
Designing Interactive Health Care Systems: Bridging the Gap Between
Patients and Health Care Professionals

Lisa Graham – IEEE Student Member, Mohammad Moshirpour – IEEE Student Member,
Michael Smith – Senior IEEE Member, Behrouz H. Far – IEEE Member

 Abstract—As patients become more proactive about their
health and turn to technologies such as the Internet to acquire
knowledge, the patient-health care professional relationship
has been changing. Traditionally, information has flowed from
health care professional to patient, but change to a two-way
dialogue is taking place. In this study, we examine a high level
design of a perceived medical system and determine the
implications of adding patients as active contributors. The
main challenge of modifying existing systems to incorporate
patient interaction is preserving system integrity. We propose a
systematic approach to support scaling health care systems
while preserving system integrity. Distributed systems such as
personal health records and eHealth systems provide two ways
in which patients can become more involved with their own
health care with or without the involvement of health care
professionals. It is important that modifications to such systems
do not compromise patient record integrity regardless of
whether the patient is working alone or with their health care
professional. The lack of central control in distributed systems
added to the complexity of health systems poses challenges for
design and modification. Of particular interest is the
identification of emergent behavior (behavior not explicitly
specified in the specifications) in distributed systems not
explicitly defined in the requirements of its individual
components. Use of the new emergent behavior detection
(EBD) tool offers potentially considerable cost savings by
proactively identifying such behaviors during the design rather
than the deployment phase of a project. Based on high level
message sequence charts, the EBD tool highlighted a data
synchronization issue between the main database and the
patient's interface to the system. This provides valuable
feedback of the early health system design which benefits
future design development.

Keywords—public health; health care; personal health
systems; eHealth systems; distributed systems; emergent
behavior; scenario-based software engineering; message
sequence chart; proactive care; patient-provider relationships

I. INTRODUCTION

Patients are becoming more interested in managing their
own health, which is leading to changes in traditional

 L. Graham is with the Schulich School of Engineering Biomedical
Engineering Program (email: lmgraham@ucalgary.ca).
 M. Moshirpour is with the Department of Electrical and Computer
Engineering (email: mmoshirp@ucalary.ca).
 M. Smith is with the Schulich School of Engineering Biomedical
Engineering Program, Department of Electrical and Computer Engineering,
and Department of Radiology (email: smithmr@ucalgary.ca).
 B. H. Far is with the Department of Electrical and Computer Engineering
(email: far@ucalgary.ca).
University of Calgary, 2500 University Drive NW, Calgary, Alberta,
Canada. T2N 1N4

information dissemination from the health care professional
to the patient [1]. In managing this change, it is necessary to
design software applications to support both the health care
professional and the patient in the clinic and out. Personal
health records and eHealth systems provide two ways in
which the patient can be involved in health management.
First, we will look at existing definitions for each of these
concepts, examine some concepts from literature for each,
and see how they are related.

There is no currently agreed upon definition for eHealth
[2], but health and technology are two common themes in
this area [3]. Previous work has shown there exists little
evidence to support claims of cost effectiveness and patient
outcome improvements through eHealth systems [4] even
through eHealth systems have been implemented (such as
eHealth Ontario [5]) or are in the process of being
implemented (such as the European Commission eHealth
Network [6]). In one study, the authors recommend
evaluating new health technologies comprehensively from
both social and technological standpoints to achieve an
optimal result [4]. Considering both social and technological
factors is a large undertaking, so we only focus on one aspect
of the technological perspective here – emergent behavior in
the design of new health software.

Personal health records can be defined as private, secure,
and confidential electronic systems which range in
complexity and allow users to access, manage, and share
health information of their own and those for whom they are
authorized [7, 8]. Some personal health systems provide
standalone data for tracking of, for example, physical
activity, diet, weight, and sleep (such as FitBit and
MyFitnessPal [9, 10]) allowing the patient to track
information independent of a health care professional. Other
personal health and eHealth systems integrate guidance from
a health care professional [8]. Such interconnected systems
provide more significant benefits [8], one of which is
improved communication between health care professionals
and patients [11]. In the preliminary design presented here,
communication facilitation between patient and health care
professional via a software tool is expected to increase
patient knowledge and involvement in a health program.

