
Arne Koschel Irina Astrova Jeremias Dötterl
Faculty IV

Department of Computer Science
Department of Software Science

School of IT
Faculty IV

Department of Computer Science
University of Applied Sciences and Arts Tallinn University of Technology University of Applied Sciences and Arts

Hannover, Germany Tallinn, Estonia Hannover, Germany
akoschel@acm.org irina@cs.ioc.ee

Abstract—Microservice architecture is an architectural style
suitable for large software projects. The main goals of
microservices are flexible on-demand scalability and short
release cycles. Microservice architecture decomposes applications
into multiple independent components (called microservices),
each running in its own process. This sets microservice
applications apart from monoliths, which run in a single process.
This paper describes the characteristics of both architectures and
explores under which circumstances a shift from a monolith
towards the more costly microservice architecture is justified.
Furthermore, the paper describes (non-)technical challenges that
arise in that shift.

Keywords-monolithycal architecture; microservice architecture;
large software projects

I. INTRODUCTION

When the popularity of a distributed software application
increases, it has to serve a growing number of clients, thus
requiring the application to be designed with scalability in
mind. These clients, especially if they are paying customers,
often expect regular updates, which fix errors or introduce new
features. To meet those expectations, release cycles have to be
short and the application has to be maintainable, even when the
application is feature-rich and lots of people involved in the
development process. To avoid the development speed to slow
down, active measures beyond simple code refactoring have to
be taken. To keep the quality high, it is desirable to replace
whole software parts, instead of just rewriting them, without
having to adapt the rest of the application to the replacement.
Microservice architecture is a software architecture style,
which strives to support all those goals.

Microservice architecture can be seen as a “coming
together of a bunch of better practices” [1], which has been
covered by several books, articles and papers about service-
oriented architecture (SOA), continuous delivery, domain-
driven design, etc. However, little has been written about the
combination of those practices (called microservice
architecture) and their impact on the software projects.

II. MOTIVATING EXAMPLE

Consider a company launching an online shop for its
customers. Typical activities of visitors of the online shop are
searching for products, buying the products and writing

comments on the products. These activities can generate a lot
of data that have to be stored persistently and can consume a
lot of server resources.

Assume that the company identifies several requirements
for the online shop. First of all, this application should support
a wide range of different clients. On the one hand, these are
web browsers installed on the customers’ desktop computers.
On the other hand, mobile versions of the most popular web
browsers should also be supported by the application because
the number of users visiting web pages from the comfort of
their mobile devices steadily increases [2]. However, the
structure of web pages viewed on the mobile devices can
greatly differ from that on the desktop computers.

Next, the application should be maintainable. That is, the
architecture of the application should be easy to understand,
change and extend. This is especially important if the company
wants to operate the application for a long period of time and
wants to be able to make changes frequently and rapidly.
Furthermore, the company wants to be independent of concrete
technologies as much as possible. This is because if the support
of a technology stops, the security problem can occur. To avoid
this problem, the architecture should enable to replace the old
technology with a new one as easy as possible. In addition, this
replacement should be inexpensive so that the company can
experiment with new and innovative solutions.

Since the online shop has many visitors and expects a
further increase in the number of visitors, the application
should be scalable. That is, it should be able to cope with an
increased number of requests. Furthermore, high availability –
24 hours a day, 7 days a week and 365 days a year – is
required. In the case of the online shop, where web pages are
the only source of income, every minute of unavailability of a
web page is expensive. While the page is unavailable, no
product can be sold. If failures become frequent, customers can
lose their trust into the company or get frustrated, which lets
them switch to competitors. First-time visitors (prospective
customers) who cannot reach a web page will probably not
come back. This makes high availability an important
requirement too.

Assume that the company searches for an architectural style
that meets all those requirements. One possible solution could
be monolithic architecture.

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 74

III. MONOLITHIC ARCHITECTURE

Figure 1 gives an overview of the monolithic architecture.
On the left side, different types of clients are shown that want
to interact with the application. The application itself (shown in
the center) runs on the server-side in a single process as the
whole “monolith”. All modules of the application use the same
shared database (e.g., a relational database), which is shown on
the right side.

