
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014 499

sEditor: A Prototype for a Sign Language
Interfacing System

Beifang Yi, Xusheng Wang, Frederick C. Harris, Jr, and Sergiu M. Dascalu

Abstract—Sign languages are as capable of expressing human
thoughts and emotions as traditional (spoken) languages. The dis-
tinctive visual and spatial nature of sign languages makes it difficult
to develop an interfacing system as a communication medium plat-
form for sign language users. This paper targets this problem by
presenting some explorations in the areas of computer graphics,
interface design, and human–computer interaction with emphasis
on software development and implementation. We propose a sign
language interfacing system, as a working platform, that can be
used to create virtual human body parts, simulate virtual gestures,
and construct, manage, and edit sign language linguistic parts. It
is expected that the system and the results presented in this paper
would provide an example for the future sign language “editor.”

Index Terms—Graphical user interfaces, human gesture simu-
lation, interactive systems, sign language.

I. INTRODUCTION

S IGN languages have been proven linguistically to be natu-
ral languages [1], [2], just as capable of expressing human

thoughts and feelings as traditional languages are. The visual
and spatial nature of sign languages contributes to the lack of
“editors” in such languages. The current writing systems, while
making full use of various suggestive 2-D icons or phonetic
symbols, are indirect, unnatural transcriptions, and transforma-
tions of the 3-D expressions inherent in sign languages. This
symbol representation for a sign language is, in fact, like a text
encoding of spatial contents.

To address these problems, we draw from computer graph-
ics and human–computer interaction, specifically human body
modeling, user interface design, and software implementation,
to develop a framework of a sign language interfacing system
that we call sEditor. Based on an expanded version of [3], we
present this system.

Manuscript received May 1, 2013; revised May 28, 2013 and January 12,
2014; accepted March 8, 2014. Date of publication June 10, 2014; date of
current version July 11, 2014. This work was supported in part by the National
Science Foundation under Grant IIA-1301726. This paper was recommended
by Associate Editor F. Wang of the former IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans (2012 Impact Factor: 2.183).

B. Yi is with the Department of Computer Science, Salem State University,
Salem, MA 01970 USA (e-mail: byi@salemstate.edu).

X. Wang is with the Department of Mathematics, Computer Science, and
Cooperative Engineering, University of St. Thomas, Houston, TX 77006 USA
(e-mail: xwang@stthom.edu).

F. C. Harris, Jr., and S. M. Dascalu are with the Department of Computer
Science and Engineering, University of Nevada, Reno, NV 89557 USA (e-mail:
fredh@cse.unr.edu; dascalus@cse.unr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2014.2316743

Considering biomechanics, a virtual human body is first con-
structed as a set of functional body components. Using the vir-
tual body and focusing on the creation of natural hand config-
urations and the application of body joint motion constraints,
virtual gestures are created by controlling the movements of
the functional components. From the virtual gestures, sign lan-
guage linguistic parts (LPs) can be constructed by using the
Movement-Hold model. A graphical user interface supports the
operations of gesture generation and editing, gesture database
management, and creation, editing, storage, and retrieval of sign
language LPs.

Under the Fedora Core of Red Hat Linux operating system,
sEditor is implemented in C++ and OpenGL and uses the
Coin3-D graphics library (an Open Inventor clone). The GUI
interface is implemented using the Qt API and C++. It also can
run in the VMware Virtual environment under Windows 7.

sEditor is designed to support constructing, managing, and
editing virtual gestures. From these signing components, first
sign language linguistic components, then phonemes, and, fi-
nally, sentences can be created. To support other linguistic com-
ponents, components may be stored and retrieved from sign
language databases.

The organization of this paper is as follows. Section II presents
the related literature. Section III overviews the interfacing
system. Section IV discusses modeling and simulation of the
human body. Section V presents the design, creation, and man-
agement of virtual gestures. Section VI discusses the creation
of sign language LPs. Section VII presents a discussion. See
http://cs.salemstate.edu/∼byi/sEditorDemos/ for additional re-
lated materials.

II. RELATED LITERATURE

An early interactive system analyzed and modeled the com-
plex hand and arm movements of sign language [4]. Through
the reconstruction and manipulation of actual sign movements,
this system was designed to convey American Sign Language
(ASL) essential grammatical information using line drawing.

The dictionary of the ASL on linguistic principles (DASL
[5]), now the multimedia dictionary of the American Sign Lan-
guage (MM-DASL [6]), presents ASL signs in full motion
(video of ASL entries), enabling users to search for words by
entering English words or ASL pronunciation criteria.

Live-action video clips with graphical user interfaces support
sign language studies. For example, SignStream is a multimedia
database tool designed to facilitate ASL linguistic and computer
vision research on visual-gestural language [7], [8]. Data from
native signers are collected with video collection equipment,
and users can enter annotation information into data distinct

2168-2291 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



500 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

fields [9], [10]. The video clips and associated linguistic anno-
tations are available in multiple formats for ASL studies and
gesture analysis. One example concerns the design of an online
web browser for the deaf community [11]. It provides hyper-
links within video in a sign language-based text optional web
environment.

Today, lifelike virtual human figures can be constructed [12],
[13]. Human avatars can imitate human actions and even fa-
cial expressions. All the body joints and featured parts (such
as eyebrows or mouth), represented as various parameters, are
controlled in their motions, allowing the creation of virtual ges-
tures.

The use of virtual human figures in sign language studies is
a popular approach [14]–[18]. However, Frishberg et al. [19]
provide framework concepts and Ong and Ranganath [20] pro-
vide sign language gesture issues (with respect to modeling
transitions between signs, modeling inflectional processes, and
related concerns) to inform virtual signing systems.

Human avatars (i.e., virtual human bodies) may provide ad-
vantages over videos of native signers (see [9], [10], [14]–[16],
and [18]). However, current systems are limited because the LPs
(the sign language phonemes, words, and sentences) are fixed
and the lexicons are limited. Therefore, the users cannot create
new sign language “words” or “phrases.”