However, modifying existing systems to allow or increase
patient interaction can be a challenging task. It is important to
ensure modifications will not compromise system integrity
and lack of central control in distributed systems poses
challenges such as emergent behavior [12-17]. Emergent
behavior is behavior in a synthesized model of the distributed
system not explicitly specified in its specification. Emergent
behavior arises when there is a state in which the system
component cannot determine which course of action to take.
For instance, deadlock is a form of emergent behavior.

978-1-4799-2131-7/14/$31.00 ©2014 IEEE 235

Although emergent behavior is not always problematic, there
are many cases in which emergent behavior becomes
synonymous with unwanted behavior of the system [12-17].

Literature suggests that detecting unwanted behavior
during the design phase of a project is up to 20 times less
expensive than finding that behavior during the deployment
phase [18]. Unfortunately, manual review to reconcile
requirement and design documents may not efficiently detect
all the design flaws and emergent behaviors when
components interact as part of a large and complex system.

To ensure integrity of software systems, methodologies
using scenario-based software engineering have been
derived. The emergent behavior detection (EBD) tool was
developed using this approach and is used to analyze a
variety of software systems in areas such as robotics and
engineering [14, 19]. This tool performs automated analysis
of design artifacts and software requirements using the
message sequence chart (MSC) formal notation developed by
the International Telecommunication Union (ITU) [20].

In this paper, we demonstrate the use of the EBD tool in

the complex context of a personal health system. Previous
work with the EBD tool has not covered the patient element.
The design of the system presented here is very high level
and is based on private conversations with people involved in
community health programs for cancer patients [21, 22]. The
EBD tool is used to detect possible emergent behavior arising
when an existing patient program is modified to become a
system including both health care professionals and patients.

The remainder of this paper is organized as follows: in
Section 2, the details of the original and modified personal
health systems are presented as use case diagrams with key
features of the systems expressed in MSC formal notation.
This allows us to use software analysis methodology and the
EBD tool in Section 3 to identify emergent behavior that
might occur during the move to the modified personal health
system. Section 4 presents results and conclusions and future
work are presented in Section 5.

II. CASE STUDY: PERSONAL HEALTH SYSTEM

First, we provide details of an existing personal health
system with use case diagrams and message sequence charts
(MSC). Then, the modified system is presented through use
case diagrams and MSCs.

A. Existing System

The existing system has interactions between patients and
health care professionals (HCP). The main events include
recording information on paper (patient), submitting logs
(patient to HCP), and entering data into a database (HCP).

Figure 2 illustrates appointments and program execution
(comprised of creation and maintenance). Note that the HCP
is a central figure in the system. Their roles include
transferring data from patients to the database and creating
and maintaining the program. Although the patient has two
points of entry into the system – requesting an appointment
action and submitting logs – both are mediated by a HCP.

Fig. 1. Message sequence chart for creation of new patient program shown in the emergent behavior detection tool. The health care professional can
modify the patient's file, but the patient can neither view nor contribute.

Fig. 2. Use case diagram of the existing system. Patient interactions are
done either on paper or verbally with the health care professional. The
health care professional can access the database and manually enters
information collected from the patient.

236

The use cases in Figure 2 are further detailed by the MSC
in Figure 1 which shows the creation of a new patient
program. Once the HCP has created the program, they meet
with the patient to share the information via paper and verbal
explanations. Information is always being routed through the
HCP, which leaves room for error. For example, if the HCP
is running short on time (a common occurrence), information
for patient A may inadvertently be given to patient B.

A second scenario is updating the patient's program
(Figure 3). Here, the HCP modifies the patient's program
according to their progress. As the HCP receives logs from
the patient and enters them into the database, the HCP is
aware of the patient’s status (such as any missing logs). Once
the program is modified, the HCP meets with the patient to
go over updates and changes via paper and verbal
interactions. Again, the information is routed through the
HCP potentially leading to errors, especially if more than one
HCP is involved or time is an issue. Note that Figure 3
highlights limited patient involvement.