Figure 1. Monolithic architecture.

The monolithic architecture has several advantages. The
application is easy to develop. Modules within the application
are built with classes or packages; they communicate with each
other via method calls, which are reliable and have a very little
delay. In addition, the application is easy to deploy. There is
only a single artefact that has to be deployed to the server.
Scaling the application is also easy (see Figure 2). If one
instance of the application is not capable handling all the
requests on its own, copies of the application can run on
multiple servers. A load balancer is responsible for routing the
incoming client request to the different servers. For the clients,
this process is transparent as they do not have to know which
instance of the application they are talking to.

Figure 2. Scaling of monolithic architecture.

However, the monolithic architecture becomes problematic
if the application gets too big. “Big” can mean a high number
of lines of code or a high number of people involved in the
development of the application. Often the former implies the
later – if the application consists of many lines of code, lots of
people are necessary to develop the application. Both
dimensions of “big” can cause problems. First of all, large

software projects tend to slow down in the development speed
[3] and new features get shipped less frequently. This is
because the lines of code start to depend on each other,
whereas changes and enhancements get more difficult.
Moreover, the more people are involved, the more
communication is necessary. As a result, time spent for
communication cannot be spent on adding new features.

In our example, the company wants to ship new features,
changes and enhancements rapidly. But not only does the
decreased productivity contradict this goal of short release
cycles. Even if the development can take place with acceptable
progress, the code has to be deployed first to become visible to
the customers. In the monolithic architecture, the change of a
single line requires a re-deployment of the whole application.
Because deployments are risky and can cause problems,
frequent deployments are often avoided. This means that even
more changes get shipped with a next deployment, which
makes it even riskier and more problematic.

In the monolith, components can share a database or
database cluster. But a shared data store implies that different
teams have to agree on a shared data schema. This is
problematic because changes can affect potentially all other
components that use the same data store. For this reason strong
dependencies are formed and high communication effort
between all teams is required. For example, if a team
responsible for the business logic wants to make a change in
the database, this change often has to be coordinated with the
user interface (UI) team.

Microservice architecture strives to solve the problems
described above.

IV. MICROSERVICE ARCHITECTURE

Figure 3 gives an overview of the microservice
architecture. Here the application is decomposed into multiple
components called microservices, each of them providing a
limited set of functionality. For example, in the case of the
online shop, there can be a microservice that handles searching
for products and another microservice that handles buy
requests. Each microservice runs in its own process and can be
deployed and scaled independently.

Figure 3. Microservice architecture.

Every microservice has a team assigned to it; this team is
fully responsible for the microservice. For this reason, teams

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 75

are no longer formed regarding technical expertise (as it was
done in the monolithic architecture). For example, there is
neither a team solely responsible for the UI nor a team solely
responsible for the business logic. Rather, every team has its
own experts for different tasks like UI and business logic so
that UI and business logic experts work in the same team. As a
result, a change within a microservice can now be made mostly
independent of other teams. Even more, the team is not only
responsible for developing but also for operating the
microservice. One microservice stays in the same team for its
whole life cycle and does not get transferred to other teams.
This way the microservice architecture strives to reduce the
communication effort between teams as much as possible.
While teams can make decisions within their microservices
rather autonomously, there still has to be a shared architectural
vision.

Obviously, for the online shop, the microservice
architecture should be preferred to the monolith. However,
making the move from the monolith towards the microservice
architecture is a challenging task.

V. MOVING TO MICROSERVICE ARCHITECTURE

There are a number of challenges project teams (especially,
architects) commonly face when moving to the microservice
architecture. Therefore, every team should at least spend some
time thinking about those challenges and decide how the
challenges need to be addressed.

A. Decomposition
The term microservice suggests that those components are

rather small but there is no definition how small a microservice
should be. Of course, they should not be too small because then
the overhead that is necessary to operate a microservice would
be greater than its benefits. On the other hand, microservices
should be so small that they can be replaced easily with little
costs. While in the monolithic architecture refactoring is
applied to make sure the initial architectural vision keeps being
followed, the microservice architecture provides a more radical
approach against code rotting. Whenever plain refactoring
seems not to be sufficient, the implementation of a
microservice is replaced completely with a new one. This is
possible without other microservices noticing as long as the
interface keeps unchanged.