To target this issue, sEditor is an “open” platform for different
sign languages with user interfaces for the creation and manage-
ment of sign language LPs (from phonemes to sentences). To
produce more natural hand configurations, the handshapes (the
most important sign language parameters) generated by sEditor
incorporate hand biomechanical constraints.

sEditor serves as a sign language “word” editor prototype
with which sign language users can “write” in their languages
like a regular text editor for spoken languages [21].

III. ARCHITECTURE OF THE PROTOTYPE

The sign language interfacing system provides an interactive
virtual environment in which users can construct virtual gestures
through a virtual human body, associate the gesture sessions with
sign language LPs (such as morphemes, words, and phrases),
create virtual signs with the use of databases for managing the
LPs, and even “write” in a sign language. The architecture of
the system is shown in Fig. 1.

The system consists of five main functional components.
1) A virtual human body: This central and foundational part

of the interfacing system is modeled based on the anatomi-
cal structure of the human body. The whole body is divided
into various functional parts, each of which is represented
by a set of parameters (discussed in detail later).

2) A virtual environment: Several virtual cameras are “in-
stalled” in this virtual box, and the background can be
set to different colors. Because the hand plays the most
important role in signing, two virtual settings are created
for both hands of the virtual body.

3) Inputs and Control: This provides the inputs either from
the databases or from users to the virtual body for produc-
ing virtual gesture sessions, to set up a particular virtual

Fig. 1. sEditor architecture (VE: Virtual Environment; VB: Virtual Body; VG:
Virtual Gestures; VS: Virtual Signs; DB: Database).

environment (such as background and camera setups) and
to control the output processes and formats. This part in-
cludes the following components:

a) VB Control: to provide rotations at the body joints
and define facial expressions.

b) VE Control: to set up the virtual environment and
fine-tune virtual cameras, to select and place a char-
acter as the virtual sign from a character pool (male
and female virtual characters in diverse races).

c) Rendering Control: to render the virtual body in a
chosen style, to display and record the outputs (im-
ages and parameter values for the virtual body and
environment) on the screen or storage in a certain
format.

d) VG/DB Control: to construct and edit virtual ges-
tures and store/retrieve them to/from the virtual ges-
ture database.

e) VS/DB Control: to create and edit virtual signs and
associate them with a particular sign language no-
tation, to store and retrieve from the virtual sign
database the virtual signs and their corresponding
related notations.

4) Outputs: The output of the system is represented in dif-
ferent formats: visual signs displayed on the screen, their
image session recorded and saved to storage, and para-
metric representations of the virtual gestures of the virtual
body and those of the virtual environment.

5) Virtual gesture/sign database: All the created gestures,
virtual signs, and their sign notations are stored in their
databases. Gestures and signs are sets of parametric values
defined in particularly designed data structures. Sign no-
tions are English translations of the signs. Two databases
are included in the system:

a) VG/DB Database: a database for virtual gestures.
A gesture is a list of virtual postures with a tim-
ing factor for each of the postures. Thus, a gesture,
after being loaded from the database, is displayed
as an animation session on the screen. This gesture



YI et al.: sEDITOR: A PROTOTYPE FOR A SIGN LANGUAGE INTERFACING SYSTEM 501

Fig. 2. One screenshot of sEditor: an example of creation and edition of hand configurations on left and rights.

database includes subdatabases for body postures
and hand configurations.

b) VS/DB Database: a database for virtual signs. A sign
consists of one or more virtual gestures and is a sign
LP in a particular sign language. A sign is stored in
the database together with its sign notation and the
links with its related signs.

One screenshot of the sign language interfacing system is
shown in Fig. 2. The upper part of the system layout is for dis-
play with a main display window in the middle for displaying
body gestures/signs and two accessory (smaller) ones on either
side for demonstrating hand gestures. Below the hand display
windows are hand icons of the most frequently used hand con-
figurations in sign languages. Clicking on a hand icon will load
from the hand database the corresponding hand configuration
to the current hand (right or left). The lower part is arranged as
a set of graphical tabs for controlling virtual body and environ-
ment, creating and editing gestures and signs, managing their
databases, and rendering and recording outputs.

IV. CONSTRUCTING A VIRTUAL HUMAN BODY

A virtual human body is a module that can be subdivided
into submodules (i.e., body parts) according to the hierarchical

structure of the human body as it moves and how body part
motion is coordinated. In this section, we introduce the structure
of the body modules and, then, describe the simulation of the
motions of the human body parts.

A. Modeling the Human Body

The first step in human body modeling is the classification
of body parts according to their contributions to gestures and
signing. The lower parts of the body (legs, feet, and hips) are
rarely used during signing, and thus, they are abstracted using
a single body part. The Torso represents the body trunk, which
is connected to the shoulders and head. The body part Head
contains the eyes, hair, neck, and the frontal part, which is used
to model the facial expressions or nonmanual signals (NMS) in
sign languages. The part Shoulder consists of the upper arm and
the clavicle. The part Hand, which is composed of the palm,
fingers, and thumb, is critical in the simulation of signing and is
modeled differently than the other body parts. The part Forearm
connects the shoulder (upper arm) and the hand.

We use a tree structure (see Fig. 3) to design algorithms for
the movements of the body parts that are connected, and thus,
the movements of a parent node in the tree will propagate to
all of its child nodes (children); the ultimate movements of a



502 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

Fig. 3. Coordination of the motions of the human body parts.

child are the cumulative combination of the movements of all
its parents in the tree. Each part’s motions are modeled in its
own (local) coordinate system; the movements upon the body
parts to which that part is connected will be recorded in a motion
engine (see the following section), which in turn will drive the
connected body parts for corresponding reactions automatically
in the system.

For example, rForearm’s movement at its local coordinate
system is noted as rForearm-local; the relationship between
rForearm and rShoulder is noted as rForearm-rShoulder; the
relationship between rShoulder and Torso is rShoulder-Torso;
and so on. Thus, the rForearm’s movement in the World
Reference Frame is expressed as MTorso-World←rShoulder-
Torso←rForearm-rShoulder←rForearm-local.

The body parts that make up the human body share some
common features that take the form of user-defined data types,
functions, and rendering algorithms for the modeling implemen-
tation. We use xBody for the abstract representative body part
that accomplishes all operations (different motions such as ro-
tation and bending) for these common features. For a particular
body part, its deformation algorithms and movement patterns
(represented as a set of parameters) are embedded into the body
object upon its substantiation.

