
Software Modeling for Open Distributed
Network Monitoring Systems

Jacob W. Kallman, Pedrum Minaie, Jason Truppi, Sergiu M. Dascalu,
Frederick C. Harris, Jr.

Department of Computer Science and Engineering, University of Nevada, Reno
1664 N. Virginia St., Reno, NV, 89557 USA

jkallman@cs.unr.edu, pminaie@ieee.org,
jason@physics.unr.edu, dascalus@cs.unr.edu, fredh@cs.unr.edu

Abstract. As computer networks grow in size, both physically and geographi-
cally, more scalable solutions to network administration are becoming neces-
sary. This need is amplified by the spread of faster and more devastating com-
puter viruses. Furthermore, when dealing with partial and intermittent systems,
the need for accompanying network mapping and monitoring with efficient
mapping visualization becomes even more important. This paper presents the
Open Distributed Network Monitoring (ODNM) package, a software tool that
proposes a novel solution for dealing with these issues. Emphasizing the value
of well defined software requirements, the package addresses the need for scal-
ability and speed by utilizing a distributed scanning capability that divides the
network to be scanned into multiple parallel scans. Excerpts from ODNM’s
software model, including functional and non-functional requirements, use
cases, class diagram and prototype screenshots are presented in the paper and
the package’s goals, progress, and future development are discussed.

1 Introduction

Maintaining a computer network can be a tedious job, especially for large to enter-
prise-sized networks. Numerous network administration tools exist that help ease the
burden on an organization’s system administrators’ workload. These tools provide
network administrators information about a network’s security, performance, and
overall layout. However, several problems still exist with today’s network mapping
systems, the most important of them being the following:

• Applications do not accurately map networks. One commercial application simply

finds all the devices for a given subnet and it is then the network administrator’s
job to draw out the physical network map [1];

• Scanning for large to enterprise-sized networks is both cumbersome and ineffi-
cient on a single server. Only one out of six commercial and open-source applica-
tions researched use a distributed server model to map out the network
[1,2,3,4,5,6] (HP’s OpenView Extended Network Node Manager supports a dis-
tributed architecture [4]);

• Currently available solutions do not give administrators adequate remote access to
scanning, nor do they allow real-time automated scanning of networks in a scal-
able environment. This becomes an extremely important feature when dealing
with partial and intermittent systems;

• Commercial applications can be very pricey [4, 5, 6] and there are not many com-
plete open-source solutions that exist for large networks. Of the researched appli-
cations, NINO has been found to be the only complete open-source solution [2].

As a proposed solution to these issues, we are currently developing the Open Dis-

tributed Network Monitor, or ODNM. This tool is intended to be scalable enough for
monitoring large to enterprise-sized networks but it could be used as well for net-
works in small business or home business environments. It will also be able to work
on single LANs to multi-subnet WANs. This is due to its client-server architecture
that both allows the client software to be used anywhere in the network and supports
a strategical distribution of the server architecture in the network.

By dividing the task of scanning in a modular way and by providing a client inter-
face which can be used across many platforms (including mobile computing solu-
tions) we believe that ODNM can provide a fast scanning utility which can allow
remote scan administration and information gathering in close to real-time conditions.
The proposed distributed server architecture follows a similar distributed monitoring
architecture as discussed by Subramanyan, Miguel-Alonso, and Fortes in [7]. How-
ever these authors have proposed using SNMP for their network monitoring and re-
mote node elicitation solution, whereas we are proposing to use ICMP messages,
route table information, and other non-SNMP techniques for network monitoring and
remote node elicitation.

 In order to build ODNM, we have followed a software development process based
on a simplified version of the Unified Process (UP) [8] and have employed the Uni-
fied Modeling Language (UML) [9, 10] as specification and design notation. In par-
ticular, we have relied on the approach and notational guidelines proposed by Arlow
and Neustadt in [11]. We have found that by applying a rigorous, systematic, yet
efficient software engineering approach many of the tool’s requirements as well as its
architectural elements have been identified in a timely and precise manner. This, we
believe, is particularly useful for tools dealing with partial and intermittent systems,
where efficient network mapping and monitoring needs to be accompanied by fast
mapping visualization.