B. Deployment
The microservice architecture enables to deploy

components independent of each other, and to publish features
and changes rapidly. Since deployment is not executed for a
single monolith every once a while, but frequently and
individually for different microservices, the deployment
process should be automated. Deployment also should be as
easy as possible. Otherwise, it will not be executed regularly
and the goal of short release cycles will not be reached.
Additionally, the deployment should work reliably and without
any errors.

When designing the interfaces one should also keep in
mind that microservices should be coupled loosely. Changes in
one microservice should ideally require no changes in other

microservices. This guarantees that microservices can be
deployed independently. It is not necessary to deploy all
microservices at once if the deployment of one microservice
does not require the deployment of a new version of another
microservice.

C. Technology Heterogeneity
Because microservices should be as independent of each

other, the microservice architecture strives to minimize the
interfaces and dependencies as much as possible. The
application works with data that have to be stored persistently.
Every microservice has its own data store that the other
microservices have no access to. If another microservice wants
to get access to the data, it has to request the data via the public
interface of the microservice that owns the data. This has an
advantage that every team can change the internal schema as
long as the public interface keeps stable. A further advantage is
that it enables to exploit polyglot persistence – different
database paradigms can be used. For every microservice, the
paradigm can be chosen that fits best to the concrete use case.
For example, the online shop might use key-value stores for the
virtual shopping carts and relational databases for storing the
products.

Not only different database systems can be used but it is
also possible that every microservice uses a different
programming language or framework. This works as long as all
the languages support the used communication technology.
From the outside, each microservice can be seen as a black
box. Other microservices do not have to know which
programming language the implementation uses to provide a
certain service. However, this freedom should be used
carefully. If it is overused, problems will occur. The
complexity of the application increases and transferring
developers between teams becomes more difficult. Team
members may not be able to switch to another team because
they may not have the necessary knowledge about the
technology the other team uses. Moreover, if a microservice is
implemented in a rarely used language that only a small
number of employees are able to productively write with, the
company becomes dependent of those employees. If the
employees leave the company, the microservice cannot be
longer maintained and developed and new employees have to
be found that take over these tasks. Such a problem can be
avoided if a software project restricts itself to a fixed set of
programming languages and frameworks.

D. Scalability
A central aspect of microservices is that every microservice

runs in its own process. This has an important advantage. As
desired, the components can now be scaled independently. A
microservice that experiences high load can run on more
servers than a microservice that experiences low load.
Furthermore, if one of the servers hosting the high-load
microservice fails, the other one is still up and can serve
incoming requests. In the case of the online shop, a
microservice that lets visitors view a product needs probably
more scaling than a microservice that lets visitors write a
comment on the product.

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 76

Figure 4 illustrates examples of different scaling options in
microservice applications. Assume that A, B and C represent
different microservices. In the first example, all microservices
run on the same machine. In the second example,
microservices B and C still run on the same server but a
microservice A runs on a different one. The purpose might be
that the microservice A requires many resources that are not
available if it shares the resources with B and C as it was in the
first example. The third example is an extended version of the
second one. There are now two instances of the microservices
A and C. The machine hosting the microservice C might be
less powerful and cheaper than the machine hosting the
microservices B and C. The scenario shown in the third
example has another advantage compared to the first and
second examples: the microservices A and C are now better
protected against server failures.

Figure 4. Scaling of microservices.

However, scalability comes with costs – communication
between microservices becomes more complex. It is no longer
possible for components to communicate with each other via
simple method calls. Instead, inter-process communication
mechanisms are required. This has impact on how to design the
interfaces. Method calls are fast and can be made often without
running into any problems. But remote calls are expensive and
have high latency compared to simple method calls. For this
reason interfaces should not be designed too fine-grained. With
remote calls one of the primary goals is to reduce the number
of necessary calls.