B. Simulation of Body Motion

A body part has its own movements and will influence and be
influenced by others connected to it, depending on the relation-
ship between them. More importantly, there is a deformation at
the joint that connects the body parts. We have designed and im-
plemented a motion engine that is embedded in each body part
to “propagate” body part’s motions to its connecting body parts
and to simulate the deformation around the connection joint.

When a body part (i.e., a cluster of 3-D vertices) moves or
other parts connected to the part move, different types of sig-
nals (different types of rotations) will be sent from this part
to the motion engine connected to the part. These signals will
trigger a set of calculations of new vertex positions, normals,
and properties, depending on the types of the signals. The up-
dated vertex data will be used for rendering the body part. The

Fig. 4. (a) Hand configuration control panel. (b) Upper body posture control
panel.

resulting outputs (including motion information of the local co-
ordinate system for the body part) will spread to the body part’s
immediate child (in the tree), which generates a chain of oper-
ations and renderings on the connected body parts (through the
engines).

1) Simulation of the Hand Configurations and Motions:
There are 16 hand parts in a hand: a palm, three finger parts
on each of the four fingers (the index, middle, ring, and pinky),
and three thumb parts. All these 16 parts are modeled with an
ordered tree structure [22]. The hand, when in motion under
constraints, generates natural hand gestures. One such example
is that bending of the middle finger will result in the follow-up
movements on the index and ring fingers. The hand constraints
have been implemented, and the results from [22] have been in-
corporated in sEditor. Fig. 4(a) shows a screenshot of the control
panel for generating hand configurations.

2) Modeling the Upper and Lower Parts of the Body: The
upper body consists of the abdomen, chest, clavicle, shoulders,
and part of the hips and neck. All of these parts are covered by
clothing, and their movement patterns can be described with a
tree structure. All nodes in the tree should be independent body
part modules with an individual motion paradigm, but in our
interfacing system, we combine the hips, abdomen, chest, neck,
and clavicle into one large body part, as a rigid body part with
deformation only on the borders with the shoulders. The right
and left shoulders, together with their corresponding upper arms,
are modeled separately. Thus, we have five upper body parts to
be modeled individually: the main part of the torso (the hips,
abdomen, chest, and neck), right and left shoulders (including
the upper arms), and right and left forearms (attached to the right
and left shoulders in the tree). Particular attention was focused
on the simulations of the shoulders and forearms, and specific
algorithms were implemented to deal with the deformations
in the shoulder and forearm movements. Fig. 4(b) depicts a
screenshot of the control panel for the simulation of the upper
body movements.



YI et al.: sEDITOR: A PROTOTYPE FOR A SIGN LANGUAGE INTERFACING SYSTEM 503

Fig. 5. Process of how a body part module processes its input data and model
the movements.

There are three widget groups on the panel for controlling
the upper body movements: 1) Shoulder: the shoulder and up-
per arm’s twist (rotation) are adjusted with an iconic dial, and
the raising and swing movements are adjusted with two vertical
slide bars; 2) Forearm: the forearm’s rotation (twist) is adjusted
with a dial widget, and its bending movement is controlled with
a vertical slide bar; and 3) Wrist: the wrist’s bending and side-
to-side movements are adjusted with two vertical slide bars. All
these widget groups are under the control of another widget
group on the same panel entitled Body part, which indicates
whether the left body part or the right one will get inputs from
the three widget groups. There is another widget group that
controls the whole body’s movements: displacements (transla-
tions) along and rotations around three perpendicular axes of
the coordinate system for the whole body.

V. CREATING VIRTUAL GESTURES

In this section, we discuss how to transcribe the movements
generated from the virtual body and then how to create and coor-
dinate the movements of individual body parts for the simulation
of the human gestures.

A. Parametric Representation of Human Gestures

A virtual human body is made up of many different body
parts, each of which can be implemented with an abstract rep-
resentative body part, xBody, with an extension based on its
motion patterns and deformation methods. To control and sim-
ulate the movement of that body part, parametric values of the
motions (translation and/or transformation) must be fed into that
body part through an interface. This process is shown in Fig. 5.

When a body part receives inputs, it will “interpret” the in-
puts, based on the nature of the body part, as values for some
or all motion parameters for three types of rotations: abduction-
adduction, twist-rotation, and flexion-extension. Then, the de-
formation and motion mechanisms of the body part will cal-
culate the new locations, normals, and transformations for the
body part according to the motion patterns and parametric val-
ues. Finally, the calculations will be fed back for rendering this
part and for updating its neighboring body parts.

Thus, the movements of the virtual body can be described by
and controlled with the inputs of the component body parts of the
avatar, and a virtual gesture is a set of movements of the virtual
body in a certain order. These inputs of the body components
are a set of motion parametric variables with certain values, and

Fig. 6. Data structure for body posture.

therefore, a virtual gesture can be described with a cluster of
sets of parametric variables. In the following, we will illustrate
the parametric representation of the gestures, but we will first
give a definition of body posture and its data structure.

1) Representation of Body Posture: Body posture means the
position, pose, and bearing of the body, for example, sitting
posture and erect posture. In sEditor, we extend this definition
such that body posture defines the positions and bearing char-
acteristics of all body parts including facial expression features
and hand configurations. This makes it convenient to design and
implement data structures that are used to represent and process
the LPs of a sign language. A data structure for body posture is
defined as a tree structure (see Fig. 6).

A posture contains the following elements.
1) Head: for modeling the head movement (through parame-

ters nodA, tiltA, and turnA) and for simulation of facial ex-
pressions, or NMS (through parameters rEyeID, lEyeID,
mouthID, and facialID).

2) ID: a unique integer for the posture.
3) Center: a point in the 3-D space (an array of three floating

point numbers) for the center of the body.
4) Orientation: a vector for identifying the body’s orientation

in the 3-D space.
5) rShoulder and lShoulder: for the description and control

of the movements of both shoulders (through parameters
of raiseA, swingA, and rotateA).

