
Proceedings: NordiCHI 2010, October 16–20, 2010 Full Papers

511

Eyes-free Text Entry with Error Correction
on Touchscreen Mobile Devices

Hussain Tinwala

Dept. of Computer Science and Engineering
York University
4700 Keele St.

Toronto, Ontario, Canada M3J 1P3
hussain@cse.yorku.ca

I. Scott MacKenzie

Dept. of Computer Science and Engineering
York University
4700 Keele St.

Toronto, Ontario, Canada M3J 1P3
mack@cse.yorku.ca

ABSTRACT
We present an eyes-free text entry method for mobile
touchscreen devices. Input progresses by inking Graffiti
strokes using a finger on a touchscreen. The system
includes a word-level error correction algorithm. Auditory
and tactile feedback guide eyes-free entry using speech and
non-speech sounds, and by vibrations. In a study with 12
participants, three different feedback modes were tested.
Entry speed, accuracy, and algorithm performance were
compared between the three feedback modes. An overall
entry speed of 10.0 wpm was found with a maximum rate
of 21.5 wpm using a feedback mode that required a
recognized stroke at the beginning of each word. Text was
entered with an overall accuracy of 95.7%. The error
correction algorithm performed well: 14.9% of entered text
was corrected on average, representing a 70.3% decrease in
errors compared to no algorithm. Where multiple
candidates appeared, the intended word was 1st or 2nd in the
list 94.2% of the time.
Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – input devices and strategies (e.g., mouse,
touchscreen)

General Terms
Performance, Design, Experimentation, Human Factors

Keywords
Eyes-free, text entry, touchscreen, finger input, gestural
input, Graffiti, auditory display, error correction, mobile
computing.

INTRODUCTION
Mobile phones are an integral part of modern day
communication, enhancing both information exchange and

social interaction in the physical world. One simple
example is the coordination of face-to-face meetings using
text messaging. Although initially designed for voice calls,
mobile phones are now used for text messaging,
multimedia sharing, email, web connectivity, media capture
and playback, GPS mapping, and so on.

Recently, there is an increased use of touch sensitive
technologies on mobile phones. Consumer products
employing such interactions were initially limited and
unsuccessful, with early products requiring pixel-point
accuracy and stylus input. Such accuracy is difficult in
mobile contexts. The shift from stylus to finger input
changed the landscape and increased user adoption – the
Apple iPhone is a classic example. Following the iPhone’s
release in June 2007, many competing products emerged
such as Nokia’s 5230, HTC’s Touch HD, LG’s Prada, and
RIM’s BlackBerry Storm.
Text input on mobile devices varies considerably. Most
devices employ either physical, button-based input or
touch-based input using soft controls. Common button-
based techniques include the 12-key keypad or a mini-
QWERTY keyboard. Because the keys are physical, users
feel the location of buttons and eventually develop motor
memory of the device. This facilitates eyes-free operation.
Eyes-free use is important since mobile interaction often
involves a secondary task, such as walking or shopping.

Text input on touch systems typically uses a soft keyboard
or gesture recognition. Without physical buttons, tactile
feedback is absent, however. This limits the user’s ability
to engage the kinesthetic and proprioceptive senses during
interaction, and imposes an increased need to visually
attend to the device. The effect is particularly troublesome
if the user is engaged in a secondary task. Consequently,
the high visual demand of touch input compromises the
“mobile” in “mobile phone”.

In the following section, we briefly describe our original
prototype. This is followed with a review of related work
on automatic error correction. A redesign of the original
prototype is then described followed by details of a user
study to test the prototype.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NordiCHI 2010, October 16–20, 2010, Reykjavik, Iceland.
Copyright 2010 ACM ISBN: 978-1-60558-934-3...$5.00.

Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

512

OVERVIEW OF THE ORIGINAL PROTOTYPE
In earlier work, we presented a gesture-based text entry
interface using Graffiti (an example of Unistrokes [5]) for
eyes-free input on a touchscreen device [16]. The system
provided visual feedback but eyes-free entry was also
possible using auditory and tactile stimuli. The system
described here includes several improvements (described
later).
To enter text, users draw strokes on the display surface
using a finger. Digitized ink follows the user’s finger until
it is raised. At the end of a stroke, the application analyses
the stroke shape to identify the intended character. A
recognized character is complemented with speech
feedback: the letter is spoken. Upon word completion, a
SPACE is inserted and the word is appended to the message
(see Figure 1). If a stroke is unrecognized, the user is
alerted with a short pulse of vibration from the built-in
actuator.