B. Modified System

Figure 4 shows the use case diagram for a set of proposed
modifications to the existing system. Of significant
importance is the number of points of entry the patient has

into the system and the characteristics of these entry points.
Many entry points allow the patient to directly interact with
the database rather than dealing with a gatekeeper (the HCP).
This allows patients to request and enter information, which
may improve data integrity (reduces the number of times
information is recorded/number of people entering the same
data) and reduce the time the HCP spends on tasks the
patients can now execute on their own (such as checking
appointment times).

In this scenario, the patient and HCP each have an
interface connecting to the system. For example, the patient
and HCP are both able to create, modify, and delete
appointments. HCPs are able to create and modify programs
for patients and patients are immediately notified of changes.
Patients are able to enter their logs directly into the system
and this data can be immediately seen by the HCP.

Further exploring the use case in Figure 4, Figure 5
illustrates the happy path (sequence of events executed with
no exceptions [23]) of updating a program in the modified
system. In this case, the HCP views the patient's information
and tweaks the program according to the patient's current
state. After the changes have been made, the HCP interface is
updated, the patient is notified of the changes, and the patient
interface is updated. This path assumes the patient
information is accurate and up-to-date.

The next section introduces the EBD tool used to verify
the MSCs and suggests considerations for system integrity.

III. DESIGN VERIFICATION

Analyzing the design of distributed systems consists of
two steps [14]. First, the behavior model with each system
component described as scenarios is constructed. Second, the
system is analyzed for design flaws such as emergent
behavior. In this section, we show how the scenarios from the
original system and proposed system can be input into the
EBD tool for automated analysis of software design artifacts.
The EBD tool performs this analysis by extracting domain
knowledge from scenarios and reporting on possible areas of
emergent behavior [14, 19].

A. Behavior Modeling

The model describing the behavior of each system
component is usually called the behavioral model. The
process of building the behavioral model from a scenario-
based specification is called the synthesis process [15, 24]. A
commonly used model for behavioral modeling of individual
components is the state machine. There are several reports on
the procedure of converting a set of sequence diagrams to a
behavioral model expressed by state machines [25-27]. In the
synthesis process, one state machine is built for each
component. The state machine includes all the interactions of
a component based on the messages it receives or sends.
Figure 6 depicts the behavior model for the system controller
component post-system modification. Theoretically, the
behavior of the system can be described by the union
(parallel execution) of all the state machines of the individual
system components. The detailed mechanism for the
synthesis of behavior models has been outlined in [14, 19].

B. Detection of Emergent Behavior

At this point, each agent is analyzed for design faults or
emergent behavior. This happens when identical states exist
in the union of state machines obtained through behavioral

Fig. 3. Message sequence chart for updating an existing patient program.
Again, the health care professional is able to modify the patient's file, but the
patient has no way to view or contribute to the file.

Fig. 4. Use case diagram of proposed modified system. Here, the patient
has more points of entry into the system. The health care professional and
patient work together to contribute to the patient's information.

Fig. 5. Message sequence chart for program update done by both patient
and the health care professional. The health care professional updates the
patient program. Updates are pushed to both the patient and health care
professional interfaces. Contrary to program updates in Figure 3, the
patient receives updates/has access to the latest database information.

Fig. 6. Behavior model for the system controller post-modification.

237

modeling [14, 19]. Identical states are defined and treated
differently in various works. For instance, Whittle and
Schumann propose the assignment of global variables to the
states by the system designer [28, 29]. However, the outcome
of this approach is not always consistent as global variables
chosen by different domain experts may vary.