6) rForearm and lForearm: for the description and control
of the movements of both elbows (through parameters of
bendA, rotateA, and elbowCenter).



504 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

Fig. 7. (a) Prototype for creating virtual gestures. (b) Virtual gesture creation/editing panel.

7) rHand and lHand: for the description and control of
the movements of both hands (through parameters of
wristFE for wrist’s flexion-extension or rotation/bending)
and wristAA for wrist’s abduction-adduction or side-side
movement, palmCenter and palmOrientation for the palm,
thumb, index, middle, ring, and pinky for the thumb and
fingers. Since the hand has the most complicated configu-
rations, we assign each hand pose a unique ID.

8) Thumb: for the description and control of the movements
of the three thumb parts (through parameters ipFE for the
flexion-extension of the thumb tip, mcpFE and mcpAA
for the flexion-extension and abduction-adduction of the
middle thumb part, and cmcFE, cmcAA, and cmcTwist for
the movements of the thumb’s base part).

9) Index, middle, ring, and pinky: for the description and
control of the movements of the three finger parts (through

paramenters dipFE for the flexion-extension of the finger
tip, pipFE for flexion-extension of the finger’s middle part,
and mcpFE, mcpAA and mcpTwist for the movements of
the finger’s base part).

The elbowCenter and palmCenter data structures record the
positions of the hand and elbow and play an important role in
classifying the virtual gestures and searching a sign language for
LPs. As a new posture is constructed, the positions for the elbow
and the hand are automatically calculated by the system and
become a part of the parametric representation of the posture.

2) Representation of Body Gestures: People make gestures
by starting with a posture and ending with another posture, as-
suming a series of varying postures in between. In a similar way,
a virtual gesture can be described as an ordered set of postures
of a virtual human body. A timing factor is, thus, introduced to
describe the order of the postures: posture pi occurs at time ti ,



YI et al.: sEDITOR: A PROTOTYPE FOR A SIGN LANGUAGE INTERFACING SYSTEM 505

where pi is a parametric representation of the posture at time ti
and has a data structure defined in the previous section. Thus,
we use a list to define the gesture, vg = [(p0 , t0), (p1 , t1), . . .
(pn , tn )] in which p0 is the starting posture at time t0 , and pn is
the ending one at time tn .

There is a big difference between a human’s gesture in real
life and the gesture defined above: the former is a continuous
process, which means an infinite number of postures in a gestur-
ing session, while the latter is only a limited number of postures
in a posture list. We address this problem in two steps. First,
for a virtual gesture, a group of distinctive postures is selected
(like key frames in video) that reflect characteristics of the ges-
ture; then, temporary postures between two adjacent postures
(i.e., key frames) are interpolated during the output process of
the virtual gesture based on the rendering speed (frames per
second) and time difference between the two adjacent postures
(i.e., key frames).

B. Construction and Management of Body Postures

As illustrated above, body posture in the sign language inter-
facing system is interpreted as a set of parametric variables that
describes the distinctive features of a body’s bearing. According
to the characteristics of the body parts and their functionalities
in a signing process, we classify the parametric representations
of the body parts into three separate groups: hand configuration,
upper limb positioning, and NMS.

We now discuss the construction and management of virtual
postures in the interfacing system. We focus on the introduction
of the functions (wrapped in a graphical user interface) of these
operations. The functions are “wrapped” in an efficient graphical
user interface, through which body postures are created and
edited by providing and adjusting parametric values for the
posture’s representative parametric variables. The management
of body postures such as storing, editing, and retrieving of the
postures is handled by a posture database.

1) Hand Configurations: A Hand Configuration Control
panel has been built and embedded in sEditor [see Fig. 4(a)]
for the creation and editing of hand shapes. Graphical widgets
are used to provide and adjust values (degrees of rotation angles)
of the parametric variables for a certain hand configuration.

A hand configuration database is used to assist in the cre-
ation, editing, and management of the hand configurations. We
constructed several dozen hand shapes (like in Fig. 2), stored
them into the hand configuration database, and embedded them
into the system.

To create a new hand shape, we first search for a basic hand
configuration in the database that has a similar pattern. If we
cannot find one, we use a default hand shape with a neutral
position. Then, we use the hand configuration control panel to
fine-tune the angles of the hand’s joints (including the wrist’s
joints). Finally, the newly created hand configuration is saved in
the database. The hand shapes can be applied to both hands of
the virtual body.

2) Upper Body Postures: The upper body parts of the virtual
figure in the interfacing system include the shoulder (together

with the upper arm), forearm, and the wrist joint, responsible
for the hand (palm) orientation. A body posture control panel
is incorporated into the sign language interfacing system for
providing inputs for upper body part joints as [see Fig. 4(b)],
using the data structure previously described.

A body posture database is used together with the NMS and
hand configuration databases for storing, editing, and retrieving
body postures. Some basic body postures are included in the
posture database.

When a new body posture is created, the parametric values
corresponding to the posture’s data structure (as defined above)
can be stored in the body posture database. Of the parameters,
two groups are critical for categorizing and designing virtual
gestures: the locations of the center of each hand palm and of
the center of each elbow in the coordinate system for the whole
virtual body. These locations are automatically calculated based
on the inputs to the body posture control panel.

C. Creation and Management of Virtual Gestures

We have defined a virtual gesture vg as [(p0 , t0), (p1 , t1), . . .,
(pn , tn )] with pi being the ith posture in vg at the time ti . The
postures p0 , p1 , . . ., pn constitute a complete set of postures for
a given gesture and are the most representative and characteris-
tic postures for that gesture, which describe the gesture process.
Once a posture list vg is extracted for a certain gesture, inter-
mediate and temporary postures can be interpolated between
any two adjacent postures in the list for display and output. The
problem of creating a virtual gesture is how to construct such a
posture list given the gesture. We next describe the architecture
and implementation of the construction of virtual gestures.

