An Application for Tree Detection
Using Satellite Imagery and Vegetation Data

David T. Browri” Roger V. Hoan§ Matthew R. Sgambdii
Timothy J. Brown Sergiu M. DascaluFrederick C. Harris, Jf.

Department of Computer Science and Engineéring CAVCaM’
University of Nevada, Reno Desert Research Institut
Reno, NV 89557 Reno, NV 89512

{dtbrown, hoangr, sgambati, dascalus, Fred.Harris3@unr.edu

Abstract

Virtual reconstruction of large landscapes fromeliéé imagery can be a time-consuming task
due to the number of objects that must be extraddedr image resolution and noise hinder
automatic detection processes and thus must beoted by the user. This paper describes an
application that allows the user to guide the auatiicrdetection of trees from satellite imagery and
spatial vegetation data. The requirements of theeay are specified and an architecture that
satisfies these constraints is presented. Thetimguwpplication provides an intuitive computer-
aided method for the selection and classificatibinees.

Keywords:. Virtual Reality, Image Processing, Fire

1 Introduction

VFIRE [7,8] is an immersive visualization applieatibeing developed to study the behavior of
wild land fires and to train fire crews to bett@mtbat this phenomenon. Fig. 1 is an example of
the output generated by the program. The systeempts to generate realistic visualizations of
simulated wildfires over real-world locations byndoining satellite imagery and other spatial
data. In order to create an accurate representafidhe world objects found in the satellite
imagery should be placed correctly in the virtuatia.

To do so, the type and location of these objectstnfisst be extracted from the images.
Unfortunately, determining this information for éaiodividual object can be a very complicated
and time-consuming task, especially due to thershember of objects such as trees. Computer
vision techniques to automate this process canfieetiwe. However, noise and other factors
inhibit the accuracy of these techniques, leadinfplse positives and false negatives. Therefore,
this application was developed to find the locadioftrees in an image.

Given that there are no constraints on the tymmludion, or geographic area of the image, the
system relies heavily on the judgment of the useovercome tree-detection difficulties that
cannot be anticipated or resolved within the atgoni For this reason, the application uses an
interactive detection procedure in which the usastie able to see what the system is doing in
order to effectively guide the process. A significportion of the program is devoted to the task
of letting the user see the current status of theration and what needs to be done next. In
addition, a large portion of the program is devdtedllowing the user to control the way that tree
detection occurs in order to minimize errors.

The rest of this paper is structured as followscti®a 2 presents some of the related work.
System requirements are presented in Section % tisms are covered in Section 4. Classes and
Program Subsystems are detailed in Sections 5 ahdomation on the current implementation
of this project as well as the results obtainedasa@re given in Section 7. Section 8 presents our

conclusions and identifies some of the useful inproents to this project to be made in the
future.

Fig.1 Fire Visualization in progress

2 Related Work

It is often desirable to have knowledge of the tmres, types, and sizes of trees in a particular
area. For example, plantation managers may nebdwe accurate counts of their inventories in
order to plan for their harvest activities. Forgstfficials often require information about the age
densities and types of trees in forested areasdier@o assess the health of the forests and fgenti
ongoing trends that may or may not be desirabimil&ily, it may be useful to know how much
wood is available for harvesting in a particulagaaiand, potentially, how much is available for
combustion in the event of a fire. For these reaseignificant effort has been made to find fast
and inexpensive ways of obtaining such data.

LiDAR data are not available in this project, amd examination of the techniques applied to
LIiDAR show relatively little applicability. In onénstance, an effort was made to distinguish
individual trees within a set of LIDAR data by desng the point cloud in all three spatial
dimensions [6]. In any area where the space betwreas is sufficiently large, this algorithm
could be expected to accurately locate individue¢d. A similar approach could conceivably be
applied to the photographic images available is fhibject by treating the brightness values as if
they were height values in the LIDAR data. Usinig tipproach, however, would likely result in a
high rate of false positive errors because brigdginglusters may be produced by a variety of
surface features besides trees, and without ttghh@&iformation contained in the LIDAR data,
these false clusters would be indistinguishablenflegitimate tree clusters. Similar limitations
could be expected when trying to apply any LiDABhtgique directly to photographic data.

