
 1 

 A Product-Line Architecture for Web Service-based Visual Composition of 
Web Applications 

 
 

Marcel Karam1   Sergiu Dascalu2  Haidar Safa1  Rami Santina1   Zeina Koteich1     
1American University in Beirut, Lebanon                                   2University of Nevada, Reno, USA  

   marcel.karam@aub.edu.lb                                                  dascalus@cse.unr.edu 
  

 
 

Abstract 
 

A web service-based web application (WSbWA) is a collection of web services or reusable proven 

software parts that can be discovered and invoked using standard Internet protocols. The use of these 

web services in the development process of WSbWAs can help overcome many problems of software use, 

deployment and evolution. Although the cost-effective software engineering of WSbWAs is potentially a 

very rewarding area, not much work has been done to accomplish short time to market conditions by 

viewing and dealing with WSbWAs as software products that can be derived from a common 

infrastructure and assets with a captured specific abstraction in the domain.  Both Product Line 

Engineering (PLE) and Agile Methods (AMs), albeit with different philosophies, are software engineering 

approaches that can significantly shorten the time to market and increase the quality of products. Using 

the PLE approach we built, at the domain engineering level, a WSbWA-specific lightweight product line 

architecture and combined it, at the application engineering level, with an Agile Method that uses a 

domain-specific visual language with direct manipulation and extraction capabilities of web services to 

perform customization and calibration of a product or WSBWA for a specific customer. To assess the 

effectiveness of our approach we designed and implemented a tool that we used to investigate the return 

on investment of the activities related to PLE and AMs. Details of our proposed approach, the related 

tool developed, and the experimental study performed are presented in this article together with a 

discussion of planned directions of future work.       

 



 2 

1.  Introduction 
A web service (WS) is a reusable, extensible, platform and language independent component that is 

used over web protocols [1, 3, 4]. Stock quotes, weather updates, and currency converters – to name only 

a few – are examples of web services (WSs). Interface and technical details that are related to used 

protocols, web services’ supported operations, and the packaging and exchanging of data, are described 

using the Web Services Description Language (WSDL) [1]. A WS, once published by a person or an 

organization, can be looked up from a services registry. Published and running WSs operations are bound 

to ports and run on hosts.  Creating a composite WS requires the integration of existing published WSs 

that are structured in a workflow-like fashion, using WS composition languages such as the Business 

Process Execution Language for Web Services (BPEL4WS) [4] which is an XML-based language used to 

define a set of service partnerships and structured invocation schemes. For example, a complete traveling 

WS could come from the structured collaboration of the following services: travel agent, airline, hotel, car 

rental, entertainment, and billing. A newly composed WS can be described using WSDL, registered, and 

invoked as a new WS. 

The task of engineering a web application, entirely or partially, from a set of WSs is considered 

crucial for an agile web application development process that, combined with the use of an appropriate 

reference architecture, can help overcome many problems of software use, deployment, and evolution. In 

this direction, the work in [3] relates product line models with WSs development. In the same direction, 

the work in [5] proposes an approach to integrate heterogeneous services developed under a service 

product lines using XML technologies, whereas the work in [6] presents a lightweight product line model 

with specific variability information to support the composition of WSs. With regard to web applications 

in general, very little work has been carried out in viewing such applications as software product-line. For 

example, in [7], the authors advocate the use of a lightweight product line as a suitable agile approach [8] 

for building web applications and improving the evolution of these systems. In [9] a specialized 

architecture, OOHDM-Java2 (a model-view-controller architectural extension) was introduced to develop 

web applications; however, since commonalities are very general in web applications, the system family 



 3 

defined by OOHDM-Java2 is representative to a certain extent for the whole class of possible web 

applications. The work in [10] describes a product-line architecture for web applications that are obtained as 

the result of the composition of reusable components that carry suitable variability determination mechanisms 

which are assembled directly into the components, and thus allow for products to be instantiated and managed 

with a higher degree of flexibility by means of a domain-specific language [11].  

A related research direction in service-based web applications emphasizes the creation of effective 

tools to describe and co-ordinate the composition of WSs. For example, the work in [12] led to a generic 

visual flow language for coordinating software components with a development tool tailored for WS 

composition where dataflow, execution sequence, and fault handling can be specified with a simple visual 

syntax. In [13], a domain-specific visual language was developed to support modeling complex 

interactions between WS components. A common drawback in these visual languages and environments 

is that they do not provide a reference and flexible infrastructure with reusable assets; rather, they operate 

at the visual code level, thus providing some agility measures for the orchestration of composed WSs.  

In a separate but related direction of work, that of desktop applications, Ito and Tanaka [14] describe 

a  tool that “wraps” parts of existing web applications that can be considered as WSs, and plug them onto 

a desktop application using the Intelligent Pad Architecture (IPA). The work in [15] extends the IPA to 

allow users to clip elements from existing applications and form cells on a spreadsheet, connect these 

cells using formulas, and clone the cells to provide the mechanism of handling multiple parallel requests.  

Despite the fact that the use of WSs in web applications is a key factor in an agile web application 

development process, we could not find reports on a product line infrastructure that is combined with an 

integrated development visual environment to develop, with agility, these special kinds of applications 

that depend to a great extent on WSs.  The work we present in this article is rooted in the body of some of 

the aforementioned related work. In particular, we used the lightweight product line model proposed in 

[6] and extended it to support a domain-specific visual language and environment at the application 

engineering level thus allowing us to perform agile calibration and customization of WSbWAs. At the 

domain engineering level, our approach includes the identification of commonalities and variability of 



 4 

WSs in WSbWAs domain as well as the construction of a Model View Workflow (MVWf)-based 

framework that is instantiated to identify a specific product or WSbWA. At the application level, our 

approach supports agile methods, in particular by relying on a domain-specific visual language and 

environment with innovative extraction capabilities of WSs directly from web sites that are “imported” 

into our visual environment. This speeds up the development process by facilitating the composition and 

customization (or calibration) of a product or WSbWA for a specific customer.   

