
FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

14 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

ON DEVOPS
Editor: Mik Kersten
Tasktop
mik@tasktop.com

A Cambrian Explosion of
DevOps Tools
Mik Kersten

ANY DISCUSSION OF how to scale
the benefits of DevOps invariably
lands on tools. The planning, track-
ing, automation, and management
tools we use define the “ground
truth” of where and how work hap-
pens. One of the most interesting,
and at times challenging, aspects of
agile and DevOps transformations is
the sheer volume of tools involved.
How many are required? Must there
be so many? Before we proceed fur-
ther on our journey of defining value
stream architecture, let’s look at
how this ground truth has evolved to
get us where we are today.

The Catalyst for DevOps Tool
Diversification
We’re at an interesting time in the
evolution of DevOps tools; the sheer
number of available tools points to a
sort of Cambrian explosion of tool
specialization and diversity. Is all
this diversity necessary? Will a big
wave of consolidation drive the ex-
tinction of most of these tools? What
are the lines of specialization driv-
ing the diversity, and do we need to
consider them when architecting our
software value streams? We need to
address these questions and inspect
the ground truth captured in today’s
toolchains in order to inform the
discussion of how to abstract away
the tools’ implementation details

to focus on the architecture of our
value streams.

For two decades starting in the
1980s, the company providing the
majority of enterprise IT shops with
software development tools was
Rational. For many organizations, the
entire software lifecycle was tracked
within the Rational toolchain. While
it’s tempting to poke fun at heavy-
weight tools while talking DevOps,
Rational created a toolchain that
was incredibly sophisticated and ef-
fective for its time. Along with the
tools, Rational created the Rational
Unified Process (RUP), a cohesive
and tool-supported process frame-
work for software engineering. RUP
provided IT and software delivery
organizations with end-to-end vis-
ibility, control, and predictability
for large software initiatives, thereby
becoming the poster child for water-
fall methodology. In the 1990s, both
the toolchain provided by Rational
and the process and methodologies
around it expanded rapidly.

Then, in the 2000s, agile hap-
pened, largely as a reaction to prob-
lems with the command-and-control
style of managing software delivery
that waterfall and RUP enabled.
The agile movement was followed
in the 2010s by the DevOps move-
ment, and both have now disrupted
the age of waterfall. The 2017 Stack

Overflow survey indicated that 76.9
percent of the respondents use agile
methods, whereas 26.9 percent use
waterfall (n � 25,771).1 Although
many large organizations still follow
the waterfall model, the benefits of
faster lead times and smaller batches
that come with agile and DevOps
are now part of the well-documented
state of the practice.2

Why the Explosion?
A disruption this fundamental can
bring with it a change of an entire
market. In this case, the DevOps
tool market formed to fill the gap
created by the waterfall model’s
displacement. You can glimpse this
disruption’s scope through the
GrowthPoint Technology Partners
DevOps Startup Landscape Map
(see Figure 1), courtesy of Jake
Kaldenbaugh, who carefully tracks
the tools space.

Most of the many vendors on this
map are vying to provide a reposi-
tory or automation layer for a seg-
ment of the software value stream.
What’s fascinating are both the sheer
number of vendors and the distinct
tool categories that have emerged.

Another piece of evidence comes
from a study in which my company
Tasktop examined the toolchains of
300 Enterprise IT organizations. We
determined that 70 percent of those

ON DEVOPS

 MARCH/APRIL 2018 | IEEE SOFTWARE 15

organizations already integrated
three or more tools and that 40 per-
cent integrated four or more tools.

In addition, the adoption of open
source tools, such as Git, has rapidly
increased over the same time frame.
The 2017 Stack Overflow survey in-
dicated that Git has achieved 69.2
percent adoption (n � 30,730), with
Rational ClearCase at 0.4 percent
by comparison.1 This very rapid
adoption of Git and its disruption
of heavier-weight tools indicate an
important trend. Agile, DevOps,
and open source all have something
in common: they’re driven from the

bottom up, with each focusing on
empowering the practitioner. Like
other disruptions, they represent a
breakup of the top-down control
model and a “democratization” of
the tool chain. What’s clear from
Figure 1 is that this bottom-up
democratization goes against the
one-size-fits-all mentality of the
tools that preceded it. The sheer
number of tool categories indicates
a specialization of tools that didn’t
exist before. That specialization is
driven by the needs of the different
types of work involved in software
delivery.

As software development has
scaled, practitioners have sought
tools specialized for their roles. For
example, a tool that tracks customer
tickets and focuses on service-level
agreements (SLAs) differs consid-
erably from one that tracks issues
in an agile backlog or one that’s
targeted at business analysts mod-
eling customer use cases and work-
flows. Under the hood, the tools
might appear nearly identical in
terms of their data models and col-
laboration facilities and workflow
engines. That’s why in the past, or-
ganizations could use a single tool

FIGURE 1. A glimpse into the exploding number of DevOps tools, which are filling the gap created by the waterfall model’s

displacement. (Source: GrowthPoint Technology Partners; used with permission.)

ON DEVOPS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

for the different tasks. However,
as the work has scaled, so has the
number of practitioners.

As a result, practitioners have de-
manded user experiences that pro-
vide systems of engagement tailored
to their role. This has pressured
vendors to specialize their offer-
ings, with the resulting Cambrian
explosion of the toolchain. Consider
the various categories to be differ-
ent evolutionarily stable strategies
for vendors, with diversity within
and across categories driven by a
resource-rich market of organizations
building bigger and bigger software.