Most of the algorithms that determine the locatiofsrees in photographic imagery do so by
locating local maxima of the pixel values in theage [9]. A method of doing this was shown in
[3], where a photographic image of a forested @&esarched vertically, horizontally, and along
both diagonals to find local maxima occurring iry af eight directions. One of the difficulties
that occur in using this method is that a singée tcan produce more than one local maximum,
resulting in two or more trees being detected wioatg one tree actually exists.

Various approaches have been developed to preventrsultiple detection. One such method is
to apply a scale-space filter to the entire image then extract the individual tree locations using
a sophisticated thresholding technique [4]. In hep@approach, a scale-space filter is applied to
the entire image and the individual tree locatiaresextracted by applying an edge-detection filter
to reveal the curved edges enclosing the tree @ownalysis of the curvature of those edges
produces the locations of likely trees [1]. In yatother method, a window is moved over the
image in a scanning pattern and, at every locatlmmaximum pixel value inside the window is
taken to be the local maximum for that region [,10

The methods described in [1], [9], and [10], alhéft from the use of multispectral imagery.
The different color bands in a multispectral imaga be mixed in specific ways to allow certain
types of material to appear brighter than othdfewing the image to be optimized for use in a
particular algorithm.

In addition, all the methods described above usagéndata under constraints that can be
exploited by the algorithm. For example, [8] usesia images of “even-aged homogeneous
stands of Norway spruce.” The other methods citbdva also benefit from a relatively
homogeneous scene in which there is scarcely angtioi be detected except the desired trees.
Such visual similarity among the items to be det@greatly improves accuracy, and the methods
cited above work well under those constraints.

In this project, however, the algorithm must beeatd locate trees in images where no such
constraints are assumed to exist and where muitigdeimagery may not be available. The
research done in [5] comes closer to this goaluthinothe use of template matching. In this
instance, a set of tree templates was created droay-traced, three-dimensional model based on
an image of a Norway spruce forest. The image \lgsed with the template, producing a
correlation image that could be scanned for locakima. This method produces good results as
long as most of the trees in the image match timplete reasonably well. This project also uses
template matching, but the templates can be pradueere quickly and easily, meaning that a
template can readily be created for each groupnofas-looking trees in an image. As a result,
this project can be used as a stand-alone progoalocate trees in a wide variety of images
containing multiple groups of groupwise-uniformese The only preparation needed is to place
the vegetation map data into the program in casesena vegetation map is necessary.

There does exist image analysis software that eafoqn template matching [2]. However,
these software packages would not be expectedtttrdie locations in georeferenced coordinates
nor assist the user by integrating vegetation mégrmnation into the image display. Finally, this
project has the ability to make tree placementedas vegetation map data alone in cases where
photographic imagery is not available.

3 Requirements

3.1 Functional Requirements

The functional requirements outline the necessarsnponents that allow for the user to
manipulate the view of the landscape, select canelittee templates, and refine the results of the
tree detection algorithm.

The utility shall allow the user to load a photqur image of a geographic area.

The utility shall allow the user to display the pdgraphic image.

The utility shall allow the user to zoom and sctb# image.

The utility shall load vegetation cover, vegetatigpe, and vegetation height maps if
available.

The utility shall display vegetation map informatifor user-specified locations.

The utility shall allow the user to display onetloé vegetation maps.

The utility shall allow the user to display onetloé vegetation maps on top of the image.
The utility shall allow the user to select imaggiogs to use as tree templates.

The utility shall allow the user to select one téatp as the active template.

. The utility shall allow the user to edit the actieenplate.

. The utility shall allow the user to associate a eatype, height, and width for each template.
. The utility shall allow the user to place templatgs groups.

. The utility shall allow the user to adjust tuningrameters for tree detection.

. The utility shall allow the user to filter the imatp produce a correlation image.

. The utility shall allow the user to display the i@ation image.

. The utility shall search the correlation imagetfees.

. The utility shall search only within the region mmtly in view.

. The utility shall place a mark at each location wehe tree is detected.

. The utility shall allow the user to place a treerkria any location

. The utility shall allow the user to mark any locatias the location of an artificial structure.

. The utility shall allow the user to delete any madm any location.

. The utility shall allow the user to save all dataiproject folder.

. The utility shall allow the user to load a projécm an existing project folder.