The first version of ODNM, currently in its implementation phase, is expected to
be ready by the summer of 2004. The inclusion of a number of extensions is planned
for this fall and work on the system and its practical application is envisaged to con-
tinue until at least the end of 2004.

This paper provides details of the ODNM’s software specification, presents pre-
liminary testing results, and outlines directions of future work. In its remaining part,
the paper is organized as follows: Section 2 presents the functional requirements of
the system, Section 3 shows several of the system’s non-functional requirements,
Section 4 provides the system’s use case diagram and an examples of use case, Sec-
tion 5 describes ODNM’s high level design and includes prototype screenshots and
code module explanations, Section 6 reports on preliminary testing and discusses

future development goals, and Section 7 concludes the paper with a summary of the
system’s most distinguishing characteristics and its potential for future enhancements.

2 Functional Requirements

Before starting the modeling of the ODNM software, we have identified a series of
functional and non-functional requirements that need to be satisfied by the applica-
tion. The present section provides details of the system’s functional requirements
while Section 3 shows several of the system’s more important non-functional re-
quirements.

The style used for presenting these requirements is the practical, efficient one pro-
posed in [11].

In the following, requirements are classified according to three levels of priority:
high (level 3), medium (2), and low (1). These levels of priority designate the impor-
tance of certain features, both functional and non-functional, that need to be incorpo-
rated in ODNM. The highest priority denotes requirements that must be available for
a full working version of the application. Medium and low priorities denote require-
ments that are optional for a full working version of the application but should be
considered for more advanced versions of the tool.

2.1 Client Highest Priority (3)

These requirements represent the base requirements that must be met by the client
side of the ODNM system:

• The client user shall have the ability to view the network topology either graphi-

cally or in a tree-like structure.
• The client interface shall be a simple, yet effective GUI that shall display all im-

portant system components designated by the user. The interface shall be tailored
to users of all skill levels.

• The client software shall output the completed statistics on a host machine in a
simple and relevant format.

• The client user shall have the option to cancel a scan but the GUI shall display
devices scanned prior to canceling.

• The node-to-node connection speed shall be displayed between a specified client
and the server currently connected to in a client side dialogue.

• The client user shall have the option to select a range of IP’s or a subnet given a
subnet mask (restricted to Class C subnets).

• The results of a given scan shall be available in two modes: simple and advanced.
The simple mode shall provide hostname and IP address and the advanced mode
shall provide more detail such as open ports, connection speed, and so forth.

• The client GUI shall be able to manually initiate a server scan or view the results
of an automated scan.

• In the graphical structure view, various components shall have a distinctive icon
on the map. For example, a printer shall have a printer icon and a computer shall
have a computer icon.

2.2 Client Medium Priority (2)

These requirements are optional for the first release, but should be addressed in short-
term future work:

• The client software should have a tool to generate reports to HTML or XML.
• The client user should have the ability to export the network map to some sort of

image (i.e., JPEG, TIFF, or BMP).
• The client user should be able to view and set the scanning schedule.
• The client user should be able to view an estimated network topology to a certain

level of accuracy.
• The user should be able to view the network topology using a physical structure,

such as a map of the city of Reno, Nevada, including all transmission lines.

2.3 Server Highest Priority (3)

These requirements represent the base requirements that must be met by the server
side of the ODNM system:

• The server shall have the ability to remotely detect the operating system on desired

hosts.
• The server shall have the ability to scan all 65,000 TCP/UDP ports on desired

hosts.
• The server shall store log files of client-server and server-server communications.
• The server shall be able to run a ping scan on a single host or a range of hosts.
• The server shall relay information back to the client for every new host detected.
• The server shall contain a saved or most recent snapshot of all hosts scanned after

every scheduled scan.
• The server shall detect IP addresses (IPV4), open TCP/UDP ports, host operating

system, and host name.
• The server shall be able to run scheduled scans and send back reports to client.
• The server shall be configured by reading a configuration file.
• The server shall know of other ODNM servers by the configuration file.

