters 
 no change. 
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Combining the Results 
The final step is to merge the results of the two search 
operations. The merge operation is done as follows: 

listA = words found using regular 
        expression matching 

listB = words found using MSD matching 

listC = listA ∪ listB 

listC is sorted by frequency so that the word with the 
highest frequency is first. Also, duplicates are eliminated.  
Table 1 presents sample errors and the suggestions found 
by the correction algorithm, sorted by frequency. 

Search Key [word] Matches Found 
hel.o [hello] hello, helen, helps 

compu..r [computer] computer, composer 
begauze [because] Because 

ap.lg [apple] Apply, apple 
.uitas [guitar] guitar, quotas 
siz..rs [sisters] Sisters, singers 

poeans [oceans] poland, romans, oceans 
chs..er [chapter] chapter, chamber, charter, 

cheaper, chester 
Table 1.  Sample search words and results.  

The Auditory Display 
The error correction algorithm is pivotal for word-level 
interaction; however, it must smoothly integrate with the 
interaction. If the word entered is correct (i.e., the character 
sequence is in the dictionary), the word is accepted.  If the 
character sequence is not in the dictionary, the error 
correction algorithm is invoked.  If the result is a single 
match (see 3rd example in table above), the word is 
accepted.  In either of these cases, the user is informed of 
the word through speech feedback.  From the user’s 
perspective, it is not known if an error occurred. 
If the algorithm returns multiple words, the device sounds a 
two-tone bell and enters a “playback mode” – an auditory 
display. During this mode, the words in the set are spoken 
one after the other. Recognition of Graffiti strokes is 
suspended. Only three strokes are supported during 
playback: 

North stroke:  restart playback 
Delete stroke (left swipe): clear word and re-enter 
Single tap: accept last played word 

Words spoken are separated with 600 ms silence to allow 
time to accept or reject the last spoken word. Playback is 
cyclical; the start of each cycle is signaled with the two-
tone bell. Users can restart playback by drawing a north 
stroke, discard the word with a delete stroke, or select the 
word with a single tap. Word selection is confirmed by 
pronouncing the selected word again. 
Given the error correction algorithm and the interaction 
possibilities described above, an experiment was carried 
out to test eyes-free interaction with three different 

feedback modes. These feedback modes are described next, 
followed by the methodology and results of the experiment. 

FEEDBACK MODES 
To test the enhancements and correction algorithm, three 
feedback modes were used. 

Immediate 
For the Immediate mode, users receive speech feedback for 
each character entered. This behavior is the same as in the 
original prototype with the addition of word-level speech 
when SPACE is entered.  The error correction algorithm is 
not used in this mode. 

OneLetter 
For the OneLetter mode, users must enter a valid first 
stroke. If the first stroke is unrecognized, the system 
prevents the user from proceeding and outputs a pulse of 
vibration.  For this mode, the first letter is spoken; the 
remaining letters produce “click”, irrespective of the 
outcome of recognition.  When a SPACE is entered, the 
word is spoken if the character sequence is in the 
dictionary, or the algorithm is invoked if the character 
sequence is not in the dictionary.  The motivation behind 
this mode is to narrow the search space to improve the 
probability of finding the correct word. 

Delayed 
For the Delayed mode, there are no restrictions on the user.  
Each stroke is accompanied with “click” and there is no 
requirement for a valid first stroke.  When a SPACE is 
entered, the word is spoken if the character sequence is in 
the dictionary, or the algorithm is invoked otherwise.  The 
search space is larger for this mode (in the event of an 
error); however, throughput may be higher since the user 
need not hesitate to confirm entry of the first character. 

EVALUATING THE INTERACTION 
Given the above feedback modes, error correction 
algorithm, and auditory display, an evaluation testing these 
enhancements was carried out. Our goal is to investigate 
whether the prototype changes result in improved 
interaction. We expect that the Delayed mode will enhance 
text entry by increasing entry rates and decreasing error 
rates. The OneLetter mode may result in slightly less 
throughput but better accuracy due to the requirement of a 
valid first stroke. The Immediate mode was tested as a 
baseline for comparison against the original interaction 
method [16]. 

Participants 
Twelve paid volunteer participants (2 female) were 
recruited from the local university campus. Participants 
ranged from 18 to 40 years (mean = 26.6, SD = 6.8). All 
were daily users of computers, reporting 2 to 12 hours 
usage per day (mean = 6.7, SD = 2.7). Six used a 
touchscreen phone regularly (“several times a week” or 
“everyday”). Participants had no prior experience with the 
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system. Eight participants had tried Graffiti before, but 
none was an experienced user. 