1) Architecture for Creating and Editing Virtual Gestures:
Fig. 7(a) illustrates the architecture for creating and editing
virtual gestures, and Fig. 7(b) shows the implemented control
panel. In the figure, the boxes with bold edges represent display
windows for displaying the temporary and overall results in the
gesture construction process. In the upper part (corresponding to
that of Fig. 2), there are right- and left-hand display windows on
either side of a main display window for displaying the current
posture of the whole body. In the lower part, there are NMS
and upper body posture display windows, the virtual gesture
display window (for displaying the gesture animation process),
and posture display windows (for displaying all of the postures
of the gesture).

The other boxes are used for the interactions with the
databases and operations on gesture controls (such as setting
time and speed). When users are constructing a virtual gesture,
they first select from repertoires of upper body postures, hand
configurations, and NMS—the representative components for
the gesture. If some components are not in the databases, users
can use the corresponding control panels to create and save them
to the databases. When there are some components that are close
to the desired ones, the users can select them and use the control
panels to fine-tune them. In the following discussion, we assume
that such components exist in the databases.



506 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

For example, when a user is about to insert an ith posture
into the virtual gesture, she/he first clicks on one posture icon
in the box, and a pop-up window appears containing postures
close to (or related to) the posture. The user then chooses one
posture from the window, and the selected posture replaces the
old posture of the virtual body and is displayed in both the Upper
Limb Display Windows.

When this process is completed, the posture i has been in-
serted into the virtual gesture. Virtual Gesture Display Window
then automatically shows the gesture animation session based
on the speed setting. On the right of the virtual gesture display
window are display windows for all postures of the current ges-
ture. A user can click any of them to edit the gesture with the
posture control panels and change the time setting. The newly
created virtual gesture can be saved to the gesture database with
push button VG Save.

2) Virtual Gesture Creation/Editing Panel: With the gesture
creation prototype [see Fig. 7(a)] as a guide, we have imple-
mented a virtual gesture creation and editing interface [see
Fig. 7(b)] and incorporated it into the sign language interfac-
ing system. Users use this interface, together with the posture
control panels, to create, edit, store, and retrieve any virtual
gestures.

At the top of the gesture interface, there is a posture sequence
sliding bar and a gesture information line below it. Users use the
sliding button on the bar to display [on the upper part of the in-
terfacing system [see Fig. 2)] the postures of the current gesture,
either those representative postures (p0 , p1 , . . ., in the vg) or any
temporary interpolated ones between any two adjacent postures
in the vg. The middle part of the interface is used for posture
editing functions: importing (from the posture database), edit-
ing, replacing, deleting, and inserting (into the current gesture).
The bottom of the interface is reserved for displaying, saving,
and recording the current gesture.

At the beginning, the gesture is made up of any two postures
distributed at time 0 and 2 s. Users can replace these postures
with postures from the posture database with graphical widgets
such as the push buttons Import posture, Replace, Insert posture
in the v-gesture and the input space Select the posture sequence
# to type posture numbers of postures to be edited or replaced.
The timing factors for new postures are input in space entitled
for the time @. The current posture can also be deleted with the
Delete button.

The gesture session can be displayed dynamically depending
on the status of the Display switch button, which appears in only
one mode: Display: ON or Display: OFF. The gesture display
sliding bar and the sliding button on it are used for accurate
control of the gesture postures.

3) Example of Creating and Editing a Gesture: Suppose we
are about to create a gesture that has four characteristic postures
shown in Fig. 8(a). These postures (from left to right in this
figure) will appear in the gesture at time (in seconds) 0, 1.5, 2.8,
and 4.2. These postures are loaded from the posture database (or
created instantly with the use of the control panels introduced
above) and are inserted in the gesture (the posture at time 2:0
is deleted). Now, we select the Display switch button, and the
display windows will display the gesture animation process,

Fig. 8. (a) Virtual gesture: its four posture components. (b) How to create a
natural gesture: (left) unnatural temporary postures interpolated during virtual
gesture rendering; (right) choose a representative posture of these unnatural
postures, edit it, and insert it to the gesture as a component posture for that
gesture. (c) Example of a virtual gesture sequence.

which lasts 4.2 s with the default speed of 24 frames/s. In this
case, sEditor will have automatically interpolated about 97 (i.e.,
24 × 4.2 – 4) intermediate postures for this gesture.

Testing the gesture process, we discovered that some unnat-
ural postures were generated and interpolated at 3.12 s. [see
Fig. 8(b)].

We used sEditor control panels to edit these (interpolated)
postures by adjusting the left and right shoulders’ (and fore-
arms’) positions with the widgets on the Body Posture Control
panel. The modified postures were automatically recorded and
combined as the characteristic postures for the gesture. These
changes resulted in a new and natural posture shown in Fig. 8(c).
The gesture can be saved into the gesture database with the



YI et al.: sEDITOR: A PROTOTYPE FOR A SIGN LANGUAGE INTERFACING SYSTEM 507

button Save2DB and recorded in image files with the button
Record.

VI. CONVEYING LINGUISTIC MEANING

A signer of a particular sign language makes gestures accord-
ing to the grammar of that sign language; an avatar can also
imitate this process by following commands on the movements
of the virtual body parts if these movements are designed to
abide by grammatical rules of that sign language. Thus, a vir-
tual gesture session, virtual signing, acquires a meaning, and the
virtual body makes virtual signs.

In the following, we describe how to use this system to build
basic LPs (such as “phonemes” and “morphemes”) of sign lan-
guages, create sign language vocabularies, and even “write” in
a sign language (a control panel for this task is shown in Fig. 9).
ASL is used as an example.

A. Constructing Basic Linguistic Parts

The concept of “articulatory bundle” [23], which describes
hand posture with hand configuration, point of contact (POC),
facing, and orientation, provides good guidelines for design-
ing virtual signing units. However, it is more effective to use
graphical designs and implementations when dealing with the
five basic linguistic parameters of a sign language: location,
handshape, orientation, movement, and NMS [2]. We have also
considered “local movement,” a special case of the movement
parameter. The Movement-Hold model [23] is embedded in the
graphical implementation.

The five basic LPs (parameters) can be simulated with a list of
virtual gestures (defined above) combined with timing factors:
lp = [(vg0 , t0), (vg1 , t1), . . ., (vgn , tn )] (lp represents any of the
basic LPs), which was a long sequence of postures. The question
becomes how to quickly construct the vg′is and combine these
vg′is with their t′is. Our solution is to use an efficient GUI
wrapper for the operations needed for the creation and editing
of the basic LPs.