2.4 Server Medium Priority (2)

These requirements are optional for the first release, but should be pursued in short-
term future work. An example of such requirements is the following:

• The server should be able to complete baseline and subsequent comparisons of
networks to determine any addition or removal of devices in the network (i.e., in-
trusion detection).

3 Non-Functional Requirements

The most relevant non-functional requirements for DuffNM are listed below.

3.1 Non-Functional Highest Priority (3)

The following represent the base non-functional requirements that must be satisfied
by the ODNM system:

• The system shall have the ability to export to HTML and XML documents.
• The system shall have the ability to export network maps in PNG, JPEG, BMP,

and TIFF formats.
• The system shall be written in Java and Perl.
• The scan speed shall be reasonably efficient in the distributed environment.
• The system shall have more simplicity then other network scan tools such as HP’s

OpenView and Ipswitch’s WhatsUp Gold software.
• The server shall run in a UNIX environment.
• The client shall run in a Windows or Linux/UNIX environment.

3.2 Non-Functional Medium Priority (2)

The following are examples of non-functional requirements that are optional for the
first release, but should be pursued in short-term future work:

• The system’s client-server communications should be secure and encrypted.
• The system should have the ability to create reports in Microsoft Word format.

4 Use Cases

Early in the modeling process, the system’s functionality has been defined using use
cases and scenarios. The entire functionality of the ODNM tool is represented in the
use case diagrams shown in Figure 1 (client side) and Figure 2 (server side). A corre-
spondence between the functional requirements listed in Sections 2 and 3 of this pa-
per and the use cases shown in the system’s use case diagrams was established for
software development purposes.
 Due to the tool’s specific characteristics, ODNM’s use cases have been grouped
into two packages, client side and server side. This division of the system’s use cases

into two packages corresponds to breaking down the ODNM software into two main
executable structures of the program.
 The client use cases deal with activities a user can perform on the client side of
this software package. The server side includes two actors, a server administrator and
time. The server administrator deals with tasks such as configuring the server while in
this application time is the impersonal actor that responds to automatically triggered
events by the client side, such as initializing a scan or storing logs about the most
recent scan.

The use case diagrams shown in Figures 1 and 2 illustrate the basic ways in which
outside actors can interact with the system.

Client Side

Select Display Type
 of Topologies
 (CU-01)

View Network Map
 (CU-02)

Request Scan
 (CU-03)

Specify Scan Type:
Detailed or Simple
 (CU-04)

View Server Schedule
 (CU-05)

View Log Files
 (CU-06)

View Node Properties
 (CU-07)

Download Database
Information from Root Server
 (CU-08)

Client User Client User

Fig. 1. Client Side Use Case Diagram

Server Administrator

Server Side

Configure Server
 Options
 (SA-01)

Configure List of Servers
 (SA-02)

Set Initial Scan
 Schedule
 (SA-03)

Perform Scan
 (T-01)

Store Connection
 Status Logs
 (T-02) Time

Fig. 2. Server Side Use Case Diagram

Typical to UML-based software specifications, all use cases can be further de-
scribed using templates such as the one presented in Figure 3 and can be detailed
using scenarios. For simplicity, the latter have not be included in this paper but are
available in the project’s software requirements specification (SRS) document.

Fig. 3. Description of the Perform Scan Use Case

The above excerpts from the tool’s software specification have been included in

the paper to illustrate the foundation on which the ODNM monitoring software pack-
age has been developed. Next, we build upon this foundation by presenting the high
level design of the software.

5 High Level Design

The design of ODNM has been intended to be simple and easy to understand by all
levels of system administrators and hobbyists. In this section the high level system
model is presented (Figure 4), together with an excerpt of the class diagram that has
been used to define the structure of ODNM software (Figure 5). The section also
presents, in Figures 6 and 7, screenshots of client and server outputs.

