

Design Patterns Automation with Template Library

Sergiu Dascalu1, Ning Hao1, Narayan Debnath2

1Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, 89523, USA
{dascalus, haoning}@cse.unr.edu

2Department of Computer Science

Winona State University
Winona, MN, 55987, USA

ndebnath@winona.edu

Abstract - Design patterns offer reusable solutions to particular
software design problems. Design Patterns Automation is an
approach that applies design patterns at the implementation stage of
the software development life cycle. Inspired by two commonly
used template libraries, Active Template Library and Standard
Template Library, and one of the most popular generic
programming technologies, C++ templates, this paper introduces a
new method for achieving design patterns automation. This method
differs from the currently available UML-based and wizard-based
design patterns automation techniques and provides support for
increased flexibility, expandability and compatibility in developing
software using design patterns. Seven of the patterns proposed by
Gamma et al. have been implemented using C++ templates, namely
singleton, factory method, visitor, memento, strategy, iterator, and
decorator. To illustrate the method proposed, details of singleton
and decorator implementations are provided and a larger “Check”
example developed using the decorator template is presented. The
paper also includes a comparison with similar approaches and
presents several directions of future work.

Keywords - Design patterns, Design patterns automation, Template
library, Software design, Implementation.

I. INTRODUCTION

A design pattern represents a reusable solution to a
particular software design problem [1], which is primarily a
design issue. Design Patterns Automation (DPA) is an
approach that applies design patterns to software construction
[2], which is primarily an implementation issue. This paper
focuses on how to implement design patterns using templates.
The main objective is to separate the design pattern
implementation from the business logic implementation.
Thus, the users can focus on developing the business logic of
their interest. The answers to why one uses design patterns
and what kind of benefits can be achieved by using them are
not within the scope of this paper. It is assumed that the
software designer has decided to use design patterns and
relies on the coder to implement them. Currently, existing
DPA tools are mostly wizard-based, which first ask for user
input then generate code for easy implementation. The
advantage is that these tools are tied with the Unified

Modeling Language (UML) [3], so they have the ability to
bundle design and implementation. But there are also certain
disadvantages: the tools are not free and wizards lack
flexibility, meaning that the users have not sufficient control
over what they can do.

In this paper, inspired by the Standard Template Library
(STL) [4] and the Active Template Library (ATL) [5], a new
approach is introduced to achieve DPA. Furthermore, the
work described in this paper aims to create an open source
template code library, named Design Patterns Template
Library (DPTL), which is intended to incorporate design
patterns implementations using C++ templates. The users will
have available the distributed source code instead of the
compiled executable programs and thus could easily make
changes suitable for their business needs. This paper divides
the design patterns template implementation into STL style
and ATL style, based on whether the involving pattern class
can operate alone or needs interaction with other classes.

Since the patterns proposed by the “Gang of Four” (GoF)
are the cornerstone of design patterns technology, this paper
focuses on “templating” patterns presented in the GoF book
[1]. In total, there are 23 patterns presented in that book; the
work on which this paper is based fully covered seven [6].
The paper provides details of two template-based pattern
implementations and illustrates the proposed approach with a
larger example (a “Check” program). In essence, we propose
a certain convention for templating patterns, so patterns can
be added to a library without significant effort. Once this
approach is completed, it could be bring a useful contribution
to the design patterns technology and the software
engineering community.

In its remaining part, this paper is organized as follows:
Section II provides background information, Section III gives
an overview of the problem tackled and the proposed
solution, Section IV details the automation of the singleton
and decorator patterns, Section V shows the application of the
decorator pattern template-based automation using a Check
program example, Section VI includes a comparison with
related work, and Section VII presents several directions of
future work as well as the paper’s conclusions.

6990-7803-9314-7/05/$20.00©2005 IEEE

2005 IEEE International
Symposium on Signal Processing
and Information Technology

II. BACKGROUND

A. Design Patterns

A design pattern, as defined by the GoF, is a description of
“communicating objects and classes that are customized to
solve a general design problem in a particular context” [1]. In
other words, a design pattern is a reusable solution for a
particular design problem. Gamma et al introduced 23
patterns in their book (Table 1), and these patterns have been
considered the fundamental building blocks for more
complex patterns. Every design pattern is characterized by
four essential elements: pattern name, problem, solution, and
consequence. In this sense, a design pattern is a higher level
of abstraction, factored out from a common kind of
successful software design. Notably, a design pattern can be
implemented in almost any programming language.