Figure 1. Text entry interface for eyes-free

input. The stroke map is enhanced for clarity.
The Graffiti alphabet is overlaid on the screen to promote
learning. In related work, the strokes were displayed away
from the interface [9, 18], thus demanding visual attention
at a separate location from the interface. This could
potentially affect throughput. The stroke alphabet was
display-only; so, the entire display surface was available as
the drawing surface.
An evaluation with 12 participants comparing eyes-on and
eyes-free modes found an overall entry speed of 7.3 wpm
(7.0 wpm eyes-on and 7.6 wpm eyes-free). A higher KSPC
(keystrokes per character) was observed in the eyes-free
mode, suggesting that the lack of visual feedback decreases

input accuracy, necessitating more corrective strokes.1 The
results of the initial evaluation were promising; however,
areas of improvement were apparent. One deficiency was
the lack of system-assisted error correction. In this paper,
we present an improved version of the system. One of the
main features is an algorithm for automatic error
correction.

ERROR CORRECTION
Error correction methods use algorithms for approximate or
exact text matching [e.g., 1, 7, 12, 13, 15, 17]. Three
temporal points of error identification and correction in text
entry are error prevention, automatic error correction, and
user-initiated spell checking. The following sections review
error correction techniques based on this categorization.

Error Prevention
At first, it seems paradoxical to consider correcting an error
before it is committed. The idea is error prevention, rather
than error correction. MacKenzie et al. proposed
LetterWise, where a prefix determines the most likely
character(s) to follow [10]. Some systems deal with errors
in the prefix as well, but we discuss these in the next
section. With fixed vocabularies, prefix-based methods
provide an efficient means to prevent user errors before
they occur. An example is the entry of street and city names
on a GPS device. As the prefix length increases, the list of
names narrows. Once the list is small enough, it is
displayed to the user as options.
In a similar vein, Hoffman et al. presented a hardware-
based solution called TypeRight [6]. Based on a prefix
sequence, a dictionary, and grammar rules, the keyboard
decreases errors by dynamically increasing the tactile
resistance of less likely keys. Error correction rates were
decreased by 46%.

Automatic Error Correction
Automatic Whiteout++ corrects common errors during
entry, such as hitting a neighboring key, character
substitution, or transposition (“the” instead of “teh”) [3].
When tested on data from previous mini-QWERTY
keyboard experiments, the system corrected 32% of the
errors automatically. Instead of using a dictionary, the
algorithm detects errors based on keypress timings and
letter (di-graph) frequencies.
Kristensson and Zhai proposed an error correction
technique using geometric pattern matching [8]. For
example, entering “the” on a QWERTY keyboard forms a
spatial pattern. With their method, it is possible to enter
“the” even if the user actually enters “rjw”, because the
patterns are geometrically similar. Pattern recognition was
performed at the word level, when SPACE was entered.
Overall, their system had a success rate of 83%.

1 The “K” for keystrokes in KSPC applies to any primitive action,

including stylus or finger strokes.

Proceedings: NordiCHI 2010, October 16–20, 2010 Full Papers

513

Some input techniques make corrections when the prefix is
erroneous or when a delimiter appears at the end of a word.
The default error correction software on the Apple iPhone
uses both these methods. The approach is to analyze the
prefix in the input stream for each word. If the prefix is
erroneous, while neighboring keys of the prefix yield a
valid dictionary word, the valid word is presented as a
suggestion. At the same time, the system learns and
reorders the dictionary based on the user’s accept/reject
selections, thus influencing future suggestions.
Other methods are more familiar such as the capitalization
and de-capitalization of letters and the reordering of letters
(“adn” to “and”). These methods are part of the auto-
correct feature found on most word processors. If multiple
matches are found for a sequence of characters, the word is
marked with a dotted or squiggly red underline. At this
point the user can correct a misspelled word, or run a “spell
checker” to correct words one by one.
The Apple Macintosh supports error identification and
correction at the operating system level, independent of the
application. In addition to the basic techniques, the system
uses context and grammar to determine if a correction is
needed. For instance, entering “teh byo adn” identifies all
three words as errors. Entering “teh byo adn girl” corrects
the text to “the boy and girl”. This is an interesting
behaviour, since correcting each word individually reveals
multiple suggestions. This is a departure from the way
many word processors handle spelling errors (i.e., at the
word level).
The idea of automatic correction described by Robinson et
al. in a U.S. patent comes close to the solution we describe
[14]. The patent does not present a concrete system or an
evaluation, but articulates the following concept (some
details omitted). Receive handwriting input  determine a
list of word candidates based on the input  use frequency
indicators to decide which words to present  present one
or more candidates for user selection.

User-Initiated Spell Checking
As interfaces are increasingly intelligent, the number of
applications that identify and correct errors after text entry
is decreasing. However, certain applications are still
available for dynamic error identification and correction.
Many online web applications, such as blogs and site
builders, are examples. Usually, they rely on a spell
checker run by the user after text entry is complete (post-
processing). However, this is rapidly changing. Web
applications are improving in this regard (e.g., Google
Wave2). Furthermore, some browsers provide spell
checking at the application level.
Note that error correction techniques often fail. Failures are
due to a variety of reasons such as high ambiguity,

2 http://wave.google.com/

insufficient context, etc. These techniques enter a fallback
mode where error correction is initiated by the user, and
performed by the system in cooperation with the user on a
word-by-word basis. For each erroneous word, the user
selects from a list of options or provides one.