Dealing with Diversity
So, are these tools actually headed
for a mass extinction? The analysis
of the 300 organizations’ toolchains
revealed two types of tool diversity.

Fundamental diversity adds value
by increasing software delivery pro-
ductivity. For example, teams de-
veloping Java applications might be
more productive using Jira, whereas
teams developing with Azure and
.NET might be more productive
using VSTS (Visual Studio Team
Services).

Accidental diversity doesn’t con-
tribute positively to organizational
goals. This category includes tools
inherited through mergers and ac-
quisitions or similarly functioned
tools that were selected indepen-
dently owing to a lack of centralized
governance. For example, an orga-
nization could have three bug track-
ers: a 20-year-old legacy tool created
in house, a new developer-favored
issue tracker, and an open source
issue tracker that resulted from an
acquisition.

From a value-stream-architecture
viewpoint, both types of diversity
must be accounted for. Accidental di-
versity should motivate organizations

to consolidate and rationalize. This
activity is relatively straightforward;
it simply implies that the value
stream should contain only one
tool for each required tool category.
What’s more problematic is when
organizations can’t distinguish be-
tween accidental and fundamental
diversity.

While examining value streams,
we’ve identified six varieties of fun-
damental diversity:

• Stakeholder specialization. The
various stakeholders of software
delivery require different tools to
be effective for their particular
discipline. For example, support
people need tools that support
SLAs or ITIL, whereas develop-
ers need tools streamlined for
code review and commit.

• Scale specialization. Some tools
are specialized according to or-
ganizational size. For example,
a lightweight Kanban tool can
be great for streamlining the
flow of a dozen teams, but a
hierarchical requirements tool is
needed for tracking the require-
ments of safety-critical systems.

• Platform specialization. Vendors
who provide a development plat-
form often provide a tool-based
on-ramp onto that platform. For
example, Microsoft provides
end-to-end DevOps and agile
solutions that are optimized
around Azure as the deployment
platform but are less tailored
to the more heterogeneous Java
ecosystem.

• Zone specialization. In Zone to
Win, Geoffrey Moore identified
zones of varying stages of matu-
rity for businesses to focus on.3
A more experimental transfor-
mation zone product might re-
quire only the most lightweight

and experimental tools, such as
GitHub’s simple issue-tracking
features. More mature products,
such as those in the performance
zone, might require closer inte-
gration with business require-
ments and planning.

• Supplier diversity. As outsourc-
ing and consumption of open
source software increase, it
becomes impractical to expect
software suppliers to use the
same tools as the sourcing or-
ganization. For example, open
source projects tend to use open
source tools, and small suppliers
tend to use lightweight tracking
tools instead of the enterprise
tools needed for large-scale soft-
ware delivery.

• Legacy. The cost and disruption
of moving away from a legacy
system, such as an older tool or
in-house defect tracker, can be
overly high. This is especially the
case for established products in
maintenance mode or in the per-
formance zone. These tools can
be another source of diversity
if modernizing them is overly
disruptive.

Although all organizations should
aim to weed out accidental diversity,
the norm today is a heterogeneous,
best-of-breed toolchain. While the
fast growth of startups and new
vendors means some consolidation
seems inevitable, enough need exists
for specialization that I predict the
heterogeneity will grow further be-
fore shrinking.

For example, enterprise IT or-
ganizations are starting to move
away from the project-aligned value
streams that have a lifecycle aligned
to the project time frame and budget.
Instead, organizations are employ-
ing the software-and-tool-vendor

ON DEVOPS

MARCH/APRIL 2018 | IEEE SOFTWARE 17

approach of product-oriented value
streams. This shift from project to
product is resulting in the growth
of yet another category of product
management tools, somewhere be-
tween traditional requirements and
agile planning.

Also, as software development
becomes more complex, so will the
specialization of the toolchain. This
is similar to other fields (such as
the medical field) in which the ben-
efits of the division of labor have
caused ever-increasing specialization
in expertise. As software complexity
grows, so will the number of special-
ized practitioners, driving further
specialization of the tools.

The problem is that, when we try
to analyze and improve how soft-
ware is built, the morass of tools
makes it difficult to see the forest for
the trees. No single tool has a model
of the end-to-end system. Yet value
streams will continue to be defined
in tools, with each delivery stage im-
plemented in a specific tool’s scheme
and workflow model. But to take
the next step in DevOps, we need to
start thinking end-to-end. The only

way to achieve that is to establish an
architectural discipline for manag-
ing the layer above the toolchain.

T he evolution of toolchains
will continue, as will the
specialization that meets the

needs of each stakeholder involved
in software delivery. Here, I out-
lined why this specialization, and the
resulting tool diversity, is a funda-
mental aspect of the modern DevOps
toolchain. Stay tuned for how we ap-
proach raising the abstraction level
and modeling the layer above the
toolchain.

References
1. “Developer Survey Results: 2017,”

Stack Overflow, 2017; insights

.stackoverflow.com/survey/2017.

2. G. Kim et al., The DevOps Hand-

book: How to Create World-Class

Agility, Reliability, and Security in

Technology Organizations, IT

Revolution, 2016.

3. G.A. Moore, Zone to Win: Organiz-

ing to Compete in an Age of Disrup-

tion, Diversion, 2015.

ABOUT THE AUTHOR

MIK KERSTEN is the Founder and CEO of Tasktop. Contact him at mik@

tasktop.com or follow @mik_kersten.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

Want to know more about the Internet?
This magazine covers all aspects of Internet computing, from programming and standards to security and networking.

www.computer.org/internet