There are considerable advantages to our combinatorial approach, and these advantages can be 

divided into three groups, as described next. The first group of advantages is related, at the domain 

engineering level, to the use of a flexible architecture modeled as an interrelated component hierarchy 

consisting of Page, Workflow, WSs (single and composite), Model, and View components and based on 

two high-level design grounds, the Model-View-Controller (MVC) design pattern [16, 17] and the 

workflow paradigm [18, 19]. At the application level, web engineers must extend these components to 

instantiate a WSbWA. In this way, reuse of components (pages, workflow, and WSs) is ensured and our 

product line domain engineering phase remains more or less the same as that of its conventional 

counterpart [6].  The second group is related to the product line application engineering level. In essence, 

the constructed architectural framework at the domain engineering level is augmented with a powerful 

graphical interface environment that allows a web engineer to visually construct WSbWAs and manage 

their dependencies as workflows in web pages. For example, given a specific business logic and user 

requirements, a web engineer can use the provided visual environment and domain specific visual syntax 

to perform agile creation, calibration, and variant bindings of WSs (with built-in variability handling 

mechanisms) and their workflows in a webpage. WSs are represented in the visual environment as visual 

WebPads constructs. More on these WebPads can be found in Section 2. Our approach, which allows to 

create and bind variant points of a WS in a workflow of a webpage in a WSbWA, relies on the ability of 

the web engineer to: (1) import a web page into the visual environment; (2) visually configure the 

WebPad’s variant information: input/output, exceptional handling, predetermined alias configuration in 

case the WS fails, and WS discovery for dynamically discovering and invoking a WS; and (3) visually 



 5 

assemble in a workflow-like these WebPads with their views and controls.  The third group of benefits is 

related to the overall “intuitive” nature of the approach for developing WSbWAs, which provides the 

compelling benefits of reducing the time, effort, and overall complexity involved in re-engineering these 

services. Furthermore, wrapping WSs as components with variant specifications in web applications also 

reduces the maintenance and upgrading involved in having such service integrated in one’s own web 

application, since it is provided as an “off-the-shelf” service. 

This article describes our approach that takes advantage of the factors mentioned above and combines 

a lightweight product line engineering method with agile techniques that are provided at the application 

level using a visual tool and environment we call VisualWebC (short for Visual Web Composition) to 

support the visual composition of WSs. The remainder of this article is organized as follows: Section 2 

describes our WSbWA-specific Product Line Architecture (PLA), its architectural component hierarchy, 

and the WebPad component and its variants; Section 3 describes our prototype (VisualWebC) and its 

visual authoring support for WSs; Section 4 presents a case study that was conducted to evaluate our 

approach; Section 5 presents a discussion regarding our overall approach; and Section 6 rounds up the 

article with pointers to future work and several concluding remarks.  

2.  A WSbWA-Specific Product Line Architecture 

One defining characteristic of Product Line Engineering (PLE) is represented by a key dual software 

process, consisting of domain engineering, which establishes and realizes the commonality and the 

variability of the product line and a supporting reference architecture construction, and application 

engineering, which draws on the strengths of the product line and builds software applications that reuse 

common domain artifacts while also ensuring that required product variability is satisfied [20, 21, 22].  In 

this section we explain our design approach to a lightweight PLE, in particular the architectural 

component hierarchy of the WSbWA-specific PLA as well as the WebPad’s architecture and the issues 

related to the implementation of its variants. 

 



 6 

2.1 MVWf Architectural Component Hierarchy 

Calling different software pieces or WSs at run-time to accomplish the functionality specified in the 

requirements of a business process adds great flexibility in the development and maintenance of 

WSbWAs, and shortens their time to market. Since these WSbWAs are expected to be used in similar 

environments to fulfill similar tasks, it is appropriate to design them as members of a product family [6]. 

One way to achieve this is to create a “web services-oriented” reference architecture that is based on an 

architectural paradigm with adequate flexibility to support the creation of business processes as 

workflows containing a set of simple and/or composed WSs, thus facilitating workflow and WSs 

development and reuse. This architecture should help developers maintain the state of each business 

process or workflow to create a system that is easier to maintain and augment. Finally, the architecture 

should also benefit from mature testing methodologies that can be applied to each workflow separately, 

resulting in higher quality and re-usable workflows and their WSs.  

As previously mentioned, to facilitate the development, maintenance, and evolution of WSbWAs we 

modified, as depicted in Figure 1, the lightweight PLE model that was originally proposed in [6] to 

support the construction of a reference WSbWA-PLA that is based on two major design concepts, the 

MVC pattern and the workflow paradigm. Many commercial and research frameworks such as Ruby on 

Rails [23] and Struts [24] support a combination flavor of these paradigms. The MVC development 

approach is based, in general, on the MVC design pattern. In this pattern, the Model component 

encapsulates data manipulation, extraction, and storage procedures. The View component handles the 

data and user interface rendering. The Controller component implements the flow of control in the 

application by decoding the events generated by the View and invoking the appropriate Model operations. 

In general, MVC-based frameworks build on the idea of having one global controller for all pages in an 

application.  With the workflow paradigm, the development approach represents a business process as a 

workflow that maintains its state and uses the current state along with the received event to direct the flow 

of control within the application. 



 7 

 

Figure 1 – The lightweight Product Line model adapted from [6] and extended to support our approach. 

The workflow and MVC paradigms can be combined to create a Model-View-Workflow (MVWf) 

paradigm [19] in which one controller exists for each procedural component (traditionally referred to as a 

set of related pages). In the MVWf framework, the workflow’s graph consists of a set of action (Model) 

and result (View) nodes. The action nodes access and modify the Model in the MVC pattern whereas the 

result nodes are the Views in the MVC pattern that are rendered by the browser. In this context, the 

workflow engine embeds the Controller of the procedural component that now behaves as a separate 

mini-application. For reuse purposes and to keep workflows confined in one webpage, our PLA takes 

advantage of the MVWf paradigm to further restrict a business process to a single page thus allowing 

several business processes or workflows to exist within that page. As such, a web page becomes simply 

the rendering engine of the workflows, containing, among other things, a set of related simple or 

composed WSs that reside within the page. As shown in Figure 2, the PLA of VisualWebC is mainly 

based on a five-component hierarchy or layer: Page, Workflow, Model (Action), View, and 

Behavior&Layout. For the sake of simplicity, in Figure 2 we refer to each component in this hierarchy as: 



 8 

p, wf, m, v, and b&l, respectively.  Developing a web page with a set of workflow processes in a WSbWA 

involves the instantiation and interaction of all components in the hierarchy depicted in Figure 2. More 

formally, a web page Ψ in a WSbWA developed using a framework implementing our VisualWebC’s 

MVWf paradigm is denoted Φ(WSbWA) = WF = {wf1, wf2, ..., wfn}, where each wfi !  WF is a workflow 

process that is used to develop Ψ and is associated with two sets of components: Views V = {v1, v2, ..., vn} 

and Models M = {m1, m2, ..., mn}. The Behavior&Layout component delimits the specifications and 

behavioral constraints of all fields present within a View component. As such, a View component 

becomes a collection of fields (stored in forms), the behavioral definitions of which being stored within 

the appropriate Behavior&Layout component layers. 