Patterns usually exist in software that has already been
developed. To discover and publish a pattern is called pattern
mining [7]. This activity has accounted for a significant
segment of pattern research. For a pattern to be useful, it is
critical how it is published, because this influences its usage.
In essence, a pattern’s life and utility depend on how often it
can be reused. There are two forms to follow for pattern
publishing: one is the GammaForm [1], the other is the
CoplienForm [8]. The singleton pattern is presented in Table
2 using the GammaForm.

Table 1. Pattern categories based on functions [1]

Purpose

Creational

Structural

Behavioral

Class

Factory
method

Adapter

Interpreter
Template
method

Scope

Object

Abstract
method
Builder
Prototype
Singleton

Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of
responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

The singleton pattern has been used widely, for example in
the open source software Java log4j [9], the Microsoft .NET
remoting [10], and many other software applications.

Another area of pattern-related research is concerned with
how to use patterns. After all, reusing patterns in new designs
is the ultimate goal of the approach. This includes finding the
relationships between patterns and theoretical ways to reuse
patterns, like Pattern Oriented Analysis and Design
(POAD)[11].

B. Design Patterns Automation

Not only researchers are interested in reusing patterns, but
also some of the major software developing companies [12].
The difference is that the latter are more interested in
practical ways of reusing patterns, not in their theory. This
interest focuses on how to use patterns in real life situations.
This also encompasses Design Patterns Automation (DPA),
because a design pattern itself is mostly an idea at the design
level, meaning that it can be implemented in many
programming languages to fulfill a particular design issue.
DPA generally works with one programming language and
provides an easy way for people to integrate their business
design with design patterns. The overall benefit is that once
the design has involved patterns, it can be easily implemented
with DPA. The users do not have to start from scratch by
writing customized design pattern code.

Table 2. Singleton Pattern in GammaForm [1]

Name Singleton

Problem Ensure a class has only one existing
instance, and provide a global point of
access to it.

Solution The Singleton class is declared as:

class Singleton {
public:
 static Singleton* Instance();
protected:
 Singleton();
private:
 static Singleton* _instance;
};

The corresponding implementation is

Singleton* Singleton::instance=0;
Singleton* Singleton::Instance () {
 if (_instance == 0) {
 _instance = new Singleton;
 }
 return _instance;
}

Conse-
quence

The Singleton pattern has several benefits:
(i) this solution provides controlled access
to a unique instance;
(ii) it is a much better solution compared
with a global variable;
(iii) it can be fine-tuned into a configurable
singleton.

For each DPA to work, it has to address two sensitive
aspects of design patterns, namely uniqueness (each pattern
needs to address only one particular design problem), and
generalizibility (that is, a particular pattern should be popular
enough to be worthy of the automation effort).
Generalizibility makes DPA possible, but uniqueness makes

700

automation work relatively difficult. Thus, an approach must
be developed to cover most design patterns with minimum of
developing work.

 Bulka describes DPA at two levels, static and dynamic
[2]. Most of current DPA tools have a tight involvement with
UML tools, especially with those UML tools for automatic
code generation. Examples of such tools include Borland
Together [13], UMLStudio [14], and ModelMaker [15]. A
static DPA such as UMLStudio stores all the necessary
pattern information, and when the user wants to use a pattern,
the pattern can be created, but the generated code is limited to
the pattern itself. Thus, it cannot interact with other existing
UML classes or interfaces. Dynamic DPA tools such as
Together or ModelMaker are different, they not only can
create pattern UML models, but can also allow new created
pattern UML models to interact with other class models. This
is a significant advantage, because most design patterns
defined by GoF are considered building blocks for new kind
of patterns, the composite patterns, which are composed by
two or more basic patterns. Some of these UML tools also
have the ability to generate code based on UML diagrams.

All these UML-based DPA tools use GUI to fulfill each
pattern’s uniqueness. Together uses dialog boxes,
ModelMaker and UMLStudio use wizards. For each different
pattern, a dialog or wizard panel has to be implemented. For
example, the steps of pattern automation in Borland Together
[13] are as follows:
Step1: Choose a pattern to use, and then input all the

necessary parameters (pattern properties) in the dialog
panel provided.