1) Hand Shapes and Orientations: The hand shape is the
most important phonological part of ASL and other sign lan-
guages; thus, we have constructed some of the most frequently
used hand shapes (as shown in Fig. 2) and embedded them in
the sign language interfacing system. The hand shapes can be
applied to both the left and right hands of the avatar in the sys-
tem with only mouse-clicks on the interface. New hand shapes
can be built and embedded into the system.

For some hand shapes with many variations and/or other hand
shapes related to them, there will not be enough space in the
scrolled view areas to display them. One solution would be to
activate a pop-up window box with related hand shapes and
variations when the user clicks on the hand icons.

The hand (palm) orientation is dependent on the movements
of the other body parts (such as forearms) and is relatively inde-
pendent of hand shapes. The movements at the wrist joint also
affect the hand orientation. Thus, we use a neutral orientation
as a default for all hand shapes before their application to the
avatar. When being applied to the virtual body, a hand (shape)

immediately takes on the orientation defined by the other body
parts.

2) Gesture Space and Locations: The gesture space is the
space domain of the hand motions when people make gestures,
and this space is divided into different sectors [24]. Liddell and
Johnson’s description of POC and their classification of about
20 major body locations provides direct guidance [23] for the
implementation of the hand locations in virtual signing.

We have applied heuristic methods (together with the POC
concept and the implementation of hand constraints) to classify
and record the hand and elbow’s locations. When a posture is
created for the avatar, the locations of its hands and elbows
are automatically calculated. These locations are part of the
parametric representation of the posture and are stored in the
posture database. When searching for a particular posture, we
can use these locations to narrow down the search space.

A hand’s location (palm center) is classified with three types
of location: hand height, hand depth, and hand across.

1) Hand height describes how high the palm center is from
the ground. Its range is divided into High, Mid, and Low.

2) Hand depth measures how far away the palm center is
from the chest. Its range is divided into Far, Mid, and
Close.

3) Hand Across identifies the palm center with a horizontal
right–left cross line. For example, if the right hand rests
on the right side, it is marked as Close; when it goes across
the chest to the left side, it will be on the Far side. This
parameter is divided into three ranges: Close, Middle, and
Far.

With this definition and classification, the hand’s location can
be represented with a set of three variables, i.e., [across, depth,
height], each of which has one of three different values in its
range domain as defined above. There are 3 × 3 × 3 = 27
different combinations to describe a hand’s location. In other
words, a hand’s location will be in one of the 27 cubes in front
of the signer, defined by three perpendicular axes in the body
coordinate system marked with across, depth, and height in the
virtual body’s coordinate system with its origin at the body
center.

The elbow’s location is described with only one variable,
height, which has one of three values High, Mid, and Low. Now,
with the consideration of locations of the avatar’s two hands
and two elbows, we have 3 × 3 × 3 × 2 × 3 × 3 × 3 × 2 =
6561 different combinations of the hand and elbow’s location,
which means that we can divide the signing locations into 6561
different groups.

sEditor provides GUI interfaces to searching for postures or
close ones based on the user’s selections of location parameter
values of the hand and elbow. The resulting postures and the
ones during the searching are rendered and displayed in real
time as a sequence of postures, and the user may choose one or
more of them (two such control panels are shown in Figs. 7(b)
and 9).

3) Movements: According to [25], adding linguistically mo-
tivated pauses in sign durations will make the sign animations
more understandable by the native ASL signers. Signs can be
described with Movement-Hold mode and are composed of se-



508 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

Fig. 9. General control panel for creating and editing LPs.

quentially produced movement segments and hold segments [2].
In our implementation, we adapted this model but “disregard”
the linguistic implications of a virtual sign. By movements,
we mean any kind of movements used in signing and define a
movement segment, mSeg, of a sign: mSeg = [(p0 , t0), (p1 , t1),
. . ., (pn , tn )] in which any adjacent pair of [p0 , p1 , . . ., pn ]
will be different from each other because during movement the
articulation of LPs is always in a state of transition.

A hold segment is a pair of the same posture that oc-
curs sequentially at different times. For example, if the ith
segment of a sign is a hold segment, hSegi , then hSegi =
[(pi, ti), (pi+1 , ti+1)], where pi = pi+1and ti �= ti+1 . For a vir-
tual sign, vSign, which is composed of movement and hold seg-
ments, we have vSign = [mSeg0 ,mSeg1 , hSeg2 , . . ., mSegi ,
. . ., hSegj , . . ., mSegn ], where the order of the movement and
hold segments depends on the contents of the sign.

B. Composing Other Linguistic Parts

The basic LPs share a common representation form: lp =
[(p0 , t0), (p1 , t1), . . ., (pn , tn )] and are used to compose other
LPs. As in spoken language, given some basic LPs (phonemes
and some morphemes), we can build larger LPs such as mor-
phemes, words, phrases, and even sentences, which can be rep-
resented as a combination of the very basic LPs, which turn out
to be an ordered list of postures: LP = [lp0 , lp1 , . . ., lpm ] =
[(p0 , t0), (p1 , t1), . . ., (pN , tN )], where lpi indicates a basic LP.

Theoretically, we can use the formula, LP = [(p0 ; t0), (p1 ; t1),
. . ., (pN ; tN )], to construct a sign language’s words, phrases,
and even sentences—that is, to create or retrieve from databases
every posture, p0 , p1 , . . ., pN . This means that the size of LP will
become too large. Therefore, we have to use another formula:
LP = [lp0 , lp1 , . . ., lpm ]. However, there is a problem in sign
languages with the transition between two adjacent postures, for
example, movement epenthesis, hold deletion, and assimilation
in ASL. Our solution is to use both of them: LP = [lp0 , lp1 , . . .,
lpm ] = [(p0 , t0), (p1 , t1), . . ., (pN , tN )]. First, we give some
definitions.

1) We define wordItem to be any of the LPs, either basic or
larger ones.