THE REDESIGN PROCESS
Issues Found
In the original prototype, the first shortcoming was the
speech feedback. Although of good quality, informing the
user of every letter via speech was tedious – even for the
eyes-free mode. In addition, users invested time confirming
each letter after each stroke. This added significantly to the
overall text entry time, thus lowering throughput.
Furthermore, there was no feedback at the end of a word,
making it difficult to determine what word was entered in
the eyes-free mode. This increases the potential for the user
to forget her position in a phrase.
Second, the interaction provided vibrotactile feedback
when a stroke was not recognized (unrecognized stroke).
The device vibrated to alert the user and allowed for
repeated attempts. Users acknowledged this as useful
during training, but found it cumbersome and time-
consuming. Because novice users are unaware of the
nuances of Graffiti, this led to multiple retries for certain
strokes until they were learned. This generated many
vibrations and frustrated users.
Lastly, the lack of automatic error correction meant that the
system did not assist users when entering text. Automatic
error correction (“system help”) can potentially improve
interaction quality, particularly in the eyes-free mode.

Speech and Vibrotactile Feedback
From our observations, we decided on a different approach
to system feedback. The first enhancement involved
shifting the speech feedback from the character-level to the
word-level. Users are alerted to the word entered, via
speech, when a SPACE is entered (double-tap).
Redesigning the interaction can produce new problems,
however. For instance, providing word-level feedback
suggests removing the character-level vibrotactile feedback
for unrecognized strokes. Without the vibrotactile effect,
users would be unaware of unrecognized strokes and
without character-level speech, users would be unaware of
misrecognized strokes.
In the redesigned system, users hear a short, non-speech
“click” with each character/stroke received. The click is
sounded even if the stroke is unrecognized. Once the word
is complete, users double-tap to enter a SPACE. At this
point, the system speaks the word entered (subject to the
results of the error correction algorithm; see below).
Chunking text at the word level allows for fewer
interruptions during text entry and alerts users to the last
entered word instead of the last entered character. It is
anticipated that this will improve the flow of the interaction

Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

514

and increase throughput. However, this approach has the
potential to produce more errors, since no feedback is
provided at the character-level other than the click sound.
To handle this, an error correction algorithm was
employed.

Error Correction Algorithm
We designed an algorithm with several goals in mind. The
algorithm handles errors that occur when a character is
unrecognized, misrecognized, or wrong (i.e., a spelling
error). As well, it assists users in finding the right word
using a dictionary if multiple candidate words are found.

Handling Stroke Errors
When an unrecognized stroke is encountered, a period is
inserted in the text stream. As an example, consider “hello”
where the first “l” is unrecognized. There is no interruption
to the user. Instead the unrecognized letter is replaced with
a period, forming “he.lo”. In essence, the period acts as a
marker. The system knows there is a character at the
marker position, but it is an unknown character. Auto
correct mechanisms do not accommodate situations like
this.
In the event of a misrecognized stroke (or spelling
mistake), no changes are made. The application simply
accepts the stroke because, at this point, it is not known if
the stroke was misrecognized. For instance, consider again
the word “hello”, where the second occurrence of “l” is
misrecognized as “i”. In this case, the text is “helio”.
Combining the two errors, the text is “he.io”.
Although bigram and trigram frequency lists can aid in
detecting misrecognized strokes when they occur (i.e.,
during entry for a word), it is not convenient to use them in
an eyes-free setting where there is no visual feedback.
The next step is to handle these errors. Once the user
finishes a word and double taps to enter a SPACE, the word
is spoken provided the character sequence matches a word
in the dictionary. If there is no match, the error correction
algorithm is invoked. The algorithm works with a
dictionary in attempting to correct the error. The dictionary
in the prototype was obtained from the British National
Corpus [2]. There are 9,000 unique words and frequencies,
beginning as follows:

the 5776384
of 2789403
and 2421302
...

The error correction algorithm is discussed next.

Regular Expression Matching
The first task involves narrowing the search space. It is
assumed the user entered the correct length of the word.
Based on this, the search is conducted on all words of the
same length in the dictionary. So, for the example of
“hello”, a search is conducted on all words of length 5.
There are about 1200 such words in the test dictionary.

If “hello” was entered as “he.lo” the algorithm searches for
all words that match “he.lo” such that any matching
character replaces the period. The result is a single match,
“hello”. Any other word with unrecognized characters is
dealt with similarly. If the spelling is correct and some of
the characters are unrecognized, regular expression
matching provides a resilient mechanism for identifying the
correct word. However, if there are spelling errors or
misrecognized characters, an alternative technique is
employed.