E. Client-Server Interaction
So far we looked at the microservice architecture as a

collection of independent microservices. But how does a client
access the services that the collection of microservices
provides? Users want to interact via a UI. Users expect their
actions resulting in quick responses, even though many
microservices may be involved in generating the result.
Different possibilities exist how control and data flow between
front-end and back-end can be realized.

The first option is Application Programming Interface
(API) composition [4]. Client applications directly access the
fine-grained interfaces of microservices. If a microservice
provides, e.g., a JSON REST API, client applications will pull
the JSON data and process it to display it via the UI. However,
this solution has some disadvantages.

All types of clients have to use the same interface. The
interface is typically not adjusted to the different requirements
of the different devices. This means that a mobile client may
have to pull as much data as a desktop client even though it
will not display so much information. Mobile clients should
also be especially economical because unnecessary tasks
consume battery power and may result in costs for data usage.
Furthermore, it is possible that there are many microservices
involved. The client would have to send requests to every
participating microservice. Furthermore, this solution requires
that there should be a special UI team that is responsible for
pulling the data and visualizing it. Changes are only possible if
the UI team and the microservice team coordinate the change.

Since it is possible to use different programming languages
and technologies in different microservices, the APIs have to
be technology-agnostic [4]. Even if in the beginning just one
language is used, it is good not to constrain oneself to such a
decision. Technology diversity is an important feature of
microservice architecture, which should not be ruled out from
the beginning. Microservices themselves are designed to be
replaceable, but this is not so much true for the communication
links between them. Therefore, the project team should start
with a technology-agnostic API from the beginning.

If a project wants to organize its team so that every
microservice team contains people responsible for the UI, an
option called User Interface (UI) fragment composition [4] can
be used. Instead of just delivering data in form of, e.g., JSON, a
microservice could answer requests with UI fragments that are
already assembled. A web client would no longer process the
received data and assemble the web page itself, but simply
include the received HTML components into the web page.
The representation of the response of a microservice would be
the responsibility of the microservice team. This raises the
question how a consistent user experience can be achieved with
this approach. Users do not want to see that different parts of
the UI originate from different microservices. The problem can
be reduced with style guides and an asset server that hosts
shared images and CSS styles. A further problem is native apps
on mobile devices, which do not use HTML, but native
widgets. Microservices cannot serve native widgets. These
devices would have to fall back to API composition, pulling
the data first and then using it to assemble the UI. Also, UI
Fragment Composition still requires calls to all involved

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 77

microservices. This last issue can be solved with an API
gateway.

An Application Programming Interface (API) gateway [4]
provides interfaces that are more coarse-grained than those of
the microservices. The gateway talks to the fine-grained
interfaces of the different microservices and provides an
aggregated answer to the client. The clients send their requests
to the gateway that collects the responses of the individual
microservices, instead of talking to all the microservices
directly. This reduces the required communication effort for the
clients. A project can use multiple API gateways, one for each
client type. This way each gateway can be adapted to the
special requirements of each client type. However, the solution
can cause problems if the API gateway becomes too large and
complex. The isolation can vanish if several teams work on this
gateway. Microservices can lose their independence and then
cannot be deployed individually any longer.

F. Inter-Process Communication between Microservices
Applications based on microservice architecture are

decomposed into multiple components called microservices,
each of them providing a limited set of functionality. Each
microservice runs in its own process and can be deployed
independently. Microservices have to communicate with each
other to work as a whole. Since they are running in different
processes, in-process method calls are not an option. Rather
some kind of inter-process communication mechanism has to
be used.

The first option is request-response (sometimes also called
request-reply). If one microservice wants another microservice
to run a certain task and wants to get an immediate response,
this method is a natural fit. More specifically, a microservice
provides functionality via an API. A microservice that wants to
use this functionality sends a request to this API and receives
an immediate response (see Figure 5).

Figure 5. Request-response method.

A popular style, which is often used to realize this type of
communication, is REST (Representational State Transfer).
REST is an architectural style for creating web services.
RESTful systems mostly communicate over HTTP. In this
case, the request would be an HTTP request and the response
would be a resource represented as a document in, e.g., JSON.
There are many frameworks and libraries that let the project
team provide and consume RESTful APIs.