Step2: The Together tool can then create the corresponding
UML class diagram for the pattern. For example, in the
case of Singleton, a SingletonFoo class and a
SingletonFooFac(tory) class can be created (the latter
can also be inherited by a third class, the
SubSingletonFoo). The Together environment can also
generate code for the UML diagram shown in Fig. 1.

Fig. 1. UML diagram of Singleton in Borland Together [13]

C. Template-Based Programming

A C++ template allows using types as parameters, which
results in a great deal of code reuse. This is also called
Generic Programming (GP) [16], a discipline that studies the
systematic organization of reusable software components.
C++ templates are the most used technique for GP, but there
are other, such as Microsoft .NET attribute-based
programming [17]. The two most successful template GPs are
STL [4] and Microsoft’s ATL [5].

STL is a subset of the C++ library, which includes most
useful data structures and algorithms, such as hash, vector,
and linked list data structures as well as many types of sorting
algorithms. Every component in STL uses a template, which
takes types as parameters. Whenever a data structure or
algorithm is needed, the developer needs only to simply pass
suitable type(s) to get the desired results.

For example, vector<int> and vector<myClass> will
result in an int vector and a myClass vector. Thus, it becomes
simple and straightforward to achieve code reuse. However,
this requires the user to have a good understanding of the
library component before using it. For the above case, the
user must know what a vector is and what it can do in terms
of a specific software solution.

ATL is a subset of Microsoft VC++, which deals with
COM (Component Object Model) using C++ templates and
multi-inheritance. All COM libraries need to implement the
IUnkown interface regardless of their types [18]. Figure 2
presents a code snippet of the CFoo ATL class definition.

// CFoo

class ATL_NO_VTABLE CFoo:
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CFoo, &CLSID_Foo>,
public IDispatchImpl<IFoo, &IID_IFoo,
 &LIBID_TRAILLib>

{public:
 CFoo(){}
}

Fig. 2. CFoo ATL class definition

As shown above, ATL is more complicated than STL. ATL
allows interaction between user classes and COM classes
through multi-inheritance.
 This interaction is very important for dynamic DPA tools.
From this point of view, the STL method is considered more
static. To use templates for DPA, both STL and ATL styles
can be applied. For patterns that mostly operate alone, an
STL-like template can be created. On the other hand, all
patterns can be implemented in an ATL-like library. An
ATL-like library also provides a way for creating composite
patterns.

701

III. PROBLEM AND PROPOSED SOLUTION

A. What Problem the Design Patterns Template
 Library Addresses?

 This paper proposes a new way to achieve DPA. From a
software engineering point of view, design patterns provide
reusable and typically successful design solutions. However,
at the implementation stage the users will need to write code
to fulfill their design. This requires development effort and
usually involves programming errors.

DPA comes here into play, by significantly reducing both
the programming workload and the likelihood of errors when
implementing a design pattern from the scratch. Research
shows that the majority of failed applications that tried to
apply design patterns were due to incorrect implementation
[19]. This proves that DPA can be an attractive and useful
approach in the software development processes that rely on
design patterns.

A simple analogy to describe DPA is provided by a model
make, which can have different shapes. These shapes are
analog to different design patterns. The model make can be
created using various kinds of material, such as clay, cement
and metal. In a way, this can be analogous to different
business software requirements.

In this paper, a new approach for achieving DPA is
introduced. The approach uses C++ templates, a powerful
modern generic programming technology. The design
patterns implementations proposed by this approach are
bundled into a template library, similar to STL and ATL. The
template library we propose is described next.

B. The DPTL Project

DPTL is a template library that uses C++ templates to
achieve DPA. A software development project itself, it went
through typical software lifecycle stages, namely
requirements specification, design, implementation, testing,
and release. In summary, the main requirement specifications
of DPTL are as follow:
• This project should be implemented using the open-source

approach, such that the end users can have unrestricted
access to the source code;

• Each DPA implementation should be correct and
thoroughly tested;

• Each DPA implementation should follow as much as
possible either the STL or the ATL style, such that it will
be easier to use and it will lead to less errors and misuses.
The reason for the open source solution is that it would

also be possible to gain more audience for thorough testing
before release. Notably, this is a project designed to
contribute to the software engineering community, and not
for commercial gain. The main design elements of DPTL are
succinct, since this is a code library development type of
project, hence there are not that many significant issues for its
specific design. Each DPA should be developed in a very

compact format and should strictly follow its design patterns
definition and STL/ATL style.