Minimum String Distance Searching
The minimum string distance (MSD) between two strings is
the minimum number of primitives – insertions, deletions,
or substitutions – to transform one string into the other.
Using this metric, it is possible to detect misrecognized
characters and find matching words. Consider the following
example where “heggo” is transformed into “hello”:

heggo <substitute g with l>
helgo <substitute g with l>
hello <matches ‘hello’ in dictionary>

The above transformation requires two substitute
operations to transform “heggo” to “hello”. Hence, MSD is
2. Note that in this algorithm, the focus is on substitution
primitives due to the assumption that the word length is
correct. Hence, it is possible to narrow the search space
drastically and find a viable match.
However, a problem is determining the bounds of the MSD
value, since it is not known how many misrecognized
characters exist in the entered text. An MSD value of 1 may
find nothing. On the other hand, searching for all words
that fit into an MSD value of, say, 1-4 may result in too
many inappropriate matches. To handle this, we used data
from an earlier experiment to develop a heuristic. The
resulting MSD mapping is a function of the word length, as
follows:

if wordLength is 1-4
 use MSD = 1
else if wordLength is 5-6
 use MSD <= 2
else if wordLength is 7-8
 use MSD <= 3
else // wordLength is > 8
 use MSD <= FLOOR(wordLength/2)

For words up to length 4, the algorithm assumes 1
misrecognized or unrecognized character of text. For words
that are either 5 or 6 characters long, the algorithm allows
for 2 erroneous characters, and so on. For words with
length >8, the number of allowable erroneous characters is
the floor of half the word length. There is one caveat. In the
event no matching words are found, the MSD limit is
incremented by one and the search is repeated. This
modifies the mapping for words with length less than 9 as
follows: 1-4 characters  MSD ≤ 2; 5-6 characters 
MSD ≤ 3; 7-8 characters  MSD ≤ 4; 9 or more characters
 no change.

Proceedings: NordiCHI 2010, October 16–20, 2010 Full Papers

515

Combining the Results
The final step is to merge the results of the two search
operations. The merge operation is done as follows:

listA = words found using regular
 expression matching

listB = words found using MSD matching

listC = listA ∪ listB

listC is sorted by frequency so that the word with the
highest frequency is first. Also, duplicates are eliminated.
Table 1 presents sample errors and the suggestions found
by the correction algorithm, sorted by frequency.

Search Key [word] Matches Found
hel.o [hello] hello, helen, helps

compu..r [computer] computer, composer
begauze [because] Because

ap.lg [apple] Apply, apple
.uitas [guitar] guitar, quotas
siz..rs [sisters] Sisters, singers

poeans [oceans] poland, romans, oceans
chs..er [chapter] chapter, chamber, charter,

cheaper, chester
Table 1. Sample search words and results.

The Auditory Display
The error correction algorithm is pivotal for word-level
interaction; however, it must smoothly integrate with the
interaction. If the word entered is correct (i.e., the character
sequence is in the dictionary), the word is accepted. If the
character sequence is not in the dictionary, the error
correction algorithm is invoked. If the result is a single
match (see 3rd example in table above), the word is
accepted. In either of these cases, the user is informed of
the word through speech feedback. From the user’s
perspective, it is not known if an error occurred.
If the algorithm returns multiple words, the device sounds a
two-tone bell and enters a “playback mode” – an auditory
display. During this mode, the words in the set are spoken
one after the other. Recognition of Graffiti strokes is
suspended. Only three strokes are supported during
playback:

North stroke: restart playback
Delete stroke (left swipe): clear word and re-enter
Single tap: accept last played word

Words spoken are separated with 600 ms silence to allow
time to accept or reject the last spoken word. Playback is
cyclical; the start of each cycle is signaled with the two-
tone bell. Users can restart playback by drawing a north
stroke, discard the word with a delete stroke, or select the
word with a single tap. Word selection is confirmed by
pronouncing the selected word again.
Given the error correction algorithm and the interaction
possibilities described above, an experiment was carried
out to test eyes-free interaction with three different

feedback modes. These feedback modes are described next,
followed by the methodology and results of the experiment.

FEEDBACK MODES
To test the enhancements and correction algorithm, three
feedback modes were used.

Immediate
For the Immediate mode, users receive speech feedback for
each character entered. This behavior is the same as in the
original prototype with the addition of word-level speech
when SPACE is entered. The error correction algorithm is
not used in this mode.

OneLetter
For the OneLetter mode, users must enter a valid first
stroke. If the first stroke is unrecognized, the system
prevents the user from proceeding and outputs a pulse of
vibration. For this mode, the first letter is spoken; the
remaining letters produce “click”, irrespective of the
outcome of recognition. When a SPACE is entered, the
word is spoken if the character sequence is in the
dictionary, or the algorithm is invoked if the character
sequence is not in the dictionary. The motivation behind
this mode is to narrow the search space to improve the
probability of finding the correct word.