This research formally defined the identical states and
semantic causality to unify the approaches [14]. Semantic
causality is an invariant property of the system and is defined
as sequence of messages (events) an agent must keep to
perform subsequent operations [14]. This information is
extracted from scenarios using an ontology-based approach
[30]. Based on semantic causality, an efficient and reliable
method to assign values to the states of the state machines
has been achieved (details presented in [14]). This
methodology has been developed into a software tool to
automate the process of emergent behavior detection (Figure
7). This figure accepts scenarios as input and detects and
reports emergent behavior.

IV. CONCLUSIONS AND FUTURE WORK

Personal health systems and eHealth systems can provide
patients with information about their health while allowing
them to contribute additional information. However, creating
a distributed system to support this is challenging. By using
the EBD software to evaluate the modified system design
presented here, we identified an issue preserving system
integrity where stale data could affect program changes.

Future work includes integrating the emergent behavior
detected into the software design, expanding the clinical
workflow, and using the EBD software to detect emergent
behavior in a more mature design. In addition, ensuring
proper system security is in place, preserving privacy, and
considering social factors should be taken into account.

ACKNOWLEDGMENTS

L. Graham would like to thank the Biomedical
Engineering Graduate Program at the University of Calgary
and Arcurve Inc. of Calgary, Alberta, Canada, for their
financial support, N. Culos-Reed and L. Capozzi for
information on health systems, and A. Tang for his feedback.
M. Moshirpour would like to thank Natural Sciences and
Engineering Research Council of Canada (NSERC), Alberta
Innovates-Technology Futures (AITF), and the Electrical and
Computer Engineering department at the University of
Calgary, Alberta, Canada, for their financial support.

REFERENCES

[1] M. J. Ball and J. Lillis, “E-health: transforming the physician/patient

relationship,” Int. J. Med. Inf., vol. 61, no. 1, pp. 1–10, Apr. 2001.

[2] C. Showell and C. Nøhr, “How Should We Define eHealth, and Does

the Definition Matter?,” in Quality of Life Through Quality of

Information, 2012, pp. 881–884.

[3] H. Oh, C. Rizo, M. Enkin, A. Jadad, J. Powell, and C. Pagliari, “What

Is eHealth: A Systematic Review of Published Definitions,” J. Med.

Internet Res., vol. 7, no. 1, Feb. 2005.

[4] A. D. Black, J. Car, C. Pagliari, C. Anandan, K. Cresswell, T. Bokun,

B. McKinstry, R. Procter, A. Majeed, and A. Sheikh, “The Impact of

eHealth on the Quality and Safety of Health Care: A Systematic

Overview,” Plos Med, vol. 8, no. 1, p. e1000387, Jan. 2011.

[5] “eHealth Ontario.” [Online]. Available:

https://www.ehealthontario.ca/portal/server.pt/community/home/204.

[6] “European Commission eHealth Network.” [Online]. Available:

http://ec.europa.eu/health/ehealth/policy/network/index_en.htm.

[7] A. E. Z. M. Faap and G. R. K. M. Faap, “Personal Health Records,”

in Pediatric Informatics, C. U. L. M. FAAP, G. R. K. M. FAAP, and

K. B. J. M. M. FAAP, Eds. Springer New York, 2009, pp. 293–301.

[8] P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands,

“Personal Health Records: Definitions, Benefits, and Strategies for

Overcoming Barriers to Adoption,” J. Am. Med. Inform. Assoc., vol.

13, no. 2, pp. 121–126, Mar. 2006.

[9] “Fitbit.” [Online]. Available: http://www.fitbit.com/uk. [Accessed:

30-Apr-2013].

[10] “MyFitnessPal.” [Online]. Available: http://www.myfitnesspal.com/.

[Accessed: 30-Apr-2013].

[11] N. Archer, U. Fevrier-Thomas, C. Lokker, K. A. McKibbon, and S. E.

Straus, “Personal health records: a scoping review,” J. Am. Med.

Inform. Assoc., vol. 18, no. 4, pp. 515–522, Jul. 2011.

[12] B. Adsul, M. Mukund, and K. N. Kumar, “Causal closure for MSC

languages,” in FSTTCS 2005, vol. 3821 of LNCS, 2005, pp. 335–347.