 

Figure 2 — Abstract component hierarchy of VisualWebC. 

As depicted in Figure 2, a WSbWA can be viewed as an association of pages, their workflows, and 

their WS components (the latter as a library of stored WebPads in workflows). In particular, WSbWA is a 

product consisting of a number of pages, each of which containing a number of workflows that collect 

contents dynamically provided by the selected WS components. The WS components in a workflow are 

designed to capture both the commonalities and variabilities of a class of behavior in an application 

domain. A WS component is a bound component as soon as some of its variant methods are selected in 



 9 

the product. As previously mentioned, WS components are represented in our visual environment as 

WebPads.  Variant points for our WebPads, as we shall see in Section 2.2, can be visually resolved, and 

include:  WS selection, WS input and output data, WS aliases, exception handling, and quality factors. 

Unlike in typical WS composition, in our approach the variability determination and management 

capabilities can be visually accomplished during the product instantiation phase using the visual 

environment and the direct extraction capabilities of WebPads as WSs from imported web pages. This is 

one of the major contributions of our approach. We next explain the design and implementation of a 

WebPad. 

2.2  The WebPad Component 
 

To provide a way to visually configure and assemble readily available and tested WSs into a 

WSbWA, we modified the desktop-based Intelligent Pad Architecture presented in [14] to create a 

generic component, called WebPad, with variants that the web engineer needs to bind during the 

configuration of a WebPad in a workflow representing a business process. Possible values for these 

variants are:  

• WS selection — the URL address of the webpage from which a WS is chosen; 

• WS input and output data — the XPaths in the DOM representation of the webpage containing the 

input and output of the WS;  

• Exception handling — the URL to display or page/view to load when exceptions are encountered 

as a result of an unknown problem; 

• Quality factors — a preference WS that has been statistically proven in terms of speed and 

reliability; 

• WS aliases — all the above information is required to be bound to replace a failed WS at run-time, 

thus making a WSbWA more resilient to future changes and failure. In essence, to deal with the 

possibility of having failed remote services, the web developer is asked to specify one or more 

aliases for a remote service in a WebPad. The alias is a website (URL and input-output object and 



 10 

their XPaths) that provides a similar functionality as the original remote component. The developer 

can specify as many aliases as needed in an effort to reduce the number of possible “error” 

occurrences.  

WebPads are designed to interact with each other only through input and output ports. Data coming 

into a WebPad port can be directly or indirectly sourced from a user’s input or another WebPad. Much of 

our implementation of the WebPad architecture relies on the Document Object Model (DOM) [25], which 

is an application programming interface (API) for HTML and XML documents that structures the content 

of a document as a tree. DOM-based techniques include identification of objects within HTML 

documents and the browser’s API ability to reference the components, manipulate their content, and 

trigger their associated methods.  To assign the XPath of an input object or an output object of a WS from 

an imported webpage to a WebPad, the authoring environment of VisualWebC first extracts the DOM 

representation of the imported webpage then uses it to create a transparent and interactive layer on top of 

the imported webpage to allow a web engineer to select input and output objects, extract their XPath, and 

assign those XPaths to the WebPad. The assignment of the XPaths to the input and output object can be 

done by lassoing the input or output object and associating it to an input or output WebPad port, 

respectively.  

The run-time environment of a WebPad is implemented as a Dynamic Link Library (DLL) that 

encapsulates its information in a workflow and ensures that a WS is triggered and results are generated. 

The run-time environment takes the input that triggers a specific workflow, along with the URL address 

of a certain website and returns the output as specified by the user. To process the input of the user when 

WS is triggered in a workflow, the DLL creates a thread t to: (1) retrieve the URL of the webpage 

containing the WS and opens the webpage contents; (2) access the DOM tree representation of the 

website and check if the XPath specified for an input object X (in the WebPad) is isomorphic to that of 

the webpage; and (3) generate an assignment statement such as: Set X.text = local_textBox.text (where 

local_textBox is a textbox in which the user enters data); append the DOM tree with new value of X; and 

generate a ‘submit’ action to submit the form on the webpage.  In case the page fails to open successfully, 



 11 

then t forks a process to repeat, using the bound alias variants, the three steps described above. In case an 

alias fails or is not specified, an error page is displayed.  To retrieve the output of a called WS and display 

the result in the WSbWA, a thread t is created to: (1) retrieve the XPath of the output, or the regular 

expression of the XPath, and wait until the page containing the WS is loaded or until the output specified 

by the XPath is ready; (2) retrieve the data of the objects specified by the XPath, and generate assignment 

statements such as Set local_outputBox.text = retrieved text; and (3) close the connection to the website 

and update the local page/view. In case an error occurs while loading the page, an error page is displayed.  

This design solution ensures that the code responsible for connecting to remote web applications will 

be reused for each application, which in turn reduces the overhead of regenerating this code for every 

WebPad. While this design solution ensures accurate invocation of various WSs, it does however create 

an overhead since every WebPad in a workflow that requires that its input comes from a WS has to wait. 

This delay is due to the time needed to process each web request at the remote server. Additional WebPad 

variants such as automatic discovery of a WS can be added to our variant implementation since it 

provides a way to improve the chances of the survival of a composed WS (in case of a failure). The 

variant points in this case should be associated with the WS static lookup and dynamic discovery using 

WSDL and services registry, respectively. WS publishing and dynamic discovery techniques are very 

promising XML-based technologies and we expect that they will neither be complicated to integrate into 

our PLA nor difficult to provide visual representations for their variant binding process at the visual 

environment level. This is in fact part of our ongoing enhancement of VisualWebC’s WS discovery. 

At the page and workflow levels of the architecture presented in Figure 2 other component variants 

can also be defined. These variants at the workflow level can be considered as the orchestration model of 

the overall workflow, while at the page level variants can be defined in terms of any “variable” that a 

page can use and process. 



 12 

2.2.1 WebPad Variants and Their Implementation Issues 

We describe next implementation issues pertaining to two WebPad variants: input and output and 

aliases types which are used to handle different kinds of inputs and outputs to cover a large portion of the 

possible components that need to be taken from a WS. We next explain each of them:   

Types of Inputs and Outputs — we have devised a method for extracting the output of a remote 

functionality (service) as a list of results. A good example to illustrate this feature is a search engine 

where the user needs to specify all the results as output in order to display all of them on his or her 

webpage. Thus, in order to reduce the overhead, we provided the user with the facility to retrieve the list 

of results by specifying the output of the component as of type “list” and giving the user the option to 

wrap only the first two results and specify as “sub-variant” the number of results that need to be wrapped 

for the output display. Our implementation internally applies a string-matching algorithm to retrieve the 

difference in the HTML paths of the results, uses this difference to compute the HTML path of the 

remaining results in the list, and addresses the remote elements with the computed HTML paths. 