The request-response method is simple and intuitive but has
its limits. Sometimes a microservice wants to get informed
about events taking place in another microservice. Using the
request-response method, the microservices would have to
regularly poll the other microservice for its state. In large scale
systems, this is usually not an option. Or the microservice in
which the event is taking place has to call all microservices that

are interested in this kind of events explicitly. But this leads to
coupling between the microservices.

Publish-subscribe is a method for decoupling the service
provider and the service consumer. A microservice A, which is
interested in events of type E, subscribes at a message broker
for events of type E. A microservice B, which publishes E,
notifies the broker about it. The broker then notifies all
subscribers, which are interested in E, that E has taken place
(see Figure 6).

The publisher and the subscriber do not have to know about
each other – they are decoupled in the space dimension [5]. In
fact, there can be an arbitrary number of subscribers as well as
an arbitrary number of publishers. Subscribers do not know
which and how many publishers exist while publishers do not
know which and how many subscribers exist. Furthermore,
publishers and subscribers can also be decoupled in the time
dimension [5]. That is, the publisher can publish events while
the subscriber is disconnected and the subscriber can be
notified about an event while the publisher that created the
event is disconnected. Unlike to the request-response method,
in the publish-subscribe method no polling is necessary if one
microservice wants to get notified about events. But this also
means event notifications can arrive at any time and the
subscriber has to be capable to handle this. This is usually more
complex than the simple request-response solution because it
introduces asynchrony.

Figure 6. Publish-subscribe method.

G. Monitoring
Monitoring also plays a big role in the microservice

architecture because of the distributed nature of the application.
In particular, each microservice runs in its own process. These
processes usually do not all run on the same physical machine.
Instead, often several machines are operated. If the application
fails in some way or performs poorly, it might not be obvious
which machine is causing the problem. To find the responsible
hardware where to look for the error and to get alerted if a
critical operation goes wrong a monitoring infrastructure
should be established. Therefore, monitoring is one of the tasks
in the microservice architecture, which should be standardized
– all metrics, regardless which microservices provide those
metrics, should be accessible in one place and under a single
name [4].

Metrics can be monitored on both system and application
levels. System-level metrics measure the behavior of the
hardware (the application is running on) and include CPU load

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 78

and memory consumption. Application-level metrics measure
the behavior of the application and include response times and
error rates. Typically, in the microservice architecture both
types of metrics should be monitored but not all monitoring
frameworks support the two. This fact should be considered
when choosing a monitoring system.

Moreover, it should also be kept in mind that a monitoring
system itself can fail. Therefore, a failure strategy should be
established especially for monitoring systems that are based on
single server architecture. A fault on the primary (or single)
monitoring server should not result in an unmonitored
application environment.

VI. CONCLUSION

This paper explained the simpler and less costly monolithic
architecture and its limitations in large software projects, the
projects with many lines of code and many developers. To
solve the problems that can arise with monoliths, the
microservice architecture was introduced. Microservices run in
their own processes and form independent deployment units.
Each of them owns its own data store. Microservices enable
independent scaling and short release cycles.

Microservices have powerful properties, but come with
high costs that can outweigh their benefits in small and
medium sized software projects.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Ministry of Education and Research institutional research grant
IUT33-13.

REFERENCES

[1] J. Thönes, “Microservices,” IEEE Software, January/February 2015.
[2] “We Are Social, Percentage of all global web pages served to mobile

phones from 2009 to 2015,” 2015, (Accessed: 2017-03-08). [Online].
Available: http://statista.com/statistics/241462/global-phone-website-
traffic-share/ (Access Date: 9 July, 2017)

[3] F. Brooks, Jr, The mythical man-month: essays on software engineering.
Addison-Wesley, 1995.

[4] S. Newman, “Building Microservices - Designing Fine-Grained
Systems,” Sebastopol, CA: O’Reilly, 2015.

[5] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” in ACM Computing Surveys, vol. 35, no. 2,
June 2003, pp. 114–131.

International Conference on Information Society (i-Society 2017)

978-1-908320/86/5/$31.00 © 2017 IEEE 79

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