. The utility shall allow the user to output all itdatations to a file usable by VFIRE.

. The utility shall allow the user to create rougtetplacements based only on vegetation maps.
. The utility shall mark tree placements made basedeg map data.

. The utility shall allow the user to output map-bhsme placements to a file usable by

VFIRE.

3.2 Nonfunctional Requirements

The nonfunctional requirements reflect some ofgbals and constraints of the project, such as
the use of C++ for optimum speed and the directempntation of graphics display functions to
maintain total control over memory consumption, attis of concern when viewing very large
images.

1
2
3
4,
5.
6
7
8
9.
1

0.

The utility shall directly implement graphics teeate and manage templates.

The utility shall directly implement graphics tepiay, scroll, and zoom image.

The utility shall use bilinear interpolation to znanto and out of the image.

The utility shall swap correlation images to arahirdisk to match currently active template.
The utility shall use the brightness componentefitage for tree detection.

The utility shall perform contrast stretching oe torrelation image.

The utility shall be implemented on the Linux ptath.

The utility shall be written in C++.

The utility shall use GDAL to read image files.

The utility shall use FLTK for its GUI.

4 Use Cases

The operations commonly used in the -detection process are shown in Eg.The use cases
show that the user is given tflexibility to decide at runtime which geograplitages to analyz¢
which combination of images to view at any momant; which imag to use as the source 1
any tree placements that are made. The user creatmaplate k drawing a highlighting mar
over a particular tree. d€h template is given a name, as well as a nonhieght and width
These data areventually placed in the outpfile for every tree detected using that template.
user candetermine the approximate height and width eithgr Vvisual inspection of tt
photographidmage or by clicking on the image at the locatiéthe template to view data fro
the vegetation maps.

Item Placement Utility

Set Tuning Parameters
for Aclive Template
Filter Image Using
Active Template

Manually Add or
Delete ltem Marker

Load or Save@
Create or
Modify Template
Place Trees Using
Yegetation Maps

Cutput Item
Locations to File

Load Images

Select Image
to View

Scroll or Zoom Image

Click Image to Show
Yegelation Map Data

Lser

Select Active Template

Set Mame and Dala
for Active Template

Fig. 2: Use Cases.

Multiple templates can be created for a single guipjand the user can click on existing
template to seledt as the active temgte. Subsequently, the user can filter timage using thi
active template to produce a correlation image. §ystem then scans - correlation image fo

bright spots, corresponding to likely trees. Finalhe system places a mark at the location of each
tree detected. The user may then choose to haveuthent set of tree marks placed in an output
file and stop the process or make changes to inepito accuracy and repeat the process.

5 Classes

Although the goal of this project is complex from emage analysis perspective, most of the
data types used are fairly simple arrays of numbérerefore, only six classes are needed, and the
classes are completely independent with no inher#ta Fig. 3 shows the classes used in this
project.

Image Attribute Point [temRef temGroup Objectlo

Fig. 3: Classes Used by Utility

An instance of the Image class is used to storarthi@ image used in a tree-detection project.
This is generally expected to be a photographigeraf the area of interest, though other types of
images can be used as long as they possess thensstadata. In addition, the system also uses
three other instances of the Image class. Thedfrgtese is used to allow viewing of a vegetation
map (if any), the second of these is used to alliwing of the vegetation map simultaneously
with the photographic image, and the third of thissesed as a work space to hold temporary
image data. Image class objects contain the reatarfor the image as well as the georeferencing
data that associates each location in the image Mgt corresponding location on the Earth's
surface. The Image class also contains the infoomab let the display system know how to
display the image, such as the current scroll jwrsizoom level, and whether the display buffer
needs to be refreshed.

Instances of the Attribute class are used to stioeevegetation maps for the system. Each
vegetation map is stored as a raster of vegetatioles. The meaning of each code is stored in
data tables contained in each instance of the.ckmseach possible vegetation code, the data
tables give the associated display color. In addjtdata tables also translate vegetation codes int
information such as dominant vegetation type, paegge of vegetation cover, or vegetation
height, depending on which vegetation map file Alieibute instance is being used to store. The
display system is not designed to use objectseofttribute class. Therefore, vegetation maps are
not displayed directly. Instead, the pattern opldig colors associated with the raster of vegetatio
codes is scaled and copied to an object of the énatass, which is then displayed. The vegetation
map can be copied onto a blank Image object oe itdn mixed with photographic data already
present in the Image object to produce an overfajh® vegetation map over the photographic
image.