Currently, our prototype handles several types of inputs and outputs. An input/output can be almost any 

element of a website, including a text field, text area, label, button, and so forth. However, unsupported 

elements can be very easily integrated, as most inherit from an abstract GUI class. 

Aliases — the generation of an alias is partially automatic to assist the developer and eliminate the 

overhead of linking, creating, and re-initializing the alias as the original. As we have noticed in our 

experimentation with the framework, this approach minimizes the errors that might occur during the re-

initialization process. 

3.  Visual Authoring Support for Web Services 

According to the Agile Manifesto [26] it is of highest priority to satisfy customers with early and 

continuous delivery of valuable software. Key concepts in agile methods to quickly develop running 

software and reduce time to market are short, time-boxed iterations, short feedback cycles within the 

development team and with the customer, continuous integration, and automated regression tests. Our 



 13 

visual environment in VisualWebC implements a visual code-centric approach that provides time-boxed 

iterations with short feedback cycles that allows a web engineer to quickly assemble a WSbWA and 

observe some feedback.  

To better understand our visual environment and consequently facilitate the discussion of our 

innovative method to visual composition of WSs, we next introduce some of the visual syntax and 

constructs and describe the main interface areas of VisualWebC. Then, we describe using an example the 

visual composition of WSs.  

3.1  Visual Syntax and User Interface  

VisualWebC has several visual key constructs and features that help the user rapidly develop a 

WSbWA.  The visual constructs shown in Figure 3 are some of the building blocks currently available in 

the environment. They represent, from left to right: the WebPad, which is used to construct simple WSs; 

the MultiTaskWebPad, which is used to represent a service that requires more then one phase to provide 

the input to a WS; the ComposedWebService WebPad, which is used to wrap many other WebPads and 

create complex WSs; a conditional operator, which is used to define conditional dependencies in a 

workflow between various visual constructs; an output GUI element table (other GUI elements are also 

available); and a connector, which is used to connect visual constructs and define their dependency 

relationships. Circles on the left and right sides of these visual constructs represent the data input and 

output ports, respectively. 

 

Figure 3 — A Subset of the visual constructs in VisualWebC. 

The example we use to illustrate the main interface areas and capabilities of VisualWebC involves a 

set of requirements that are given to a web engineer by an investor who wants to monitor from his or her 

web application stock quotes of some US companies in Japanese yen. For the sake of brevity, we will 

simply refer to this example hereafter as the “running example”. Based on these requirements, the web 



 14 

engineer, after importing and browsing a couple of financial sites, realizes that: (1) Quote.com provides 

real-time stock-price browsing service of US companies in US dollars; and (2) Yahoo.finance.com 

provides a service that converts US dollars into Japanese yen based on the current exchange rate.      

As depicted in Figure 4, VisualWebC has four major interface areas that have been annotated with 

circled letters A, B, C, and D. The interface area A is a tabbed web browser that allows the web engineer 

to import and navigate many web sites looking for a particular WS that satisfies part of the requirements. 

For example, in Figure 4 area A shows two tabbed web sites: one for new.quote.com and the other for 

yahoo.financial.com. Once a website’s webpage is imported into a tab and a WS of interest is found the 

webpage’s DOM is extracted and used to build a transparent layer that is superimposed on the imported 

webpage. This transparent layer allows the developer to lasso a point of interest (input or output of WS) 

and assign it to the input or output of a WebPad, respectively.   

 

 

Figure 4 — A Sample project showing the composed currency exchange web service. 

 



 15 

The interface area B is a double-layered tab structure that contains, for each page file in the Pages tree 

structure of interface area D, four associated tabs: Look&feel, Workflows, Code, and Preview. The 

Look&feel tab is where the user can visually arrange on a canvas the GUI components of a web page and 

its WSs elements. The Workflow tab is where the developer visually composes single or complex WSs. 

For example, the composition process of a simple WS involves the creation of a workflow that comprises 

a set of interconnected WebPads. To create a WebPad, the user right clicks in the Workflow tab and 

chooses to add a new WebPad or simply drag and drop it (from the toolbar) into the Workflow tab. Once 

a WebPad is created the user can then proceed to visually configure its variants. Variant points such as the 

input and/or output can be first determined either from interface area A by choosing their appropriate 

paths from the DOM representation of the designated webpage or from the output of another WebPad. 

For example, in our running example the developer locates the quote.com website, chooses the input and 

then assigns it to the WebPad labeled “Quote–WP1”. The assignment is performed by connecting the 

input port of Quote-WP1 to a GUI input element Textbox1 that now represents the path p in the DOM of 

quote.com. The developer then connects the output of Quote-WP1 to the input port of another WebPad, 

labeled “YahooCurrency–WP2”. To satisfy the client’s requirements, the developer then locates the 

yahoo.com website, chooses the output, and then assigns it to the output GUI element Table1. Both the 

input and output (Textbox1 and Table1) will then be automatically generated in the Look&feel tab of the 

interface area B. The conditional constructs between the various components in Figure 4 are designed to 

satisfy certain constrains in the requirements. For example, the data between the input box and WP1 is 

checked to see if it satisfies a certain format condition that is required as the input to the next visual 

construct. The Code tab provides a conventional text editor for the webpage. The Preview tab is where the 

user can view the result of the composition and experiment with it.   

     The interface area C is a tow-tabbed structure that contains the GUI elements in the look & feel tab 

and WebPad properties in the WebPad Properties tab. The GUI Elements, as the name indicates, gives the 

user access to GUI elements such as textboxes, tables, labels, and buttons that can be dragged and 

dropped into the Look&feel tab of interface area B. The WebPad Properties tab allows the user to 



 16 

instantiate a WebPad, define some of its variant points, and drag and drop it into the Workflows tab of 

interface area B.   

Different types of dependencies can exist between the WebPads that we are wrapping from different 

web applications. Some WebPads might depend on an input from a local component while some other 

might depend on an output from another WebPad. Let us consider in Figure 4 Quote-WP1 of 

www.quote.com, and, YahooCurrency–WP2 of finance.yahoo.com/currency. Quote–WP1 depends on an 

input from a GUI component (Textbox1) and YahooCurrency-WP2 depends on the output of Quote-WP1. 