IV. TEMPLATE-BASED PATTERNS AUTOMATION

 In this section, detailed template-based automation
(implementation) for two design patterns are presented. They
are singleton, which is provided as example of the STL style,
and decorator, which is shown as example of the ATL style.
Details for the automation of several other patterns are
available in [6].

A. Singleton Pattern Template

 Singleton is considered the simplest design pattern and has
been used frequently in software development. What it is and
how to implement was described in Section II of this paper.
Its implementation consists of about 20 lines of code. Then,
the question may arise, is it really worth automating it? To
answer this question, the following is a real life example. We
use this example to go through the singleton pattern
automation procedure using a template.
 If one is developing a debugging and tracing tool, one will
include in the tool a listener, which will catch all debug and
trace information. Also, one will include in the tool a logger,
which will record information into a log file, a windows
event log, or simply an email message (all based on
information severity). The singleton pattern would be the
perfect design choice here, because there is no reason to have
more than one listener and one logger in this application.
Thus, if the designer decides to use the singleton pattern, the
next question is, how to implement it? The first choice is to
write two classes, singletonListener and singleton Logger,
that use almost the same source code (Figure 3).

// Class Singleton Listener Definition

class SingletonListener {
 public:
 static SingletonListener * Instance();
 protected:
 SingletonListener ();
 private:
 static SingletonListener * _instance;
 // more Listener code
}

// Class Singleton Logger Definition

class SingletonLogger {
 public:
 static SingletonLogger * Instance();
 protected:
 SingletonLogger ();
 private:
 static SingletonLogger * _instance;
 // more Logger code
}

Fig. 3. Plain non-template implementation of singleton classes
Listener and Logger

702

 This type of code duplication often indicates that a
template solution is possible. Next, what if the designer
decides to have one of fileLogger, emailLogger and
windowseventLogger? Three more singleton classes would
need to be implemented. In other DPA tools like Together
this will generate all the duplicated code that will look alike
and will differ only through different names. However, a
more efficient solution can be provided by templates used as
in our approach.
 Now let us see a template-based solution. First, a
Singleton template class is presented in Figure 4.

Template <class T>
class Singleton{
public:
 Singleton(){getInstance();}
 T* getInstance(){
 static T instance;
 return &instance;
 }
 ~Singleton(){
 }
 T* operator ->(){
 return getInstance();
 }
};

Fig. 4. Template solution for the Singleton pattern

Then, a simple test using the above template is shown in

Figure 5.

class foo { // A simple class which would mind
 // its own business
public:
 int a;
};

int main(){
 Singleton<foo> aa; // Create first
 // singleton object
 foo->a=10; // Assign value
 Singleton<foo> bb; // Now try to create
 // another object,
 // but it would be same
 // as the first
 cout<< "aa->a: " <<aa->a<<endl; // 10
 cout<< "bb->a: " <<bb->a<<endl; // also 10
}

Fig. 5. Singleton template implementation test

As the above test code suggests, with the template-based
solution (henceforth, template solution) it becomes much
easier to reuse the Singleton pattern (the bold font in Figure 5
gives an indication on how easy it is to create a singleton
object). However, this kind of implementation may be
suitable only for singleton, because basically it has only one
class to deal with. There is no complicated relationship
between classes involved. Using a template involves just
adding a new layer upon the underlying class to make sure it
cannot have more than one instance. Since singleton is
considered the simplest pattern, there are certain other ways

to implement it using templates, such as Bruce Eckel’s, who
introduced an implementation approach similar to using the
ATL style [20].

B. Decorator Pattern Template

The decorator pattern is one of the structural patterns. It
can be used when the user wants to add new properties to
individual object only, but not to the whole class. This means
that, by applying different decorations, a set of different
behavioral objects can be created from a single central main
class. All decorations need to be encapsulated into a class
derived from the decorator class, and this decorator class is
derived from a decoration component abstract class. The
reader is referred to [6] for the non-template solution, as it is
rather large in size. Here, the template-based decorator
pattern example is shown in Figure 6.

Template <class Component>
class decorator : public Component {
public:
 decorator(Component* cC) { _cC= cC; };
 virtual void execute() {_cC->execute();};
private:
 circleComponent* _cC;
};

Fig. 6. Decorator pattern template

The above decorator template was used to create a
“Check” real-world application example, which is described
next.