The Point class is used to keep track of indivigaigéls in an image. Each instance of the Point
class stores the horizontal and vertical locatiéracsingle pixel, as well as its three color
components. Multiple instances of the Point classused to form templates.

Each instance of the ItemRef class is used to storamage template. ItemRef is a container
class for objects of the Point class. Such cobegtiof Point objects constitute the image templates
that are used as filter masks to produce correlatimges which are then scanned for bright spots
corresponding to tree locations. ItemRef also dostéhe tuning parameters that govern which
bright spots in the correlation image qualify aef. These parameters determine how bright the
spot must be, how wide it must be, and how muchhiter it must be than the surrounding image.

ltemRef also stores information about the area ia/dy each template. When the user chooses
to filter an image, only the portion of the imagearently in view is filtered, allowing the user to
quickly test the accuracy of a newly created or Ipeailtered template without waiting for the
entire image to be processed. Finally, ltemRefest@ name, nominal height, and nominal width
to be associated with any tree detected usingpimdicular template.

IltemGroup is a container class for objects of teenRef class. The purpose of ItemGroup is to
allow templates to be placed into separate groopshich only one group is visible at a time.
This allows the user to decide which templates eodesponding tree marks will be visible
simultaneously with others and which ones will ibthe user wants a particular template and its
associated tree marks to be seen only by itsethout any others on the screen at the same time,
then this template should be placed into its owragate instance of ItemGroup.

ObjectlO is the class used to read and write thmarli tree-location files used by VFIRE.
Instances of the ObjectlO class are used to whigegeographic coordinates of each tree along
with its height, width, and type. All the informati is written in binary form to save disk space.
ObjectlO can also be used to read these data frielRE.

6 Program Subsystems

This project consists largely of global functiorasgher than class methods. The functions that
display images could have been included with thagenclass, but the current configuration is
very intuitive. A large collection of global funotis, together, constitute the graphics display
subsystem, and the graphics display subsystem cdata from a small, fixed number of Image
objects. The process of displaying images is dttbbgwvard and predictable in terms of which
operations will be performed on which class objetg. 4 shows the arrangement of subsystems.

==subsystem ==
GUl e

—<sutsystem== |

v

Algorithm
1o

Graphics ke---4 Template File I/O
R

==subsystem == <=<subsystemn == I ccsubsys(_|em>>

{global}
C++ GDAL FLTK

Fig. 4: System Structure

The File 1/0O subsystem consists of several funstitrat read and write the files used by the
system. Vegetation map files and GeoTIFF image e read by the system but never written.
Tree-location files are written by the system baver read. Project data files and correlation
image files are read and written by the system.T®d® files are usually photographic images,
and the File 1/0 subsystem relies on GDAL to rdzekeé files. GDAL has the ability to read and
write other types of _les, but this project curhgnses it only for GeoTIFF files.

The Template subsystem is a set of functions thawvahe user to create, edit, and manage the
templates used for tree detection. The user créameglates by using the mouse pointer to draw
highlighting marks on the desired portion of theaga. The Template subsystem keeps track of
which pixels have been highlighted, which templtdite pixel belongs to, and which group the
template belongs to. As shown in Fig. 4, the Tetepdabsystem relies on the graphics subsystem
to draw the marks. The Template subsystem alsoské®pdata in the active template current as
the zoom level or other view conditions change.

The Graphics subsystem includes all the functityas display images on screen. The Graphics
subsystem can only process objects of the Imags,céand to avoid running out of memory, this
project uses only four instances of the this clage first instance stores the original image. The
second stores the original image mixed with the@rcphttern of one of the vegetation maps. The
third stores the color pattern of the vegetatiom foy itself, and the third is a work space used for
temporary storage of correlation images and to stiew placements made using vegetation map
data alone. The Graphics subsystem is always si$jitay one of these Image objects. The object
being displayed at any particular time dependshencurrent view settings selected by the user.
The need to display highlighting marks for the téatgs adds complexity to the display
subsystem, and the need to display, at times, laegg images adds further complexity. However,
the Graphics subsystem always displays one ofailelfnage objects listed above.