2) Every wordItem has several (zero to any number in theory)
keywords or related words associated with it. In the case of the
creation of words and phrases for a sign language, we use related
words for the association; in other cases, use keywords. However,
for the current version of our sign language interfacing system,
we use both of them interchangeably. Thus, we have following
representations:

a) WordItem = {lpi}: combination of any number of basic
LPs.

b) WordItem = {LPj}: combination of any number of larger
LPs.

c) WordItem = {lpi , LPj}: combination of any number of
basic and larger LPs.

d) WordItem = {mSegi, hSegj}: combination of any number
of movement segments and hold segments in the Movement-
Hold model representation.

e) WordItem = {lpi , LPj ,KWm} or wordItem =
{lpi , LPj ,RWm}: combination of any number of basic and
larger LPs and associated keywords or related words.

f) WordItem = {lpi , [(pk , tk )], LPj ,KWm} or wordItem =
{lpi , [(pk , tk )], LPj ,RWm}: same as above, but [(pk , tk )] indi-
cates the inserted postures modified postures in {lpi} or {LPj}.

To construct a graphical user interface for creating and editing
LPs, we have considered the following requirements for such
an interface.

1) It should be able to create and edit postures, and store and
retrieve these newly built postures.

2) Based on the posture database, the interface should be
able to create basic LPs with time controls, edit them
dynamically, store them, and retrieve them from an LP
database.

3) It should be able to create large LPs from the posture
database and LP database and input keywords or related
words for them.

4) It should provide, if possible, an editing mechanism for
editing both the posture constituents and the LP con-
stituents for an LP.

These requirements for the LP creation and management in-
terface were implemented in a control panel (see Fig. 9) and
its associated databases; the user can insert, delete, and edit



YI et al.: sEDITOR: A PROTOTYPE FOR A SIGN LANGUAGE INTERFACING SYSTEM 509

Fig. 10. (a) Virtual signing output of an ASL word: EASY (the session should
repeat once more time). (b) Virtual signing output (signed English) of an ASL
sentence: WE LEARN ENGLISH. (c) An example of how to quickly retrieve a
sign language \word”: these display windows display virtual signs (animation
sessions) for different but related (associated) \words”; the word “WordItem”
above the display window is supposed to be notation symbols of a sign language
for the sign below it. The user will have three input methods to choose from:
1) clicking on the virtual sign in a display window, 2) typing in the notation
symbols, and 3) typing the number (1, 2, . . .) above the virtual sign.

the postures and the LPs. The results are displayed in pop-up
windows and can be saved in the database. Fig. 10(a) and (b)
gives two examples of virtual signing for an ASL word and one
sentence.

VII. DISCUSSION

sEditor is a prototype sign language interfacing system for
creating and managing sign language LPs. The system provides
a GUI interactive mechanism for the creation of correct basic
signs (see Fig. 4(c) and (d), 7(b), 8(b), and 9).

With the use of virtual gesture and sign databases, the users
of sEditor can construct, save, retrieve, and edit basic LPs and
then build larger LPs such as words, phrases, or sentences based
on the basic ones [as shown in Fig. 10(a), (b), and (c)] at “lower
level” (i.e., without consideration of the grammatical conjuga-
tions), which may not be correct unless under intensive exami-
nation and with necessary corrections [as shown in Fig. 8(b)].

It would be an ultimate goal for our sign language interfacing
system to become (or at least, give a direction for creating) a sign
language “editor” like a text editor (such as Microsoft Word)
for the spoken languages, in which users can “write” with the
system. There are two major problems to consider for designing
a sign language “editor”: 1) how to retrieve (input) sign language
“words” and 2) how to deal with the transition between two
adjacent “words” following the sign language syntax.

As for the first problem, we can borrow methods such as auto-
complete used in several Asian language text input techniques.
When one clicks on a sign or types in the transcription code for
a sign, the signs related to that sign (e.g., with higher associated
weights or sharing the first transcription coding symbols) will be
displayed on the screen, each of which is an animation sequence
accompanied by a number or notation symbols, rendered in an
easy-to-understand style in a small screen area. One can click
on the desired sign or type in its representative number or nota-
tion symbols. Fig. 10(c) gives an explanatory example without
consideration of the association weights of the individual signs.

The solution to the second problem is much more challenging.
In a text editor for spoken languages, letters, words, and phrases
are sequentially juxtaposed, but in a sign language there is a
transitional process between two signing parts in which the two
parts exert influence over each other, following the syntax rules
of a sign language. This means that postures (including their
corresponding time factors) on the border of two adjacent signs
have to be changed. For example, there are four typical variations
in a phonological process in ASL: movement epenthesis, hold
deletion, metathesis, and assimilation [24]. In their computer
graphics implementations, this presents a movement-control-
over-time design issue. sEditor transits from one sign sequence
to another one with the use of interpolation (inserting “mid-
signs” based on the two adjacent signs) without consideration
of the syntactical rules.

REFERENCES

[1] S. K. Liddell, Grammar, Gesture, and Meaning in American Sign Lan-
guage. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[2] C. Valli and C. Lucas, Linguistics of American Sign Language: An Intro-
duction, 3rd ed. Washington, DC, USA: Gallaudet Univ. Press, 2000.

[3] B. Yi, “A framework for a sign language interfacing system,” Ph.D. dis-
sertation, Dept. Comput. Sci. Eng., Univ. Nevada, Reno, NV, USA, 2006.

[4] J. Loomis, H. Poizner, U. Bellugi, A. Blakenore, and J. Hollerbach, “Com-
puter graphic modeling of American sign language,” ACM SIGGRAPH
Comput. Graph., vol. 17, pp. 105–114, Jul. 1983.



510 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 44, NO. 4, AUGUST 2014

[5] W. C. Stokoe, D. C. Casterline, and C. G. Croneberg, A Dictionary of
American Sign Language on Linguistic Principles: Linstsok Press, 1976.

[6] S. Wilcox, “The multimedia dictionary of American sign language: Learn-
ing lessons about language, technology, and business,” Sign Lang. Stud.,
vol. 3, no. 4, pp. 379–392, Summer 2003.

[7] C. Meidle, S. Sclaro, and V. Athitsos, “SignStream: A tool for linguistic
and computer vision research on visual-gestural language data,” Behav.
Res. Methods, Instrum., Comput., vol. 33, no. 3, pp. 311–320, 2001.