Such dependencies are usually hard to track in a non visual compositing approach. However, our 

VisualWebC’s representation of the links between components in a workflow gives the user the ability to 

visualize the dependencies and ensure at run time that if an error occurred (e.g., within YahooCurrency-

WP2) its dependencies can be easily tracked and fixed.  This solution also leads to several other benefits, 

including: (1) visualizing the flow of information between different elements in different websites; (2) 

identifying problems in case of data flow errors or dependency failures; (3) tracking the effect of changes 

in the format of data; and (4) providing the user with a way to easily add new functionalities, given that 

input/output dependencies and their types are available. 

Generated pages and views are rendered according to a very simple design strategy that displays their 

elements in an ordered manner. To enhance and enrich our experimental studies, we provided the users 

with a way of importing an existing page (HTML or ASP), loading it into our system, and using it when 

generating the web application. When a page containing design elements is imported our environment 

uses the page’s DOM representation to first identify its different elements (textboxes, buttons, etc.) and 

then redefine their spatial relationships with existing elements. Imported pages do not affect the model of 

the website that is generated; they may change only the display of the elements.  

3.2  Agility and Visual Composition of Workflows and Web Services 

Our approach in VisualWebC leverages the modularity of our WSbWA-specific PLA and its 

underlying MVWf paradigm to provide a visual environment and syntax for creating, manipulating and 



 17 

reusing – with notable agility – pages, their workflows, and the workflows’ associated WSs to instantiate 

products or WSbWAs. From this perspective, the framework can be seen as a black box-like architecture 

that allows web engineers to use agile techniques in the visual creation and calibration of WSbWAs. In 

the context of our running example, we describe next the interactions between the visual constructs at the 

visual coding level as well as the WSbWA-specific PLA components. The example is deliberately kept 

simple to facilitate the overall discussion and illustrate agility in visual composition, component reuse, 

and collaborative aspects of our WSbWA-based PLA. 

 
 

Figure 5 — The visual syntax and workflow graph of the currency exchange example. 

 
In our running example, the web engineer implements the requirements with only one business 

process or workflow within one page, index.asp, which is a container comprising one workflow 

component that runs independently within the page. In the Workflows tab, the web engineer right clicks 

and instantiates a workflow component or WF1 then assembles its elements and binds their variants. The 

visual syntax satisfying the requirements of our running example as well as the syntax’s conceptual 

workflow graph are depicted in Figure 5.  In the workflow graph, the node labeled V1 represents the state 

of the “textbox” before a new event is generated by an “enter” action that creates a transition from node 

V1 to node M1 where some conditional action is performed on the data coming from V1 or the output port 

of the “textbox”. The conditional action results in two possible transitions, true and false, one to M2 or the 

input port of Quote-WP1, and the other to node V2. A conditional action is also performed on the data 



 18 

coming out of node M2 or the output port of Quote-WP1 which results in two possible transitions, true and 

false, one to node M3 or the input port of YahooCurrency-WP2, and the other to node V3. Finally, the data 

from M3 or the output port of YahooCurrency-WP2 is passed to the Table T.  Since each workflow 

maintains its own state, workflow reuse is possible and the state of a page becomes the collective state of 

its workflows. A workflow appears to a user as one of its View nodes where the workflow is pending. 

The page then appears to the user as a collection of pending states – the nodes where the page’s 

workflows are pending. The events that can be triggered in a View node are those attached to the GUI 

element within this node. The events attached to each GUI element are defined within the 

Layout&Behavior component of the GUI element. In our running example, after entering the data into the 

text box, the user can trigger a “pass data” event (by pressing the Enter key) and move to the first 

conditional action. The same principle applies to all node and link definitions within the workflow.  

The View component groups the GUI elements used within a business process so that a browser can 

render them based on the specifications in their GUI Layout&Behavior components. In our running 

example, the web engineer instantiates a View component called V1. The grouping of GUI elements 

manifests itself as a set of GUI elements belonging to the same HTML form in a page. A View 

component (text box or table in our running example) consists of the visible entities that the user interacts 

with as part of a business process. The Model component embodies an activity that manipulates the web 

application’s data. It implements functional procedures over the application’s data model or performs 

operations in the context of the application. To perform its function, the model component can access the 

data model content and the GUI elements presented to the user through the web browser. The 

Layout&Behavior component defines both the layout (markup) and behavioral specifications of the field. 

The markup specifications define how the data in a GUI element is rendered in the web page. The 

behavioral specifications define how a GUI component behaves in the web page. They also define the 

events triggered during a user’s interaction with the GUI component.  

To specify possible events that might be used for transitioning between Views and between Models at 

the visual syntax level, the developer is given a straightforward selection facility to choose the element 



 19 

that triggers the transition (e.g., “on-text-changed”, “on-failure-of-remote-data”, “on-button-click”, etc.). 

These events are then identified as XML tags in the GUI layout and Behavior XML files. 

4.  Case Study and Lessons Learned 
 
    To obtain meaningful information about the effectiveness of our approach in: (1) providing a 

reasonable amount of agility in the visual composition and management of WSs compared with the more 

traditional XML-based orchestration languages for composing and managing WSs; and (2) reusing WSs 

and workflows to satisfy new requirements, we conducted a short study with two scenarios. The first 

scenario required web engineers to deliver five products, each of which containing a certain number of 

workflows and their appropriate web services. The second scenario required these web engineers to 

handle requirements changes in of these products. We next describe the design setup, results, and lessons 

learned. 

4.1  Experimental Design and Setup  

     In setting up the design of our case study, we asked a group of graduate students who are not familiar 

with the ongoing study to build, using the .NET Framework©, seven web applications and place them on 

different web servers in our lab. The Service Provider (SP) number, name, and the description of the 

services it offers, as well as the WS number are shown in the header of Table 1.  

The SP names are used for illustrative purposes and are not part of any online application. The SP number 

and WS number in the first and, respectively, third column of the table are used to facilitate further 

referencing. 

The graduate students were then asked to assemble the components in column 2 of Table 2 to create a 

framework to describe, register, and publish the WSs shown in column 2 of Table 1. The framework’s 

full components and their technological specifications are shown in Table 2.  We next assembled two 

groups of five teams, each of which containing one graduate student and one senior undergraduate 

student. The graduate students were chosen after completing a term project in a graduate course that 

focused on the creation and management of substantial MVWf-based web applications. The senior 



 20 

undergraduate students were a mix of intermediate and advanced programmers. As part of our training 

sessions, we trained the first group (the VGroup) on how to use VisualWebC, and provided a thorough 

understanding of its MVWf architectural model and visual syntax and environment. We then trained the 

second group (the TGroup) on only the MVWf architectural model of VisualWebC, leaving out its visual 

syntax and environment. We also provided training for the TGroup on the use of the WS composition 

language BPEL4WS [4]. Each team of pair programmers across the two groups can be considered 

advanced developers of web environments and proficient in related scripting languages, especially in 

HTML, XML, ASP, and PHP. 