The functions in the Algorithm subsystem use thailalle templates and user-controlled tuning
parameters to detect the locations of trees withénimage. This is done by filtering the image
with the active template to produce a correlatioage in which the brightness at any location
varies directly as the similarity between the pixéh the template and the pixels in the
corresponding neighborhood in the image. There naamy ways to calculate the correlation
values, but in this implementation, each pixellia torrelation image is calculated by taking the
average difference between the two sets of pixets subtracting this value from 255. Once the
correlation image is produced, it is scanned faghirspots and they are marked as likely trees
according to the current settings of the tuningap@aters

7 Implementation and Results

In this section, the software implementation o§tproject is presented. Examples are provided,
demonstrating the use of the currently implemeriéadures, and an explanation is given of the
major design and implementation issues. Possibtaads to optimize tree-detection accuracy are
considered, and several examples of tree-detectisults are provided. An exact, quantitative
analysis of tree-detection accuracy is not providechuse such results vary greatly among images
and may vary significantly even within a single gea Instead of numeric detection results,
screen shots are provided, showing the detectisultseobtained for portions of the panchromatic
image of Kyle Canyon, Nevada. The screen shotsategjorized to exemplify the good, adequate,
and poor accuracy regions of the image. Goodtesdre obtained in about fifteen percent of the
image, adequate results were obtained in abounepercent of the image, and poor results were
obtained in the remaining fifteen percent. Theseest shots are intended to indicate the level of
accuracy that can be expected for images of siméswlution depicting scenes similarly suited for
tree detection.

7.1 Detecting Trees

After loading a photographic image of thea of interest, the user idergi$i a group ¢similar-
looking trees and selects one of thel serve as the template for the rest. The tisem uses th
mouse to draw a highlighting mark over that patéicuree, covering all pixe intended foi
inclusion in the template. The tree to be seleatethe template is showr Fig. 5. The image ol
the let is zoomed in so that the individual tree can hsilg seer The tree, itself, is the lig-
colored blob in the center of the image. The shadéwhe tre is also visible. It is the dar
elongated shape pointing upward and to the lefnftioe tee. It is often helpful to include, in th
template, portions of the ground surrounding tlee or, as shown in Figs, the shadow of th
tree.

Fig. 5:Enlarged View of Tree Centered in Window and Zoormetwith it highlightec

The right image in Figh shows the image zoomed out to allow more of teka & be seen. Th
template can still be seen, highlighted in greéns lintended that tt system will search fc
similardooking trees and mark their locations. Once thaplate has been defed the user
activates the fiering process. The result of tfiltering processs a correlation image, as showr
Fig. 6. The image looks red because the correl image is monochrome and the data for i
stored in the fist available array in the Irge object being used as a temporary workspace.
second and third arrays (green blue) are used for intermediate processing of threetation
image. The bright spots ime correlation image cFig. 6 correspond to locations in the origil
image that loolsimilar to the template tree. Filtering the oridimaage to produce the correlati
imageis generally the most time consuming step in the-detection process.

Fig. 6: Correlation Image and Likely Trees MarkeiteA Processin

After creating the correlation image, the system begiasching for bright spots. places tree
markers in the locations of certain bright spotgocading to a set of us-adjusted tuning
parameters. Figp shows the placement of tree markers in the pt of the original image ne:¢
the template.

Once the tregetection process is satisfactorily completed,user outputs all tree a artificial
structure locations to a binafile that can be used as input for the VFIRE appticatTo save
space within the & and reduce the time it takes VFIRE to readfile, tree types are express
using an item code. The reference list of item sddeshown abo the list of existing template
so that the user can place the correct code fdr aaplat before geneting the placemeffile.
The user also has the option of letting the trge be selected by the vegetation type vegete
map. For example, if the user selects code 14, then, for each tree, code 14 will be mmlaby
whatever code matches thedtype in the vegetation map at the location of theticular tree
Each template is called m@eference because the system refers to the datheitemplate ti
determine what to search for.