[8] C. Neidle.( 2000 Aug.). A database tool for research on visual-gesture
language. ASL Linguistic Research Project, Rep. 10. [Online]. Available:
http://www.bu.edu/asllrp/rpt10/ASLLRPr10.pdf (URL)

[9] P. Lu, “Modeling animations of American sign language verbs through
motion-capture of native ASL signers,” ACM SIGACCESS Accessibility
Comput., vol. 96, pp. 41–45, Jan. 2010.

[10] H. Kaneko, N. Hamaguchi, M. Doke, and S. Inoue, “Sign language anima-
tion using TVML,” in Proc. 9th ACM SIGGRAPH Conf. Virtual-Reality
Continuum Appl. Ind., New York, NY, USA, 2010, pp. 289–292.

[11] D. I. Fels, J. Richards, J. Hardman, S. Soudian, and C. Silverman, “Amer-
ican sign language of the web,” in Proc. CHI EA Human Factors Comput.
Syst., 2004, pp. 1111–1114.

[12] (2014). UPENN HMS Center. [Online] Available: http://hms.upenn.edu/
[13] (2014). Virtual Reality Lab. http://vrlab.epfl.ch/
[14] (2014). DePaul ASL Synthesizer. [Online] Available:

http://asl.cs.depaul.edu
[15] (2014). eSign: Vitural Human Signing at UEA. [Online] Available:

http://www.visicast.cmp.uea.ac.uk/
[16] (2014). Vcom3d. [Online] Available: http://vcom3d.com/
[17] M. Huenerfauth. (2003 Sep.). A survey and critique of American sign

language natural language generation and machine translation systems.
Dept. Comput. Inf. Sci., Univ. Pennsylvania, Tech. Rep. [Online]. Avail-
able: http://www.cis.upenn.edu/grad/ documents/huenerfauth.pdf

[18] M. Huenerfauth, L. Zhao, E. Gu, and J. Allbeck, “Design and evaluation
of an American sign language generator,” in Proc. Workshop Embodied
Language, Prague, Czech Republic, 2007, pp. 51–58.

[19] N. Frishberg, S. Corazza, L. Day, S. Wilcox, and R. Schulmeister, “Sign
language interfaces,” in Proc. CHI/INTERACT Conf. Human Factors
Comput. Syst., 1993, pp. 194–197.

[20] S. C. W. Ong and S. Ranganath, “Automatic sign language analysis: A
survey and the future beyond lexical meaning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 6, pp. 873–891, Jun. 2005.

[21] B. Yi, F. C. Harris, Jr., and S. M. Dascalu, “From creating virtual gestures
to ‘writing’ in sign languages,” in Proc. CHI EAConf. Human Factors
Comput. Syst., Apr. 2005, pp. 1885–1888.

[22] B. Yi, F. C. Harris, Jr., and S. M. Dascalu, “Real time natural hand ges-
tures,” Comput. Sci. Eng., vol. 7, no. 3, pp. 92–97, May 2005.

[23] S. K. Liddell and R. E. Johnson, “American sign language: The phono-
logical base,” Sign Lang. Stud., vol. 64, pp. 195–227, Fall 1989.

[24] D. McNeil, Hand and Mind: What Gestures Reveal About Thought.
Chicago, IL, USA: The Univ. Chicago Press, 1992.

[25] M. Huenerfauth, “A linguistically motivated model for speed and paus-
ing in animations of American sign language,” ACM Trans. Accessible
Comput., vol. 2, pp. 9:1–9:31, Jun. 2009.

Beifang Yi received the M.S. degree in computer sci-
ence from Southwest Jiaotong University, Chengdu,
China, in 1988, and the Ph.D. degree in computer sci-
ence and engineering from the University of Nevada,
Reno, NV, USA, in 2006.

He is currently an Assistant Professor with the
Department of Computer Science, Salem State Uni-
versity, Salem, MA, USA. His current research inter-
ests include human–computer interaction, informa-
tion visualization, computer graphics, and education
in computer science.

Xusheng Wang received the M.S. degree in com-
puter science from Southwest Jiaotong University,
Chengdu, China, in 1986, and the Ph.D. degree in in-
formation technology with concentration in computer
graphics from George Mason University, Fairfax, VA,
USA, in 2003.

He is currently an Associate Professor with the
Department of Mathematics, Computer Science, and
Cooperative Engineering, University of St. Thomas,
Houston, TX, USA. His current research interests
include computer graphics, virtual reality, human–

computer interaction, and information visualization. He has published more
than 20 peer-reviewed papers.

Frederick C. Harris, Jr., received the B.S. and M.S.
degrees in mathematics and educational administra-
tion from Bob Jones University, Greenville, SC, USA,
in 1986 and 1988, respectively, the M.S. and Ph.D.
degrees in computer science from Clemson Univer-
sity, Clemson, SC, in 1991 and 1994, respectively.

He is currently a Professor with the Department of
Computer Science and Engineering and the Director
of the High Performance Computation and Visualiza-
tion Lab and the Brain Computation Lab, University
of Nevada, Reno, NV, USA. His research interests

include parallel computation, computational neuroscience, computer graphics,
and virtual reality.

Dr. Harris is a Senior Member of the Association for Computing Machinery
and International Society for Computers and their Applications.

Sergiu M. Dascalu received the Master’s degree in
automatic control and computers from the Polytech-
nic University of Bucharest, Bucharest, Romania, in
1982, and the Ph.D. degree in computer science from
Dalhousie University, Halifax, NS, Canada, in 2001.

In 2002, he joined the Department of Com-
puter Science and Engineering, University of Nevada,
Reno, NV, USA, where he is currently an Associate
Professor. His main research interests include soft-
ware engineering and human–computer interaction.
He has published more than 140 peer-reviewed pa-

pers and has been involved in numerous projects funded by industrial companies
as well as federal agencies such as the National Science Foundation, NASA,
and the Office of Naval Research.

Dr. Dascalu received the UNR Donald Tibbitts Distinguished Teacher of the
Year Award in 2011.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