Use case: Perform Scan

ID: T-01

Actors:
Time

Preconditions:
1 The server is running.
2 There is a valid configuration file

Flow of events:
1 The use case starts when the server either:

1.1 Is run for the first time
 1.2 Reaches the time interval at which a scan is to be executed
2 If the database does not exist then the server shall:
 2.1 Create a file to store the database in
 2.2 Read the configuration file to get the subnets to scan, and the lower level servers
 2.3 Scan the subnets listed in the configuration file
 2.4 Transfer the information from lower level servers into the database

Postconditions:
1 The database file is updated and closed
2 The time interval counter is reset to zero

ODNM Server ODNM Client

 ODNM System

TCP/IP

Perl

Nmap JAVA Runtime Environment

Operating System

ODNM System Context Model

5.1 High Level System Context Model

ODNM can be seen as a software layer above the operating system and other essential
system functions. In the future, we plan to integrate the network monitor’s function-
ality into the embedded operating systems of switches and routers, but at this point in
time it is a standalone application that uses Java and Perl. ODNM also uses Nmap,
which is a separate application developed by insecure.org [12], a stopgap that pro-
vides support for the actual scanning of the machines. As described in Section 6, this
will eventually be replaced by other scanning methods that we plan to develop.

Fig. 4. ODNM High Level System Context Diagram

5.2 Prototype Class Diagram

Due to space limitations, only a part of the class diagram used to design the network
monitor’s software structure is shown in Figure 5.

5.3 Sample Screenshots

The screenshots shown in Figures 6 and 7 are samples of what ODNM server and
client interfaces look like and are intended to give an idea on how the user can inter-
act with them.

The server has been designed to run as a daemon process, without any interaction
from the user. It uses a BSD-style configuration file to set server options, and outputs
a text file which is human-readable. Other than this, it requires no interaction with the
user.

ODNM

-CreateNodeMapImage()
-CreateNodeInfoList()
+CreateExportableMap()
+SetExportOptions()

-ExportLocation : string(idl)
Reports

+ViewRemoteServerLog() : void
+ConfigureClientOptions() : void
+ViewRemoteServerConfigFile() : void
+ViewRemoteServerSchedule() : void
+ViewRemoteServerAdmins() : void
+ViewRemoteServerDB() : void

-ConnectedServerIP : object(idl)
-isClientConnectedToServer : boolean(idl)
-isScanInProgress : boolean(idl)

ClientGUI

+CreateHTMLContent()
+ConvertMapListInfo2HTML()

ExportHTML

+Convert2Image()
+SetImageType()

-ImageType : short(idl)
ExportImage

+SwitchViewType()
+ZoomInMap()
+ZoomOutMap()
+RescaleMap()
+UpdateMap()
+FilterMapView()

-ViewType
-CurrentZoomPercentage : short(idl)
-MaxZoomPercentage : short(idl)
-isMapUp2Date : boolean(idl)

MapView

+InitiateScan()
-SetScanType()
-SetScanIPRange()
+SetNodeInfo()
-SetScanMode()
+ViewNodeInfo()
+ConfigureScanOptions()

-IPScanRange : object(idl)
RequestNetScan

+InitiateNodeSpeedTest()
+ConfigureNodeSpeedTest()
+ReceiveNodeSpeedTestResults() : object(idl)

-NodeTestSpeed : string(idl)
-DestinationNodeIP : object(idl)
-

NodeSpeedTest

1

1

1

1

*

1

1

1

11..*

Fig. 5. ODNM Class Diagram (partial)

Figure 6 provides an example of server output. Specifically, it illustrates the data
collected by ODNM server – in more detail, it shows the scanned IP address, the
speed of the connection (last time/average), and the number of measured hops be-
tween the IP and the server scanning, the open ports on the scanned IP, and the de-
tected operating system on the scanned IP address. This is essentially the extent of the
server output, but the client has many more user options for the interacting with the
system.

IP Host Name Hops Ports OS

192.168.1.1 router 1 22/tcp/ssh Linux-2.4.19

192.168.1.2 fs_server 2 NONE Windows

192.168.1.65 webserver 2 80/tcp/Apache Linux-2.4.37

Fig. 6. ODNM Server Output Sample

Fig. 7. ODNM Main Client Interface Window

6 Testing and Further Development

An initial, prototype version of ODNM has nearly been completed. The scan module,
connection management module, and client interface are all nearing a stage where
they are ready to be packaged into an initial release. The main goals that we need to
accomplish to reach this stage are as follows:

• Finish refining the client-side user interface and implement topology and physical
mapping ability. Currently, a primitive graphical node map has been implemented
but as of now it does not compare well with the graphical node representations
found in other applications;

• Re-implement the scan module using C/C++ and rebuilt algorithms, instead of
simply using Perl and interpreting Nmap output. We hope to use scanning tech-
niques such as remote operating system detection as proposed by insecure.org
[13] and topology discovery as proposed by Lowekamp, O’Hallaron, and Gross
[14];

• Increase security of the server output by encrypting the information database
while on the server and in transit to the client interface;

• Finish development of the database integration module, and make the connection
management module more efficient and secure against buffer attacks.