Apparatus 
The hardware consisted of an Apple iPhone 3G (firmware: 
3.1.2), an Apple MacBook host (2.4 GHz Intel Core 2 Duo 
with 2 GB of RAM), and a private wireless ad-hoc network 
(see Figure 2). The host system was used for data 
collection. The two devices communicated wirelessly, 
allowing users freedom of movement during the 
experiment.  

 
Figure 2.  Hardware for experimentation.  

The host application was developed using Cocoa and 
Objective C. The development environment was Apple's 
Xcode. The device application was developed using 
OpenGL ES and in the same environment as the host 
application (Xcode). 
The host application listened for incoming connections 
from the iPhone. Upon receiving a request and establishing 
a connection, a set of 500 test phrases [11] was read to 
prepare for the first trial.   
The software recorded time stamps for each stroke, word 
and phrase level data, ink trails of strokes, and other 
statistics for follow-up analyses. Timing for each phrase 
began when the display was touched for the first stroke and 
ended with the insertion of SPACE after the last word.  

Procedure 
The experiment was performed in a quiet room. 
Participants adjusted their position on a height-adjustable 
chair to position the device and their hands under the table. 
Prior to data collection, participants completed a pre-test 
questionnaire soliciting demographic data. The experiment 
began with a training session. This involved entering the 
alphabet A to Z three times, entering the phrase “the quick 
brown fox jumps over the lazy dog” twice, and entering 
one random phrase from the phrase set. The goal was to 
bring participants up to speed with Graffiti and minimize 
any learning effects or transfer of skill from prior 
experience.  Training was followed by three blocks of entry 
for each feedback mode: Immediate, OneLetter, Delayed – 
all eyes-free. Four consecutive phrases formed one block of 
text entry. The experimenter explained the task and 
demonstrated each mode, including the method to enter a 
SPACE (double tap) and interacting with the auditory 
display for the OneLetter and Delayed modes. User 

initiated error correction (left swipe) was restricted to the 
most-recently entered character only. This restriction 
served as a means to reduce variability across participants.  
Participants were asked to proceed “as quickly and 
accurately as possible” and were allowed to take breaks 
between phrases and blocks, if desired. Testing lasted 50-
60 minutes for all three conditions in the experiment. The 
interaction was two-handed requiring participants to hold 
the device in one hand while performing text entry with the 
index finger of the other hand. Participants held the device 
in their non-dominant hand and entered text with their 
dominant hand. During testing, the device was under the 
table and occluded from view to ensure eyes-free entry in 
all three conditions.  
Certain characters posed difficulty, such as the letter “G”. 
For this and other such characters, alternative entry 
methods were demonstrated. Figure 3 shows two ways of 
entering “G”. Preliminary tests revealed that entering G as 
on the left was harder than the alternative – drawing a six. 
 

 
Figure 3.  Ink trails  for two ways of drawing 

“G”. 

Design 
The experiment was a 3 × 3 within-subjects design. There 
were two independent variables: 

Feedback Mode (Immediate, OneLetter, Delayed)  
Block (1, 2, 3).  

The feedback mode conditions were counterbalanced using 
a Latin square. Aside from training, the amount of entry 
was 12 participants × 3 feedback modes × 3 blocks × 4 
phrases/block = 432 phrases. 

RESULTS AND DISCUSSION 
Several dependent variables were measured through the 
course of the experiment. Results for the basic metrics of 
speed and accuracy are presented first. These are followed 
by additional investigations on the performance of the error 
correction algorithm and a closer look at the quality of the 
word suggestions. 

Entry Speed 
The results for entry speed are shown in Figure 4. The 
overall mean rate was 10.0 wpm. As expected, entry speed 
increased significantly across blocks (F2,18 = 6.2, p < .05). 
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There was also a significant difference by entry mode 
(F2,18 = 32.3, p < .0001). 
The average entry speed for the Immediate mode was 
8.34 wpm.  Entry speeds were 27% faster for the OneLetter 
mode, at 10.6 wpm, and 33% faster for the Delayed mode, 
at 11.1 wpm.  A post hoc Scheffé test revealed significant 
differences between the Immediate-OneLetter and 
Immediate-Delayed pairings (p < .0001).  Overall, these 
results are quite good.  The entry speeds are faster than the 
7.6 wpm observed in our earlier experiment [16] and faster 
than the novice entry rate of 7.0 wpm for Graffiti reported 
by Fleetwood et al. [4]. 
The maximum entry speed for individual phrases sheds 
light on the potential of each mode. The OneLetter mode 
obtained the highest rate at 21.5 wpm, followed by the 
Delayed mode at 20.8 wpm and Immediate mode at 
16.9 wpm.  Again, these results are noteworthy, particularly 
considering there were only about 15 minutes of testing for 
each mode. 
The graph also provides “adjusted” text entry rates for the 
OneLetter and Delayed modes. The adjusted rates remove 
the time spent in playback mode, pretending as though 
there was always a single word that matched the 
participant’s input and so no time was invested in dealing 
with errors or collisions.  For both modes, the improvement 
is about 10%. 