Delayed
For the Delayed mode, there are no restrictions on the user.
Each stroke is accompanied with “click” and there is no
requirement for a valid first stroke. When a SPACE is
entered, the word is spoken if the character sequence is in
the dictionary, or the algorithm is invoked otherwise. The
search space is larger for this mode (in the event of an
error); however, throughput may be higher since the user
need not hesitate to confirm entry of the first character.

EVALUATING THE INTERACTION
Given the above feedback modes, error correction
algorithm, and auditory display, an evaluation testing these
enhancements was carried out. Our goal is to investigate
whether the prototype changes result in improved
interaction. We expect that the Delayed mode will enhance
text entry by increasing entry rates and decreasing error
rates. The OneLetter mode may result in slightly less
throughput but better accuracy due to the requirement of a
valid first stroke. The Immediate mode was tested as a
baseline for comparison against the original interaction
method [16].

Participants
Twelve paid volunteer participants (2 female) were
recruited from the local university campus. Participants
ranged from 18 to 40 years (mean = 26.6, SD = 6.8). All
were daily users of computers, reporting 2 to 12 hours
usage per day (mean = 6.7, SD = 2.7). Six used a
touchscreen phone regularly (“several times a week” or
“everyday”). Participants had no prior experience with the

Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

516

system. Eight participants had tried Graffiti before, but
none was an experienced user.

Apparatus
The hardware consisted of an Apple iPhone 3G (firmware:
3.1.2), an Apple MacBook host (2.4 GHz Intel Core 2 Duo
with 2 GB of RAM), and a private wireless ad-hoc network
(see Figure 2). The host system was used for data
collection. The two devices communicated wirelessly,
allowing users freedom of movement during the
experiment.

Figure 2. Hardware for experimentation.

The host application was developed using Cocoa and
Objective C. The development environment was Apple's
Xcode. The device application was developed using
OpenGL ES and in the same environment as the host
application (Xcode).
The host application listened for incoming connections
from the iPhone. Upon receiving a request and establishing
a connection, a set of 500 test phrases [11] was read to
prepare for the first trial.
The software recorded time stamps for each stroke, word
and phrase level data, ink trails of strokes, and other
statistics for follow-up analyses. Timing for each phrase
began when the display was touched for the first stroke and
ended with the insertion of SPACE after the last word.

Procedure
The experiment was performed in a quiet room.
Participants adjusted their position on a height-adjustable
chair to position the device and their hands under the table.
Prior to data collection, participants completed a pre-test
questionnaire soliciting demographic data. The experiment
began with a training session. This involved entering the
alphabet A to Z three times, entering the phrase “the quick
brown fox jumps over the lazy dog” twice, and entering
one random phrase from the phrase set. The goal was to
bring participants up to speed with Graffiti and minimize
any learning effects or transfer of skill from prior
experience. Training was followed by three blocks of entry
for each feedback mode: Immediate, OneLetter, Delayed –
all eyes-free. Four consecutive phrases formed one block of
text entry. The experimenter explained the task and
demonstrated each mode, including the method to enter a
SPACE (double tap) and interacting with the auditory
display for the OneLetter and Delayed modes. User

initiated error correction (left swipe) was restricted to the
most-recently entered character only. This restriction
served as a means to reduce variability across participants.
Participants were asked to proceed “as quickly and
accurately as possible” and were allowed to take breaks
between phrases and blocks, if desired. Testing lasted 50-
60 minutes for all three conditions in the experiment. The
interaction was two-handed requiring participants to hold
the device in one hand while performing text entry with the
index finger of the other hand. Participants held the device
in their non-dominant hand and entered text with their
dominant hand. During testing, the device was under the
table and occluded from view to ensure eyes-free entry in
all three conditions.
Certain characters posed difficulty, such as the letter “G”.
For this and other such characters, alternative entry
methods were demonstrated. Figure 3 shows two ways of
entering “G”. Preliminary tests revealed that entering G as
on the left was harder than the alternative – drawing a six.

Figure 3. Ink trails for two ways of drawing

“G”.

Design
The experiment was a 3 × 3 within-subjects design. There
were two independent variables:

Feedback Mode (Immediate, OneLetter, Delayed)
Block (1, 2, 3).

The feedback mode conditions were counterbalanced using
a Latin square. Aside from training, the amount of entry
was 12 participants × 3 feedback modes × 3 blocks × 4
phrases/block = 432 phrases.

RESULTS AND DISCUSSION
Several dependent variables were measured through the
course of the experiment. Results for the basic metrics of
speed and accuracy are presented first. These are followed
by additional investigations on the performance of the error
correction algorithm and a closer look at the quality of the
word suggestions.