Table 1 – The WSs offered by the service provider’s web sites. 
 

SP# Service Provider (SP) 
name 

WS 
number 

WSs Description 

    
(WS1) Get Driving Abstract  SP1 Department of Motor 

Vehicle (WS2) Validate Address Info 
(WS3) Get Credit Report    SP2 Credit Bureau  
(WS4) Validate SSN             

SP3  Security Services  (WS5) Get Security Clearance    
(WS6) Get Citizenship Status    
(WS7) Get Work Permit Status   

SP4 Immigration Services 

(WS8) Validate SSN             
(WS9) Book a Car SP5 Car Rental 
(WS10) Return a Car 
(WS11) Book a Room 
(WS12) Check In  

SP6 Hotel 

(WS13) Check Out 
(WS14) Get 24 hour-update SP7 Weather 
(WS15) Get 5-day-update 

 

Table 2 – The WS Framework for describing, registering and publishing WSs. 
 

Average Time/requirements change Average successful requirements change 
  
Java SDK and Runtime environment Sun Java 2 SDK 1.4.0_02 
Application Server Sun Java Enterprise edition (J2EE) 1.3.1 
Transport Facility that Processes SOAP Messages Apache Tomcat 4.1.31 
XML Parser Apache Axis 1.2 RC 1 
Build Tool Apache Ant 1.6.5 – Apache Xerces-J 2.5.0 
Framework for Accessing UDDI within Java UDDI4J 2.0.4 
Database Engine MySQL 4 
UDDI Registry jUDDI 0.9.4 



 21 

 

 

Scenario 1 — Agility and the Visual Syntax.  In this scenario, each team in both the VGroup and the 

TGroup were asked to deliver five products. Each product consisted of a set of workflows, each of which 

containing a combination of the WSs depicted in Table 1.  The number of workflows and their number of 

web services for each product are shown in Table 3. In total, there were 17 workflows and 54 WSs. 

Table 3 – The number of workflows and their web services in each product. 
 

Product # Number of 
workflows 

Number of web services in 
each product 

   
Product 1  3 12 
Product 2 5 14 
Product 3 2 7 
Product 4 3 11 
Product 5 4 10 

 

 One product example is a web application for a head hunter (or Product 1 in Table 3) that requires 

accessing certain records from various web sites to determine a potential employee’s credentials. The 

requirements for this product example asked that the product consists of three simple web pages, each of 

which providing the headhunter with a different business process. Table 4 summarizes the requirements 

for the headhunter product example (Product 1) by detailing the business processes (workflows and their 

required WSs) for each of the three web pages involved.   

Table 4 – The requirements for the headhunter product example in Scenario 1. 
 

Page1/Workflow 1 Page2/Workflow 2 Page3/Workflow 3 
   
WS3,WS4(SP2), 
WS5, and WS7, 

WS4(SP2), WS6, and 
WS7 

WS1,WS3, WS4(SP2), 
WS6, and WS7 

 

Every team in the VGroup was asked to deliver the five products using VisualWebC; whereas, every 

team in the TGroup was asked to use the underlying MVWf architectural framework of VisualWebC (but 

not its visual environment) to deliver the products using the traditional code-based approach. 



 22 

     For each team in each group, we recorded for each product: (1) the time it took a team to finish a 

workflow successfully; and (2) the number of successful workflows.  We then calculated for each team in 

each group the average time and successful workflows across the total number of products. Table 5 and 

Table 6 show the average time and the average success for each workflow across all products for both the 

VGroup and TGroup. 

As shown in Tables 5 and 6, it was noted that all five teams in the VGroup had a remarkable time 

advantage over the teams in the TGroup. Although the workflows in this scenario were straightforward, 

the agility that was exhibited in the creation and calibration of the workflows and their WebPads by the 

VGroup was noteworthy. 

Table 5 – Average time and average successful workflows across the delivered products  
for each team in the VGroup. 

 
 
VGroup 

Average time/ 
workflow across all 
products [min] 

Average success/ 
workflow across all 
products [%] 

   
T1 4.4 89% 
T2 6.2 92% 
T3 5.8 89% 
T4 5.4 96% 
T5 4.5 87% 

 
 

Table 6 – Average time and average successful workflows across the delivered products  
for each team in the TGroup. 

 
 
TGroup 

Average time/ 
workflow across all 
products [min] 

Average success/ 
workflow across all 
products [%] 

   
T1 10.8 95% 
T2 11.5 82% 
T3 8.8 86% 
T4 12.4 92% 
T5 14.5 81% 

 

Scenario 2 — Reuse and Agility. In this scenario, both groups were asked to implement requirements 

changes in the original products. These requirement changes mainly asked for change in the WS source, 

reuse of composed web services, and workflows. For example, a sample requirement change in the 



 23 

headhunter product example stated that all three workflows should be placed in one page, and the 

workflow [WS4 (SP4), WS6, and WS7] be used as a complex composed WS such that the value of WS4 be 

obtained from SP2 instead of SP4. Table 7 shows the new requirements in its first column. In the second 

column it shows a complex composed web service (CCWS1), which can be formed by creating a WS 

from the second workflow in the first column of Table 7. 

Table 7 – Changes in new requirements of the headhunter product example in Scenario 2. 
 

Workflows/Page1 Complex 
Composed WS Resulting Workflows 

   
WS1, WS3,WS4(SP2), WS5, and 
WS7, 

 WS1, WS3,WS8(SP4), and WS7, 

WS4(SP4), WS6, and WS7 CCWS1  WS8(SP4), WS6, and WS7 
WS1,WS3, WS4(SP2), WS6, and 
WS7 

  WS1,WS3, and CCWS1 

 

For each team in each group, we recorded for each product: (1) the time it took a team to successfully 

implement a requirement change; and (2) the number of successful requirement changes.  We then 

calculated for each team in each group, the average time and average successful requirement changes 

across the total number of products. The collected data is shown in Table 8 for the VGroup and in Table 9 

for the TGroup.  

Based on Tables 8 and 9, it was noted that all five teams in the VGroup had a remarkable time 

advantage and agility, especially in the visual composition of these workflows and in properly satisfying 

the new requirements.  