Our preliminary results have been encouraging. In informal tests, it takes about two
seconds to scan each machine in a network using the current implementation with
Nmap. Theoretically, for a single network monitoring system that uses Nmap, scan-
ning three subnets of two-hundred nodes each may take a minimum of twelve minutes
(2 seconds/scan * 3 subnets * 200 devices/subnet = 12 minutes, time for additional
overhead and time to access slow subnet connections are not taken into considera-
tion). With the same network configuration, it may take approximately four minutes
to scan the network using three ODNM servers placed within each of the three sub-
nets ([2 seconds/scan * 3 subnets * 200 devices/subnet]/3 ODNM servers = 4 min-
utes, additional overhead not taken into consideration). The time required to scan an
entire network using a single server may not seem very relevant, but in an enterprise
environment where network monitor servers are monitoring critical devices, including
in remote sites, the time to complete scans and notify an administrator of any critical
events must be minimized as much as possible to reduce downtime.

We are confident that this initial scan time of approximately two seconds per node
will not increase significantly as the project uses Nmap for its preliminary version.
Our goal in the near future is to develop our own algorithms, which we hope will run
more efficiently and require less time to execute than the current Nmap stopgap and
testing code.

7 Conclusion

The ODNM software tool described in this paper can provide a portable, scalable and
fast solution to many of today’s growing network administration needs. Because it is
designed to be distributed and scalable, it can be versatile enough to answer a large
variety of networked system design needs. There is a wealth of user options that we
plan to integrate into the system, and there is also significant room for developing
innovative algorithms and optimization solutions within the general ODNM environ-
ment framework.

References

1. WhatsUp Gold (2004). Available as of April 22, 2004 at:

http://www.ipswitch.com
2. NINO (2004). Available as of April 22, 2004 at:
3. http://nino.sourceforge.net/
4. PSNMP (2004). Available as of April 22, 2004 at:

http://psnmp.sourceforge.net/
5. HP OpenView Network Node Manager 6.4 and Network Node Manager Ex-

tended Topology 2.0 (2004). Available as of April 22, 2004 at:
http://www.openview.hp.com/

6. NetRadar (2004). Available as of April 22, 2004 at:
http://netradar.sourceforge.net/

7. LANSurveyor 8.0 (2004). Available as of April 22, 2004 at:
http://www.neon.com

8. Subramanyan, R., Miguel-Alonso, J., Fortes, J.A.: A Scalable SNMP-based
Distributed Monitoring System for Heterogeneous Network Computing. Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, Dallas, Texas,
USA (2000)

9. Jacobson, J, Booch, G., Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley (1999)

10. OMG’s UML Resource Page (2004) Available as of April 18, 2004 at:
http://www.omg.org/uml

11. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language: User
Guide. Addison-Wesley (1998)

12. Arlow, J., Neustadt, I.: UML and the Unified Process: Practical Object-
Oriented Analysis and Design. Addison-Wesley (2002)

13. Nmap Security Scanner version 3.50 (2004). Available as of April 15, 2004 at:
http://www.insecure.org

14. Nmap (2002): Remote OS Detection via TCP/IP Stack Fingerprinting. Avail-
able as of April 21, 2004 at http://www.insecure.org

15. Lowekamp, B., O’Hallaron, D., Gross, T.: Topology Discovery for Large
Ethernet Networks. ACM SIGCOMM ’01. August 27-31 (2001)
Available as of April 15, 2004 at:
http://www.acm.org/sigs/sigcomm/sigcomm2001/p19-lowekamp.pdf