Accuracy 
The main accuracy measure is error rate computed using 
the minimum string distance (MSD) between the presented 
and final text.  Since the final text was subject to correction 
using the error correction algorithm, this measure is called 
the “final error rate”.  See Figure 5.  Overall, the final error 
rates were low at 4.3% (accuracy > 95.0%). The effect of 
feedback mode on final error rate was significant (F2,18 = 
8.2, p < .005). The Delayed mode had the highest rate at 
7.0%. This was 2× higher than OneLetter at 3.5% and 2.8× 
higher than Immediate, at 2.5%. Although a block effect 

was expected, none was found. This is partially due to 
participants not having a direct influence on the error 
correction algorithm. The algorithm is designed to cater to 
individual differences, which may have prevented a block 
effect from emerging. 
A post hoc Scheffé test revealed significant differences 
between the Immediate-Delayed and OneLetter-Delayed 
pairings (p < .0001). Variation in final error rate between 
the Immediate-OneLetter pairing was insignificant, 
suggesting that the error correction algorithm worked better 
when the first letter of a word was valid. This is best 
observed in the differences between OneLetter and 
Immediate in block 3 of the figure; they are marginal. 
Table 2 presents examples of the presented phrases and the 
entered and final text. The variation in the entered and final 
text gives a sense of the utility of the error correction 
algorithm. 
Presented 

Entered 
Corrected 

 
Error 
Count 

elephants are afraid of mice 
e.e.hancs are a.ratd .. m..e  
elephants are afraid of mice  

9 
 

question that must be answered 
....tion tha. must be answered  
question that must be answered  

5 
 

the fax machine is broken  
th. fax machin. is brpken  
the fax machine is broken 

3 
 

three two one zero blast off  
three .w. .ne zer. b.ast of.  
three two one zero blast off 

6 
 

fall is my favorite season  
fal. is m. fau.ritg seas..  
fall is my favorite season 

7 
 

do not walk too quickly  
d. n.t wa.. too quic.lo  
do not walk too quickly  

6 
 

stability of the nation  
stadilit. .. the nati.n  
stability of the nation 

5 
 

Table 2.  Sample of presented, entered, and 
corrected text.  

 
Figure 5.  Final error rate (%) by entry mode 

and block. 
 

Figure 4.  Entry speed (wpm) by entry mode 
and block. 
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KSPC Analysis 
Similar to the previous experiment [16], KSPC was used to 
measure the overhead of user error correction on text entry. 
If entry was perfect, the number of strokes equals the 
number of characters and KSPC = 1. (Note: double-tap was 
counted as one stroke.) Results of this analysis are shown 
in Figure 6. Since the chart uses a baseline of 1 and perfect 
input has KSPC = 1, the entire magnitude of each bar 
represents the overhead for unrecognized strokes or for 
errors that users corrected. 
Overall, average KSPC was 1.27. KSPC for the Immediate 
mode was highest at 1.45. OneLetter was 16.6% lower at 
1.21, while Delayed was 19.3% lower than Immediate, at 
1.17. The trend was consistent and significant between 
entry modes (F2,18 = 51.8, p < .0001), but not within blocks. 
A post hoc Scheffé test revealed significant differences 
between the Immediate-OneLetter and Immediate-Delayed 
pairings (p < .0001), but not between the OneLetter-
Delayed pairing. This is expected as the latter two modes 
are similar and vary only in the requirement of one valid 
stroke per word. Also, KSPC was the same or decreased 
from one block to the next in the Immediate and OneLetter 
modes. For the Delayed mode, KSPC increased, albeit 
slightly, from the first block to the second. It remained 
constant from block two to block three.  The OneLetter and 
Delayed modes were intended to decrease user effort. This 
is clearly reflected in the results. 

 
Figure 6.  Keystrokes per character (KSPC)  by 

block and entry mode. 