It was also noted that, when asked to make changes to satisfy the new requirements, the TGroup had 

more difficulty implementing (at code level) a solution for the new requirements; whereas, it was 

remarkably easier for the VGroup to provide such solution, since they could quickly “adjust” the design 

of the solution to meet the new requirements (by using simple drag and drop movements within the 

environment’s visual interface).  The creation of the workflow was particularly difficult to implement for 

the TGroup. The VGroup however found this to be a simple task of cut, copy and paste, and showed 



 24 

remarkable agility in the calibration of WebPad variants and in the customization of Scenario 2 

workflows. 

Table 8 – Average time and average successful requirements changes across all products in the VGroup. 
 

 
VGroup 

Average time/ 
requirements 
change [min] 

Average successful 
requirements 
change [%] 

   
T1 6.4 100% 
T2 7.2 95% 
T3 5.8 96% 
T4 8.4 96% 
T5 6.5 100% 

 

Table 9 – Average time and average successful requirements changes across all products in the TGroup. 
 

 
TGroup 

Average time/ 
requirements 
change [min] 

Average successful 
requirements 
change [%] 

   
T1 15.8 85% 
T2 14.5 72% 
T3 11.8 66% 
T4 16.4 82% 
T5 19.5 73% 

 
4. 1 Threat to Validity 
 
     We discussed a case study conducted to develop a better understanding of our combined approach, 

extract a number of empirical observations, and obtain several preliminary results that could indicate the 

degree of agility in our proposed approach. Our informal analysis, based on a limited set of original 

requirements and changes in those requirements, showed some promising return on investment. To 

address a limited set of agile questions, we addresses the agility indexes listed in the second column of 

Table 10. As columns 3 and 4 of this table indicate, there are many unknowns that are still yet to be 

determined. Therefore, no definite conclusion should be drawn from our case study. As such, we believe 

that to better understand the strengths and weaknesses of our approach a larger, more comprehensive set 

of formal empirical studies needs to be conducted over time. In fact, this is precisely one of our main 

directions of future work. 



 25 

 

 
Table 10 – Some agility indexes, their description, and their values in both groups. 

 
Agility Index Description VGroup TGroup 
    
Flexibility 
 

Does the approach accommodate 
expected or unexpected changes? 

Yes Yes 

Speed Does the approach produce 
results quickly? 

Yes No 

Leanness 
 

Does the approach follow simple 
and quality instruments for 
production? 

Yes No 

Learning 
 

Does the approach apply updated 
prior knowledge and experience 
to learn? 

N/A N/A 

Responsiveness Does the approach exhibit 
sensitiveness? 

N/A N/A 

Responding to 
change over 
following a plan 

Does the approach value 
responding to change over 
following a plan? 

Yes Yes 

Keeping the 
process agile 

Does the approach help in 
keeping the process agile? 

Yes No 

Keeping the 
process cost 
effective 

Does the approach help in 
keeping the process cost 
effective? 

Yes No 

 

5.  Discussion  

While operating essentially as agile (quick, flexible, adaptable, user-oriented) instruments in the 

realm of engineering web applications, which in itself represents an interesting area of exploration for 

PLE [20, 21, 27, 28] and AMs [26, 29, 30], the WebPads-based approach introduced in this article and its 

supporting tool, VisualWebC, offer excellent examples of support for software reusability. After all, the 

WSs incorporated in new applications are remarkable illustrations of reusing software components, be 

they weather forecast modules, stock evolution monitors, shopping carts, online unit converters, or 

keyword-based searching mechanisms.  In terms of domain engineering and application engineering, one 

can envision applying WebPads and tools similar to VisualWebC to building web applications using a 

more rigorous and systematic process directions of the PLE methodology, combined with (intrinsic to 



 26 

WebPads) elements of development agility. Our approach being organized around easily modifiable, 

reconfigurable and reusable pages, workflows, and WebPads (WSs), can effectively support both the 

common artifacts of a web development “domain” (e.g., the on-line shopping “domain”) and the 

particular aspects of a specific application in that “domain” (e.g., on-line shopping of automotive parts, 

such as tires or wheels).  

Finally, documentation and, in general, process and product organization, all important to PLE, could 

significantly benefit from using easy-to-built and efficient web-based solutions for collaborative software 

product development made possible by the proposed WebPads-based approach (e.g., web-based error-

tracking tools, jointly updated product data dictionary, and online tools for project progress reporting, 

assessment, and prediction).  In summary, numerous interesting directions of research and development 

are offered by the prospect of placing WebPads-based WSbWAs and tools (the latter, very agile in nature) 

under the joint umbrella of PLE and AMs, thus answering in practice the need for rightly balancing 

agility and discipline [31]. 

6. Future Work and Conclusions 

Our approach presents several significant advantages. First, it allows the creation of web applications 

with complex functionality with relatively little effort and time. Importantly, it allows novice 

programmers to build websites easily and reduces the cost and time of creating such websites. Second, the 

use of trusted, well tested, permanently updated, and secure services [32] allows the newly generated web 

applications to inherit these features and gain the trust of their users, who do not have to worry about the 

security of the remote components they rely on. Third, testing a new web application is reduced to testing 

the inter-services relationships that exist between different wrapped web applications rather than testing 

the intra-services relationships that characterize each contributing application (because the latter are 

already tested by their providers).  Fourth, if one of the remote web applications updates its database or 

enhances its mechanisms of providing the outputs, these changes will be directly reflected in the new web 

application, since it only depends on the paths of the inputs and outputs. Consequently, there is no need to 



 27 

worry about updating the web application, especially because the connection to the remote services is 

established dynamically.  

Regarding future work, a problem that we plan to tackle next is to implement a proxy class between 

the website created and the websites referenced in order to minimize the effects of changes in their data 

formats. Specifically, when a referenced website changes the format of its inputs and/or outputs an 

interface is needed between the two applications to accommodate the changes.  Also part of future work, 

we are interested in developing a more rigorous model using client/server agents that will track changes 

made on the remote components and refresh the local components, thus keeping the information always 

up-to-date.  We also plan to integrate a component to facilitate: (1) publishing our composed services; and 

(2) dynamically discovering aliases via automatic WS discovery.  

Finally, as discussed in the previous section, placing the naturally agile (fast, flexible, service-

oriented, reconfigurable, easily manageable, user-friendly) WebPads-based web development approaches 

and tools in the scope of the PLE methodology offers many promising directions of future exploration 

and expansion. Larger examples of web application developments using the WebPads concept, the 

VisualWebC tool, and the methodological directions provided by PLE and AMs is also part of our future 

work.   

Acknowledgments 

We would like to thank the students at AUB for their collaboration and patience in the experimentation 

sessions. Our thanks go also to the ACM SIGCHI for allowing us to modify templates they developed. 