7.2 Using Vegetation Ma

In addition to the photographimagery of the area of interest, the user can\dabse vegetatior
maps of the area. This project isrrently able to handle three different vegetatioaps. Thefirst
of these is the map showing vegetation cover. Eathx 5m surface celhas a code th
determines what percentage of the land in thatiselbvered by vegetatic The second type ¢
vegetation map is the vegetation type map. EachSbmeell has a cot specifying the dominar
vegetation species within that cell. The third tyferegetatin map is the vegetation height mi
Each 5m_5m cell has a code specifying the rangeee heights within the cell. Each of the
maps can be displayed by itself or as an overlag the photographic image of the arFig. 7
shows the vegetation typegetation map fc Kyle Canyon, and the vegetation map as an ove
on the panchromatic image.

The image overlay is intended to help the usereterine tree types. Simi-looking trees
found to exist on uniformly colored regions arelably the same pe of tree. Théree type itsel
can be determined by clicking anywhere in the negitegetation maps ¢ be used to make tre
placements even when no photographic image isabta

Fig. 7: Vegetation Map Alone and combined with Pigoaphic

7.3 Tree Detection Accuracy

When the system fails to mark the location of & tieis considered a false negative result, and
when it marks a location where no tree actuallystsxiit is considered a false positive result.
Ideally, the tuning parameters should be adjustedaiance each type of error so that both are
kept below the maximum acceptable limit. In pragtibowever, it may not be possible to keep
both types of errors within acceptable limits a¢ ttame time. A more generally applicable
procedure, therefore, is to adjust the tuning patams to put the number of false positives within
acceptable limits and then create a new templatiead with the remaining false negatives. Fig. 8
shows the same region depicted in Fig. 5 afteirttl@sion of a second template. As shown in the
image, the second template reduces the numbersef feegatives. The tree markers associated
with the second template are shown in a slightlghter red to indicate that they are associated
with the currently active template. This image dépthe adequate, though not exceptional, level
of accuracy found in about seventy percent of tige.

File [item | view | Filter | Help | + | -

Fig. 8: Likely Trees Marked After Processing withvd@ Templates

The second template takes advantage of the fabeiofy surrounded by shadow on all sides,
unlike the first template, which has shadow onlywa sides. The trees themselves both look like
light-gray blobs. It is the nearby shadows thatidggiish them from each other. The second
template will more easily detect trees that arelany surrounded by shadow. This is the reason
why some portion of the area surrounding a tredten included in the template. Including in the
template some portion of the immediate area arcartdee often produces darker perimeters
around bright spots corresponding to trees in tireetation image. As the template approaches
the edge of a tree during the filtering process,shadow in the template overlaps the tree in the
image and the shadow in the image overlaps theartrde template. This situation produces a low
correlation value, and it occurs mostly when thephate is at the edge of a tree, resulting in a
dark perimeter around the bright spot. As the temepbhpproaches the center of the tree, the
similar regions tend to coincide more, which pragiithe bright spot in the center.

Fig. 9 shows two of the areas where the treespgaeesl far enough from one another to show a
single light gray blob coupled with a clearly defihshadow. This is the best situation for tree
detection. When the trees are too close togetherblobs and shadows interfere with one another
and confuse the system. There are areas of thgeimvhere tree detection accuracy is unknown.
These are the regions entirely covered in shadow.

Fig. 9: Good Results in Area with Few Items to RicelFalse Positives.

8 Conclusions and Future Work

8.1 Conclusions

The purpose of this project is to develop an irtéva image analysis system for the detection of
trees in geographic images that may not be welédub tree detection. The system relies on the
judgment of the user to compensate for the lackoofstraints on the factors that determine the
suitability of any given automatic tree detectiolgoaithm. All factors involved in the tree
detection process are intended to be controllethéwser at runtime. Consistent with this goal is
the selection of a template matching algorithm Hicl the user is fully responsible for defining
the templates used in the detection process armthal parameters are controlled by the user as
well.

Interactive tree detection using this system igah&nd error process. Ideally, the user continues
this process until an acceptable level of accueatyeved, though there is no guarantee that such
accuracy will be attainable for any given image.