Entry Speed
The results for entry speed are shown in Figure 4. The
overall mean rate was 10.0 wpm. As expected, entry speed
increased significantly across blocks (F2,18 = 6.2, p < .05).

Proceedings: NordiCHI 2010, October 16–20, 2010 Full Papers

517

There was also a significant difference by entry mode
(F2,18 = 32.3, p < .0001).
The average entry speed for the Immediate mode was
8.34 wpm. Entry speeds were 27% faster for the OneLetter
mode, at 10.6 wpm, and 33% faster for the Delayed mode,
at 11.1 wpm. A post hoc Scheffé test revealed significant
differences between the Immediate-OneLetter and
Immediate-Delayed pairings (p < .0001). Overall, these
results are quite good. The entry speeds are faster than the
7.6 wpm observed in our earlier experiment [16] and faster
than the novice entry rate of 7.0 wpm for Graffiti reported
by Fleetwood et al. [4].
The maximum entry speed for individual phrases sheds
light on the potential of each mode. The OneLetter mode
obtained the highest rate at 21.5 wpm, followed by the
Delayed mode at 20.8 wpm and Immediate mode at
16.9 wpm. Again, these results are noteworthy, particularly
considering there were only about 15 minutes of testing for
each mode.
The graph also provides “adjusted” text entry rates for the
OneLetter and Delayed modes. The adjusted rates remove
the time spent in playback mode, pretending as though
there was always a single word that matched the
participant’s input and so no time was invested in dealing
with errors or collisions. For both modes, the improvement
is about 10%.

Accuracy
The main accuracy measure is error rate computed using
the minimum string distance (MSD) between the presented
and final text. Since the final text was subject to correction
using the error correction algorithm, this measure is called
the “final error rate”. See Figure 5. Overall, the final error
rates were low at 4.3% (accuracy > 95.0%). The effect of
feedback mode on final error rate was significant (F2,18 =
8.2, p < .005). The Delayed mode had the highest rate at
7.0%. This was 2× higher than OneLetter at 3.5% and 2.8×
higher than Immediate, at 2.5%. Although a block effect

was expected, none was found. This is partially due to
participants not having a direct influence on the error
correction algorithm. The algorithm is designed to cater to
individual differences, which may have prevented a block
effect from emerging.
A post hoc Scheffé test revealed significant differences
between the Immediate-Delayed and OneLetter-Delayed
pairings (p < .0001). Variation in final error rate between
the Immediate-OneLetter pairing was insignificant,
suggesting that the error correction algorithm worked better
when the first letter of a word was valid. This is best
observed in the differences between OneLetter and
Immediate in block 3 of the figure; they are marginal.
Table 2 presents examples of the presented phrases and the
entered and final text. The variation in the entered and final
text gives a sense of the utility of the error correction
algorithm.
Presented

Entered
Corrected

Error
Count

elephants are afraid of mice
e.e.hancs are a.ratd .. m..e
elephants are afraid of mice

9

question that must be answered
....tion tha. must be answered
question that must be answered

5

the fax machine is broken
th. fax machin. is brpken
the fax machine is broken

3

three two one zero blast off
three .w. .ne zer. b.ast of.
three two one zero blast off

6

fall is my favorite season
fal. is m. fau.ritg seas..
fall is my favorite season

7

do not walk too quickly
d. n.t wa.. too quic.lo
do not walk too quickly

6

stability of the nation
stadilit. .. the nati.n
stability of the nation

5

Table 2. Sample of presented, entered, and
corrected text.

Figure 5. Final error rate (%) by entry mode

and block.

Figure 4. Entry speed (wpm) by entry mode
and block.

Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

518

KSPC Analysis
Similar to the previous experiment [16], KSPC was used to
measure the overhead of user error correction on text entry.
If entry was perfect, the number of strokes equals the
number of characters and KSPC = 1. (Note: double-tap was
counted as one stroke.) Results of this analysis are shown
in Figure 6. Since the chart uses a baseline of 1 and perfect
input has KSPC = 1, the entire magnitude of each bar
represents the overhead for unrecognized strokes or for
errors that users corrected.
Overall, average KSPC was 1.27. KSPC for the Immediate
mode was highest at 1.45. OneLetter was 16.6% lower at
1.21, while Delayed was 19.3% lower than Immediate, at
1.17. The trend was consistent and significant between
entry modes (F2,18 = 51.8, p < .0001), but not within blocks.
A post hoc Scheffé test revealed significant differences
between the Immediate-OneLetter and Immediate-Delayed
pairings (p < .0001), but not between the OneLetter-
Delayed pairing. This is expected as the latter two modes
are similar and vary only in the requirement of one valid
stroke per word. Also, KSPC was the same or decreased
from one block to the next in the Immediate and OneLetter
modes. For the Delayed mode, KSPC increased, albeit
slightly, from the first block to the second. It remained
constant from block two to block three. The OneLetter and
Delayed modes were intended to decrease user effort. This
is clearly reflected in the results.