 

 

 

 

 



 28 

References 

[1] W3C. Web Services Description Language (WSDL) 1.1, 2001, http://www.w3.org/tr/wsdl 

[2] Thakkar, S. Knoblock, A.C., Ambite, J.L., and C. Shahabi, “Dynamically Composing Web Services 

from On-line Sources”, Proceedings of the AAAI Workshop on Intelligent Service Integration, 

Edmonton, Alberta, Canada, 2002, pp. 1-7. 

[3] van Zyl, J., “Application Assembly Using Web Services”, Proceedings of the 26th Annual 

International Computer Software and Applications Conference (COMPSAC’02), IEEE Press, 2002, 

pp. 493-500. 

[4] IBM, Specification: Business Process Execution Language for Web Services Version 1.1, accessed 

May 10, 2007, at http://www.ibm.com/developerworks/library/ws-bel/ 

[5] Sillitti, A., Vernazza, T., and G. Succi. “Service Bases Product Lines,” Proceedings of the 3rd 

International Workshop on Software Product Lines: Economics, Architectures and Implications, 

ICSE-2002, Orlando, USA, 2002. 

[6] Capilla, R. and N. Yasemin Topaloglu. “Product Lines for Supporting the Composition and 

Evolution of Service Oriented Applications.” Proceedings of the Eighth International Workshop on 

Principles of Software Evolution, 2005, pp. 53-56. 

[7] Capilla, R. and J. C. Dueñas, Evolution and Maintenance of Web Sites: A Product Line Model. 

Chapter “Managing Corporate Information Systems Evolution and Maintenance,” Idea Group 

Publishing, 2005, pp. 255-271. 

[8] Svetinovic, D. “Architecture-Level Requirements Specification,” Proceedings of the 2nd 

International Software Requirements to Architecture Workshop (STRAW’03), Portland, Oregon, 

USA, 2003, pp. 14-19. 

[9] Jacyntho, M.D., Schwabe, D. and G. Rossi. A software architecture for structuring complex web 

applications. Journal of Web Engineering 1(1):37-60, October 2002. 

 



 29 

[10] Balzerani, L., Di Ruscio, D., Pierantonio, A. and G. De Angelis. “A Product Line Architecture for 

Web Applications.” Proceedings of the 2005 ACM Symposium on Applied Computing (SAC’2005),  

ACM Press,  New York, NY, USA, 2005, pp. 1689-1693. 

[11] Balzerani. L., Problemi di Generazione e Configurazione dei Sistemi a Componenti. Tesi di Laurea 

in Informatica, Università degli Studi di L'Aquila, 2005. 

[12] Pautasso, C. and G. Alonso “Visual Composition of Web Services,” Proceedings of IEEE HCC’03, 

Auckland, New Zealand, 2003, pp. 92-99. 

[13] Liu, N., Grundy, J. and J. Hosking. “A Visual Language and Environment for Composing Web 

Services,” Proceedings of the 2005 ACM/IEEE International Conference on Automated Software 

Engineering, Long Beach, CA, 2005, pp. 321-324. 

 [14] Ito, K. and Y. Tanaka. “Visual Wrapping and Functional Linkage of Web Applications,” 

Proceedings of the Workshop on Emerging Applications for Wireless and Mobile Access, Budapest, 

Hungary, 2003. 

[15] K. Ito, and Y. Tanaka. “A Visual Environment for Dynamic Web Application Composition,” 

Proceedings of the 14th ACM Conference on Hypertext and Hypermedia, 2003, pp. 184–193. 

[16] Java Sun website, Design Patterns: Model-View-Controller, accessed May 12, 2007 at 

java.sun.com/blueprints/patterns/MVC.html. 

[17] Leff, A. and J.T. Rayfield. “Web-Application Development Using the Model-View-Controller 

Design Pattern,” Proceedings of the 5th IEEE Enterprise Distributed Object Computing 

Conference, 2001, pp. 118-124. 

[18] Ginsburg. M. A Comparison of Web Visualization Frameworks for eBusiness Applications Using 

the Example of an Online Shop.  Master Thesis. Accessed on May 12, 2007 at www.sts.tu-

harburg.de/pw-and-m-theses/2003/ 

[19] Karam, M., Keirouz, W. and R. Hage.  “An Abstract Model for Testing MVC and Workflow Based 

Web Applications,” Proceedings of the IEEE Advanced International Conference on 



 30 

Telecommunications and International Conference on Internet and Web Applications and Services 

(AICT-ICIW’06), 2006, pp 206/1-7. 

 [20] Van Gurp, J., Bosch, J. and M. Svahnberg. “On the Notion of Variability in Software Product 

Lines,” Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA'01), 

2001, p. 45.  

[21] Pohl, K., Böckle, G. and F. van der Linden. Software Product Line Engineering: Foundations, 

Principles, and Techniques. Springer, 2005. 

[22] Carbon, R., Lindvall, M., Muthig, D., and P. Costa, “Integrating Product Line Engineering and 

Agile Methods: Flexible Design Up-front vs. Incremental Design,” Proceedings of the 1st 

International Workshop on Agile Product Line Engineering Baltimore, MD, USA, 2006. Available 

online as of May 15, 2007 at http://www.lsi.upc.edu/events/aple/CarbonEtAl.pdf. 

[23] Ruby on Rails, “Web Development that Doesn’t Hurt,” accessed May 12, 2007 at 

http://www.rubyonrails.org 

[24] The Apache Software Foundation web site, Struts, accessed May 12, 2007 at 

http://struts.apache.org/ 

[25] W3C Document Object Model (DOM), accessed May 12, 2007 at www.w3.org/DOM 

[26] The Agile Manifesto, accessed May 12, 2007 at http://www.agilemanifesto.org  

[27] P. Clements, L. M. Northrop, et al. A Framework for Software Product Line Practice, version 4.2. 

Technical Report. SEI Carnegie Mellon University, Pittsburgh, 2004. 

[28] van Zyl, J. An Approach to Assemble Software Products Using a Product Line Approach. The 

International Workshop on Product Line Engineering (PLESS’03), Technical Report 139.0/E at 

Fraunhofer ISE, Erfurt, Germany, 2003, pp. 43-49. 

[29] Agile Software Development – Wikipedia, accessed May 15, 2007 at http://en.wikipedia.org 

/wiki/Agile_software_development 

 [30] Fowler, M. “The New Methodology,” December 2005, accessed May 15, 2007 at 

http://www.martinfowler.com/articles/newMethodology.html  



 31 

[31] Boehm, B. and R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed. Addison-

Wesley, 2004. 

[32] Turner, M., Budgen, D. and P. Brereton, Turning software into a service. IEEE Computer 36 (10): 

38-44, October 2003. 