[13] R. Alur, K. Etessami, and M. Yannakakis, “Inference of message

sequence charts,” IEEE Trans. Softw. Eng., vol. 29, no. 7, pp. 623–

633, 2003.

[14] M. Moshirpour, “Model-Based Detection of Emergent Behavior In

Distributed and Multi-Agent Systems from Component Level

Perspective,” Master of Science, University of Calgary, Department

of Electrical and Computer Engineering, 2011.

[15] A. Mousavi, “Inference of Emergent Behaviours of Scenario-Based

Specifications,” PhD Thesis, University of Calgary, Electrical and

Computer Engineering, 2009.

[16] H. Muccini, “Detecting implied scenarios analyzing non-local

branching choices,” in Proceedings of the 6th international

conference on Fundamental approaches to software engineering,

Berlin, Heidelberg, 2003, pp. 372–386.

[17] S. Uchitel, J. Kramer, and J. Magee, “Negative scenarios for implied

scenario elicitation,” Sigsoft Softw Eng Notes, vol. 27, no. 6, pp. 109–

118, Nov. 2002.

[18] R. F. Goldsmith, Discovering real business requirements for software

project success. Artech House, 2004.

[19] M. Moshirpour, A. Mousavi, and B. H. Far, “A Technique and a Tool

to Detect Emergent Behavior of Distributed Systems Using Scenario-

Based Specifications,” in 22nd IEEE International Conference on

Tools with Artificial Intelligence (ICTAI), 2010, vol. 1, pp. 153–159.

[20] “ITU: Message Sequence Charts. Recommendation, International

Telecommunication Union.” 1992.

[21] L. Capozzi, “Private Conversation,” 2012.

Fig. 7. Output of the emergent behavior detection tool: possible emergent
behavior detected. Here, the patient information in the database is not up to
date (such as if the data is not synchronized due to lacking internet
connection). The health care professional updates patient program
according to out of date information in the database and thus the resulting
program may be inaccurate. The patient interface is updated to the new
program when the data is synchronized.

238

[22] N. Culos-Reed, “Private Conversation,” 2012.

[23] P. Bollen, “BPMN: A Meta Model for the Happy Path.” [Online].

Available: http://arno.unimaas.nl/show.cgi?fid=18194.

[24] M. Lohrey, Safe Realizability of High-Level Message Sequence

Charts. 2002.

[25] D. Harel, “From play-in scenarios to code: an achievable dream,”

Computer, vol. 34, no. 1, pp. 53–60, 2001.

[26] D. Harel and H. Kugler, “Synthesizing State-Based Object Systems

from LSC Specifications,” in Impl. and Appl.of Automata, S. Yu and

A. Păun, Eds. Springer Berlin Heidelberg, 2001, pp. 1–33.

[27] E. Mlikinen and T. Systa, “MAS - an interactive synthesizer to

support behavioral modeling in UML,” in Proceedings of the 23rd

International Conf. on Soft. Eng., 2001. ICSE 2001, 2001, pp. 15–24.

[28] J. Whittle and J. Schumann, “Generating statechart designs from

scenarios,” in Proceedings of the 22nd international conference on

Software engineering, New York, NY, USA, 2000, pp. 314–323.

[29] J. Whittle and J. Schumann, “Scenario-Based Engineering of Multi-

Agent Systems,” in in Agent Technology from a Formal Perspective,

C. A. R. BA MS, P. M. H., MSc, BSc, CMath, CEng, CPEng, CITP,

FBCS, FIEE, FIMA, FIEAust SMIEEE, J. R. M. BA, W. T. M. BA,

and D. Gordon-Spears, Eds. Springer London, 2006, pp. 159–189.

[30] M. Moshirpour, S. Mireslami, R. Alhajj, and B. H. Far, “Automated

ontology construction from scenario based software requirements

using clustering techniques,” in 2012 IEEE 13th International Conf.

on Information Reuse and Integration (IRI), 2012, pp. 541–547.

239

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryList_V1
 qi2base