Figure 6. Keystrokes per character (KSPC) by

block and entry mode.

System Help
The error correction algorithm aimed to enhance the text
entry experience through a robust mechanism to handle text
entry errors. Simply put, the burden of correcting errors
shifted from the user to the system. “System help” is a
metric identifying the percentage of entered text transcribed
incorrectly but successfully corrected by the correction
algorithm. The results are depicted in Figure 7.
The error correction algorithm played an important role in
text entry. Overall, the algorithm corrected 14.9% of
entered text. For a 30-character phrase, this is equivalent to

4.5 characters, or one word. In the Delayed mode, 15.6% of
entered text was corrected. The value was 14.2% for the
OneLetter condition. A post hoc Scheffé test revealed no
difference for system help between the OneLetter-Delayed
pairing.
The amount of errors is not small. This is expected as the
lack of audio feedback at the character-level in the
OneLetter and Delayed modes made it impossible for
participants to verify input at the character level.
Figure 8 presents one final illustration of how errors were
handled. Raw error rate is for the entered text. Corrected
error rate is for the final text.
The Immediate mode had no automatic error correction so
both rates are equal. However, the stark difference in
magnitude between the raw and corrected error rates for the
other two modes highlights the effect of the algorithm.
Overall, error rates decreased by 70.3%. Error correction
worked best in the OneLetter mode with a net improvement
of 76.7%. The improvement in the Delayed mode was
64.0%. The OneLetter rates are lower overall due to the
requirement of a valid first character. This improves the

Figure 7. System help (%) by mode and

block. (Note: The algorithm was not used
with Immediate mode.)

Figure 8. Raw and corrected error rates.

Proceedings: NordiCHI 2010, October 16–20, 2010 Full Papers

519

effect of the algorithm, since having the first character
correct dramatically narrows the search space and increases
the likelihood of finding the intended word.

Playback Mode (Auditory Display)
If the error correction algorithm finds multiple matches for
a word, the list is produced using the playback mode. Two
points of interest here are the size of the lists and the
position of the intended word.

Candidate List Size
Figure 9 shows the average candidate list size per word by
block and feedback mode. The average size overall was
2.43 words. List size for OneLetter averaged 1.89 words.
Not requiring a valid stroke for the first character for the
Delayed mode resulted in a 56.0% higher list size, at 2.96
words on average. The list size difference between the
OneLetter and Delayed modes was significant (p < .05).

Figure 9. Mean list size per word by block.

OneLetter fluctuated by small amounts, decreasing in value
across blocks. The implication of a shorter list is that more
characters in each word are entered correctly, so there is a
slight learning effect visible, likely due to the audio
feedback for the first character. This reinforced the
alphabet and allowed users to learn the nuances when the
stroke was unrecognized. The same trend is not visible in
the Delayed mode. This is due to the lack of character-level
feedback, thus inhibiting any meaningful learning to take
place.

Word Position
Figure 10 deconstructs the position of the desired word in
the candidate lists. About 77.0% of the words in OneLetter
mode were at position 1. The figure for the Delayed mode
is 82.0%. Grouping positions 1 and 2 together, the number
is 94.2% (95.3% OneLetter, 93.2% Delayed). This is a
promising result and demonstrates that the regular
expression matching and MSD searching characteristics of
the correction algorithm work well and provide a resilient
mechanism for handling unrecognized strokes,
misrecognized strokes, and spelling errors.

Figure 10. Word position frequency by

feedback mode.

CONCLUSION
We presented an enhanced version of an eyes-free text
entry interface for touchscreen devices. Audio feedback
was shifted from character-level to word-level, providing
speech output at the end of each word. Vibrotactile
feedback was used only for the OneLetter mode, which
required a recognized stroke at the beginning of each word.
The entered text (with the errors) is passed through a
dictionary-based error correction algorithm. The algorithm
uses regular expression matching and a heuristically
determined minimum string distance search to generate a
list of candidate words based on the entered word. The list
is presented in an auditory display, in the form of a
playback mode.
In a user study, the overall text entry speed was 10.0 wpm
with a maximum rate of 21.5 wpm using a feedback mode
that required a recognized stroke at the beginning of each
word. Text was entered with an overall accuracy of 95.7%.
The error correction algorithm performed well: 14.9% of
entered text was corrected on average, representing 70.3%
decrease in errors compared to no algorithm. Where
multiple candidates appeared, the intended word was 1st or
2nd in the list 94.2% of the time.
As touchscreen phones lack the tactile feel of a physical
keyboard, the visual demand on the user is increased. Our
research demonstrates that eyes-free text entry is possible
on a touchscreen device and with performance that is both
reasonably fast and accurate. In a wider context, the text
entry method described here can be used in scenarios where
users are multitasking and attention is limited. Finally, a
contribution of this research is applications in accessible
computing for visually impaired users. Although the
participants of this research cannot be equated to visually
impaired users, their success at entering text eyes-free
suggests that the method may serve as an accessible
alternative to users with impaired vision. However,
determining the extents of this possibility requires further
research.