Using two templates, both referencing medium-sizeds in the panchromatic image of Kyle
Canyon, tree detection accuracy was found to bed docabout fifteen percent of the image,
acceptable in about seventy percent of the imag paor in the remaining fifteen percent of the
image. These results were accomplished in a fewshiogluding the time required to manually
delete trees incorrectly placed on top of houses @m roads. Relatively few such manual
corrections were necessary due to the great sgarchiouses and roads in the image. However,
manual correction would not be a practical solutionthe overall problem of the many false
positives occurring in less conspicuous areas. toted number of trees detected for the 8km x
6km Kyle Canyon area is well in excess of 100,00suming even a small percentage of these to
have been placed incorrectly would likely require inadvisable number of manual deletions.
Other methods of dealing with this problem are ulised later in this chapter.

8.2 Future Work

This project currently provides the user with thdity to delete false positives one at a time, but
there needs to be a way to delete large numbesaaif errors all at once. Such a tool would be
less precise, but it would be useful in areas whisgenumber false positives is much greater than
the number of correctly identified trees. Most likethis would be accomplished by letting the
user move the viewer to a particular region anah thasing all the tree markers within view. A

better alternative to large-scale deletions would tb allow the user to change the tuning

parameters from one region to the next. This woetgliire a restructuring of the data structures to
allow multiple sets of tuning parameters to be aisged with each template and to allow each set
of templates to be associated with a particularesgibn of the image.

Currently, this project is used mainly to deteeet and other vegetation. Ideally, it could have
been used in a more general capacity, to detecttygrey of item including but not limited to
vegetation. In particular, the ability to detectubes and buildings would be desirable.
Implementing such capability was investigated kattimplemented because the algorithm would
have to be very different from the one used foe tdetection. All the houses in the image look
very different from one another. In addition, theukes are often largely occluded by the
surrounding vegetation. For these reasons, temptattehing is not likely to be successful.
Instead, an edge-detection filter would need tayygied and an algorithm used to distinguish the
smooth, straight edges associated with artificimlctures from the rough irregular edges
associated with vegetation. Finally, a clusterimgodathm would need to be applied to try to
determine which edges belong to the same strucBueh an algorithm could be implemented in
this project and could be useful when analyzinggesacontaining large numbers of artificial
structures, provided those structures are notéalciat very close proximity to one another.

References

[1] T. Brandtberg, F. Walter. Automated delineatiohindividual tree crowns in high spatial
resolution aerial images by multiple-scale analy®lachine Vision and Applications, 11(2):64-
73, October 1998.

[2] C. Connolly. Latest developments in machingorisa review of image processing packages,
Sensor Review, 23(3):193-201, 2003.

[3] D.S. Culvenor. Tida: an algorithm for the delation of tree crowns in high spatial resolution
remotely sensed imagery, Computers & Geoscien&$):33-44, February 2002.

[4] K. Dralle, and M. Rudemo. Automatic estimatiof individual tree positions from aerial
photos, Canadian Journal of Forest Research, 27{28-1736, 1997.

[5] M. Larsen, Individual tree top position estinaat by template voting, In Proc. Of the Fourth
International Airborne Remote Sensing ConferenakExhibition / 28! Canadian Symposium on
Remote Sensing, volume 2, pages 83-90, Otawa, iOnfame 1999.

[6] F. Morsdorf, E. Meier, B. Ktz, K.I. Itten, M. @bbertin, and B. Allgwer, Lidar-based
geometric reconstruction of boreal type forest dsaat single tree level for forest and wildland
fire management, Remote Sensing of EnvironmenB8)8243-362, August 2004.

[71 M.A. Penick. Vfire: Virtual fire in realistic mvironments. Master's thesis, University of
Nevada Reno, Department of Computer Science anth&sring, Reno, NV 89557, May 2007.

[8] M.A. Penick, R.V. Hoang, F.C. Harris Jr., S.Mascalu, T.J. Brown, W.R. Sherman, and P.A.
McDonald. Managing data and computational compjefxit immersive wild-fire visualization, In
Proceedings of High Performance Computing SystétRCS07), 2007.

[9] D.A. Pouliot, D.J. King, F.W. Bell, and D.G. tBi Automated tree crown detection and
delineation in high-resolution digital camera imggef coniferous forest regeneration, Remote
Sensing of Environment, 82(2):322{334, October 2002

[10] M. Wulder, K.O. Niemann, and D.G. Goodenoudlmcal maximum filtering for the
extraction of tree locations and basal area fragh lspatial resolution imagery, Remote Sensing of
Environment, 73(1):103-114, July 2000.