System Help 
The error correction algorithm aimed to enhance the text 
entry experience through a robust mechanism to handle text 
entry errors. Simply put, the burden of correcting errors 
shifted from the user to the system. “System help” is a 
metric identifying the percentage of entered text transcribed 
incorrectly but successfully corrected by the correction 
algorithm. The results are depicted in Figure 7. 
The error correction algorithm played an important role in 
text entry. Overall, the algorithm corrected 14.9% of 
entered text. For a 30-character phrase, this is equivalent to 

4.5 characters, or one word. In the Delayed mode, 15.6% of 
entered text was corrected. The value was 14.2% for the 
OneLetter condition. A post hoc Scheffé test revealed no 
difference for system help between the OneLetter-Delayed 
pairing. 
The amount of errors is not small. This is expected as the 
lack of audio feedback at the character-level in the 
OneLetter and Delayed modes made it impossible for 
participants to verify input at the character level. 
Figure 8 presents one final illustration of how errors were 
handled. Raw error rate is for the entered text. Corrected 
error rate is for the final text. 
The Immediate mode had no automatic error correction so 
both rates are equal. However, the stark difference in 
magnitude between the raw and corrected error rates for the 
other two modes highlights the effect of the algorithm. 
Overall, error rates decreased by 70.3%. Error correction 
worked best in the OneLetter mode with a net improvement 
of 76.7%. The improvement in the Delayed mode was 
64.0%. The OneLetter rates are lower overall due to the 
requirement of a valid first character.  This improves the 

 
Figure 7.  System help (%) by mode and 

block. (Note: The algorithm was not used 
with Immediate mode.)  

 
Figure 8.  Raw and corrected error rates.  
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effect of the algorithm, since having the first character 
correct dramatically narrows the search space and increases 
the likelihood of finding the intended word. 

Playback Mode (Auditory Display) 
If the error correction algorithm finds multiple matches for 
a word, the list is produced using the playback mode.  Two 
points of interest here are the size of the lists and the 
position of the intended word. 

Candidate List Size 
Figure 9 shows the average candidate list size per word by 
block and feedback mode. The average size overall was 
2.43 words. List size for OneLetter averaged 1.89 words. 
Not requiring a valid stroke for the first character for the 
Delayed mode resulted in a 56.0% higher list size, at 2.96 
words on average. The list size difference between the 
OneLetter and Delayed modes was significant (p < .05). 

 
Figure 9.  Mean list  size per word by block. 

OneLetter fluctuated by small amounts, decreasing in value 
across blocks. The implication of a shorter list is that more 
characters in each word are entered correctly, so there is a 
slight learning effect visible, likely due to the audio 
feedback for the first character. This reinforced the 
alphabet and allowed users to learn the nuances when the 
stroke was unrecognized. The same trend is not visible in 
the Delayed mode. This is due to the lack of character-level 
feedback, thus inhibiting any meaningful learning to take 
place. 

Word Position 
Figure 10 deconstructs the position of the desired word in 
the candidate lists. About 77.0% of the words in OneLetter 
mode were at position 1.  The figure for the Delayed mode 
is 82.0%.   Grouping positions 1 and 2 together, the number 
is 94.2% (95.3% OneLetter, 93.2% Delayed). This is a 
promising result and demonstrates that the regular 
expression matching and MSD searching characteristics of 
the correction algorithm work well and provide a resilient 
mechanism for handling unrecognized strokes, 
misrecognized strokes, and spelling errors. 

 
Figure 10. Word position frequency by 

feedback mode. 

CONCLUSION 
We presented an enhanced version of an eyes-free text 
entry interface for touchscreen devices. Audio feedback 
was shifted from character-level to word-level, providing 
speech output at the end of each word. Vibrotactile 
feedback was used only for the OneLetter mode, which 
required a recognized stroke at the beginning of each word. 
The entered text (with the errors) is passed through a 
dictionary-based error correction algorithm. The algorithm 
uses regular expression matching and a heuristically 
determined minimum string distance search to generate a 
list of candidate words based on the entered word.  The list 
is presented in an auditory display, in the form of a 
playback mode. 
In a user study, the overall text entry speed was 10.0 wpm 
with a maximum rate of 21.5 wpm using a feedback mode 
that required a recognized stroke at the beginning of each 
word. Text was entered with an overall accuracy of 95.7%. 
The error correction algorithm performed well: 14.9% of 
entered text was corrected on average, representing 70.3% 
decrease in errors compared to no algorithm. Where 
multiple candidates appeared, the intended word was 1st or 
2nd in the list 94.2% of the time.   
As touchscreen phones lack the tactile feel of a physical 
keyboard, the visual demand on the user is increased.  Our 
research demonstrates that eyes-free text entry is possible 
on a touchscreen device and with performance that is both 
reasonably fast and accurate.  In a wider context, the text 
entry method described here can be used in scenarios where 
users are multitasking and attention is limited.  Finally, a 
contribution of this research is applications in accessible 
computing for visually impaired users.  Although the 
participants of this research cannot be equated to visually 
impaired users, their success at entering text eyes-free 
suggests that the method may serve as an accessible 
alternative to users with impaired vision. However, 
determining the extents of this possibility requires further 
research. 
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