Full Papers Proceedings: NordiCHI 2010, October 16–20, 2010

520

REFERENCES
1. Baeza-Yates, R. and Navarro, G. (1998). Fast

approximate string matching in a dictionary.
Proceedings of String Processing and Information
Retrieval: A South American Symposium, 14-22. New
York: IEEE.

2. BNC. (2009). British National Corpus of the English
Language. BNC, ftp://ftp.itri.bton.ac.uk/.

3. Clawson, J., Lyons, K., Rudnick, A., Robert A.
Iannucci, J. and Starner, T. (2008). Automatic
Whiteout++: Correcting mini-QWERTY typing errors
using keypress timing. Proceeding of the ACM
Conference on Human Factors in Computing Systems
– CHI 2008, 573-582. New York: ACM.

4. Fleetwood, M. D., Byrne, M. D., Centgraf, P.,
Dudziak, K. Q., Lin, B. and Mogilev, D. (2002). An
evaluation of text-entry in Palm OS - Graffiti and the
virtual keyboard. Proceedings of the 46th Annual
Meeting of the Human Factors and Ergonomics
Society – HFES 2002, 617-621. Santa Monica, CA:
HFES.

5. Goldberg, D. and Richardson, C. (1993). Touch-typing
with a stylus. Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI 1993, 80-
87. New York: ACM.

6. Hoffmann, A., Spelmezan, D. and Borchers, J. (2009).
TypeRight: A keyboard with tactile error prevention.
Proceedings of the ACM Conference on Human
Factors in Computing Systems – CHI 2009, 2265-
2268. New York: ACM.

7. Horst, B. (1993). A fast algorithm for finding the
nearest neighbor of a word in a dictionary.
Proceedings of the Second International Conference
on Document Analysis and Recognition – ICDAR
1993, 632–637. Tsukuba, Japan: IEEE.

8. Kristensson, P.-O. and Zhai, S. (2005). Relaxing stylus
typing precision by geometric pattern matching.
Proceedings of the ACM Conference on Intelligent
User Interfaces – IUI 2005, 151-158. New York:
ACM.

9. MacKenzie, I. S., Chen, J. and Oniszczak, A. (2006).
Unipad: Single-stroke text entry with language-based

acceleration. Proceedings of the Fourth Nordic
Conference on Human-Computer Interaction –
NordiCHI 2006, 78-85. New York: ACM.

10. MacKenzie, I. S., Kober, H., Smith, D., Jones, T. and
Skepner, E. (2001). LetterWise: prefix-based
disambiguation for mobile text input. Proceedings of
the ACM Symposium on User Interface Software and
Technology – UIST 2001, 111-120. New York: ACM.

11. MacKenzie, I. S. and Soukoreff, R. W. (2003). Phrase
sets for evaluating text entry techniques. Extended
Abstracts of the ACM Conference on Human Factors
in Computing Systems – CHI 2003, 754-755. New
York: ACM.

12. Navarro, G. and Raffinot, M. Flexible pattern
matching in strings: Practical on-line search
algorithms for texts and biological sequences.
Cambridge University Press, 2002.

13. Oflazer, K. (1996). Error-tolerant finite-state
recognition with applications to morphological
analysis and spelling correction. Computational
Linguistics, 22, 73-89.

14. Robinson, A., Bradford, E., Kay, D., Meurs, P. V. and
Stephanick, J. (2008). Handwriting and voice input
with automatic correction. U.S. Patent 7,319,957 B2,
Jan. 15, 2008.

15. Sinha, R. M. K. (1990). On partitioning a dictionary
for visual text recognition. Pattern Recognition, 23,
497-500.

16. Tinwala, H., and MacKenzie, I. S. (2009). Eyes-free
text entry on a touchscreen phone. Proceedings of the
IEEE Toronto International Conference – Science and
Technology for Humanity – TIC-STH 2009, 83-89.
New York: IEEE.

17. Wells, C. J., Evett, L. J., Whitby, P. E. and Whitrow,
R. J. (1990). Fast dictionary look-up for contextual
word recognition. Pattern Recognition, 23, 501-508.

18. Wobbrock, J. O., Myers, B. A., Aung, H. H. and
LoPresti, E. F. (2004). Text entry from power
wheelchairs: EdgeWrite for joysticks and touchpads.
Proceedings of the ACM Conference on Computers
and Accessibility – ASSETS 2004, 110-117. New York:
ACM.