V. APPLICATION: “CHECK” PROGRAM DEVELOPED

USING THE DECORATOR PATTERN TEMPLATE

The check program is a demonstration of applying a
template-based pattern automation solution for program
implementation. The program allows the user to create an
electronic check that looks like a real check and print it using
a color printer. The program presented here has been
implemented using Microsoft Visual C++ 6.0 as an MFC
windows application. All texts and graphs are drawn using
GDI (Graphics Device Interface) [21], which allows for high
resolution displaying and printing. As a matter of fact, if a
high enough resolution printer and security-featured picture
are available, this program can be used to print real business
checks. The decorator pattern has been used in this
application to add decoration features for a better looking
check. Specifically, a decoration feature is for a color frame
and another is for a background picture. Even though there
are many ways to implement these decorations, the templated
decorator pattern solution is given in this paper for
demonstration purposes. As mentioned before, answering the
questions of why to use this design pattern and what benefits
can be gained from using it are not within the scope of this
paper. This paper concentrates solely on how to implement

703

patterns using templates. The following are several snapshots
of the check program (Figures 7, 8, and 9).

Fig. 7. Plain check with no decoration

Fig. 8. Check with frame decoration

Fig. 9. Check with both frame and background decorations

Figure 10 presents the code that uses the decorator

template. The decorator template is included in the
decorator.h head file, and two corresponding decoration
classes are created using the template ATL style. The detailed
drawing code has been skipped due to space limitations, but
can be found in [6], along with other relevant program files
that make up the “Check” program.

#include <string>
#include "afxwin.h"
#include "MaskedBitmap.h"
#include "decorator.h" // This head file contains
 // Decorator Template.

using namespace std;

class checkDecorationComponent {
public:
 checkDecorationComponent() {};
 ~checkDecorationComponent() {}
 virtual void draw(CDC* pDC) {};
 virtual void draw() {};
 virtual void execute() { draw();};
};

// Decorator class for background decoration

class bkgGraphDecoration :
public decorator<checkDecorationComponent>{
public:
 bkgGraphDecoration
 (checkDecorationComponent* cC):
 decorator<checkDecorationComponent>(cC){};
 virtual void draw(CDC* pDC) {
 // do drawing of background picture here.
 };
};

// Decorator class for frame decoration

class frameDecoration : public
decorator<checkDecorationComponent>{
public:
 frameDecoration (checkDecorationComponent*
 cC):
 decorator<checkDecorationComponent>(cC){};
 virtual void draw(CDC* pDC) {
 // Do drawing of frame here.
 };
};

Fig. 10. CheckDecoration.h file that implements decorations using the

Decorator pattern template

VI. COMPARISON WITH RELATED WORK

Compared with existing wizard-based design patterns

automation tools, DPTL allows the users to develop their own
type classes and pass them to templates. The solution
proposed in this paper is different from other existing tools,
including wizard-based DPA tools, and provides the
following:
• Greater flexibility. Since the users have unrestricted access

to the source code, they can have the overall control of the
library. Hence, they will be able to use design patterns in
better and more flexible ways than when relying on wizard-
based tools;

• Expandability. By using either the STL or the ATL style,
new patterns can be templated and integrated into DPTL.
This will support easier understanding by the users
(developers), because learning to use one template can
result in easier learning of all templates and patterns. Also

704

to the benefit of developers, new patterns can be developed
and integrated into DPTL using the same programming
convention and style;

• Pattern compatibility. Because most newly mined patterns
are just composite GoF patterns or variations of them, if a
common interface can be introduced to support GoF
patterns communicate seamlessly, it will be much easier to
have the DPTL itself grow straightforward and at a fast
pace. In fact, a “codefarm” project named Cross-Platform
DPTL has already been developed elsewhere for dealing
with this issue [22].
The downside of the proposed approach is that, as

compared with wizard-based tools, DPTL has a demanding
learning curve, which means that the users must learn DPTL
before using it. Also, the users must possess a solid
understanding of design patterns.

VII. FUTURE WORK AND CONCLUSIONS

Given this is the initial version of the DPTL project, there

is still work ahead to shape it into a very attractive and useful
library. The following are several directions of future work
considered:
• Develop the complete DPTL library, which means to cover

all patterns from the Gamma et al book [1]. This involves a
significant amount of work, because it requires thorough
understanding of all the patterns presented in the book as
well as extensive pattern implementation experience;

• Verify and guarantee the correctness of all DPTL
implementations. Because design patterns are abstractions
of special design issues, certain implementations will
probably not be able to satisfy all possible programming
scenarios. To solve this problem, comprehensive testing is
needed. Furthermore, because from a software engineering
point of view this library’s development is not considered a
very large project, it represents a good candidate for the
application of the eXtreme Programming (XP) approach
[22]. Also, it would be highly beneficial to the project to
invest additional effort for having a CPPUNIT module [23]
integrated into the library.

• Make DPTL available as an open source tool to the public.
Thus, all its code has to be adjusted to follow open source
code conventions.
In conclusion, this paper has described the foundations of

the DPTL project, which in nutshell is a solution aimed at
achieving design patterns automation. The paper’s
contributions can be summarized as follows.

First, differing from other wizard-based tools, DPTL
offers novel source code implementations based on the
modern technique of template-based generic programming.
DPTL templates separate pattern implementations from real
world business implementations. Compared with non-
template implementations, this not only provides
programmatic and effective automation of patterns, but also
reduces the likelihood of programming errors in pattern-
based software development.

Second, based on the complexity of pattern’s class
structure, the proposed pattern automation solution can be
divided into two common template library styles: the STL
style and the ATL style. Consequently, the developers and
the users of the library can save significant time when
learning and/or incorporating new patterns.

Third, seven patterns, namely singleton, factory method,
visitor, decorator, memento, strategy, and iterator, have been
investigated and presented in [6] as examples of the proposed
template-based DPA solution. Among these, the singleton
and the iterator patterns follow the STL style while all other
patterns follow the ATL style. Details of singleton and
decorator template-based automation have been presented in
this paper.

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R, and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[2] Bulka, A., “Design Pattern Automation,” Proceedings of the 3rd Asia-
Pacific Conference on Pattern Languages of Programs, John Noble
(editor), 2002.

[3] OMG’s UML Resource Page, http://www.uml.org (accessed July 30,
2005).

[4] Josuttis, N., The C++ Standard Library: A Tutorial and Reference,
Addison-Wesley, 1999.

[5] Shepherd, G. and King, B., Inside ATL, Microsoft Press, 1999.
[6] Ning, H. Design Patterns Automation with Template Library, Master of

Comp. Sc. Professional Paper, Department of Computer Science and
Engineering, University of Nevada, Reno, USA, February 2005.

 [7] Coplien, J., Object World Briefing on Design Patterns, AT&T Bell
Labs Conf. Tutorial, San Francisco, 1994.

[8] Coplien Form,
http://c2.com/ppr/wiki/WikiPagesAboutWhatArePatterns/

 CoplienForm.hhtml (accessed February 2, 2005).
[9] Log4j Open Source Resource Page (accessed July 30, 2005),

http://logging.apache.org/log4j/docs/
[10] Rammer, I., Advanced .NET Remoting in VB.NET, Apress, 2002.
[11] Yacoub, S. and Ammar, H., Pattern-Oriented Analysis and Design:

Composing Patterns to Design Software Systems, Addison-Wesley,
2003.

[12] Budinsky, F., Finnie, M., Vlissides, J., and Yu, S. “Cogent: Automatic
Code Generation from Design Patterns,” IBM Technical Journal, vol.
35, no. 2, 1996.

[13] Borland: Together Technologies, http://www.borland.com/together/
(accessed February 2, 2005)

[14] PragSoft Corp.’s UMLStudio Resource Page,
http://www.pragsoft.com/products.html (accessed July 30, 2005)

[15] ModelMaker Tools, http://www.modelmakertools.com/ (accessed July
30, 2005)

[16] Vandevoorde, D. and Josuttis, N., C++ Templates: The Complete
Guide, Addison-Wesley, 2002.

[17] Troelsen, A., C# and the .NET Platform, 2nd Edition, Apress, 2003.
[18] Gordon, A., The COM and COM+ Programming Primer, Prentice Hall

PTR, 2000.
[19] Brown, J., Malveau, R., McCormick H. and Mowbray T., AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis, John Wiley
& Sons, 1998.

[20] Eckel, B., Thinking in C++, Volume 2, 2nd Edition. Practical
Programming, Prentice Hall, 2003.

[21] Prosise, J., Programming Windows With MFC, Microsoft Press, 1999.
[22] Beck, K., Extreme Programming Explained, Addison-Wesley, 2000.
[23] Cross Platform Design Pattern Template Library,
 http://www.codeproject.com/library/dptl.asp (accessed Feb. 2, 2005).

705

