
FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E JULY/AUGUST 2018 | IEEE SOFTWARE 81

REDIRECTIONS
Editor: Tim Menzies
North Carolina State
University
tim@menzies.us

What Do We (Really)
Know about Test-Driven
Development?
Itir Karac and Burak Turhan

TEST-DRIVEN DEVELOPMENT
(TDD) is one of the most contro-
versial agile practices in terms of its
impact on software quality and pro-
grammer productivity. After more
than a decade’s research, the jury is
still out on its effectiveness. TDD
promised all: increased quality and
productivity, along with an emerg-
ing, clean design supported by the
safety net of a growing library
of tests. What’s more, the recipe
sounded surprisingly simple: Don’t
write code without a failing test.

Here, we revisit the evidence of
the promises of TDD.1 But, before
we go on, just pause and think of an
answer to the following core ques-
tion: What is TDD?

Let us guess: your response is
most likely along the lines of, “TDD
is a practice in which you write
tests before code.” This emphasis
on its test-first dynamic, strongly
implied by the name, is perhaps the
root of most, if not all, of the con-
troversy about TDD. Unfortunately,
it’s a common misconception to use
“TDD” and “test-first” interchange-
ably. Test-first is only one part of
TDD. There are many other cogs
in the system that potentially make
TDD tick.

How about working on small
tasks, keeping the red–green–refactor
cycles short and steady, writing only
the code necessary to pass a fail-
ing test, and refactoring? What if

we told you that some of these cogs
contribute more toward fulfilling
the promises of TDD than the order
of test implementation? (Hint: you
should ask for evidence.)

15 Years of (Contradictory)
Evidence
Back in 2003, when the software
development paradigm started to
change irrevocably (for the bet-
ter?), Kent Beck posed a claim based
on anecdotal evidence and paved
the way for software engineering
researchers:

No studies have categorically
demonstrated the difference be-
tween TDD and any of the many

Call for Submissions

Do you have a surprising result or industrial experience? Something that chal-

lenges decades of conventional thinking in software engineering? If so, email a

one-paragraph synopsis to timm@ieee.org (use the subject line “REDIRECTIONS:

Idea: your idea”). If that looks interesting, I’ll ask you to submit a 1,000- to 2,400-

word article (in which each figure or table counts as 250 words) for review for the

Redirections department. Please note: heresies are more than welcome (if sup-

ported by well-reasoned industrial experiences, case studies, or other empirical

results).—Tim Menzies

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

alternatives in quality, productiv-
ity, or fun. However, the anecdotal
evidence is overwhelming, and the
secondary effects are unmistakable.2

Since then, numerous studies—
for example, experiments and case
studies—have investigated TDD’s
effectiveness. These studies are
periodically synthesized in sec-
ondary studies (see Table 1), only
to reveal contradictory results
across the primary studies. This
research has also demonstrated
no consistent overall benefit from
TDD, particularly for overall

productivity and within subgroups
for quality.

Why the inconsistent results? Be-
sides the differences in the study con-
texts listed in Table 1, other likely
reasons are that

• TDD has too many cogs,
• its effectiveness is highly influ-

enced by the context (for ex-
ample, the tasks at hand or skills
of individuals),

• the cogs highly interact with
each other, and

• most studies have focused on
only the test-first aspect.

Identifying the inconsistencies’
sources is important for designing
further studies that control for those
sources.

Matjaž Pančur and Mojca
Ciglarič speculated that the results of
studies showing TDD’s superiority
over a test-last approach were due to
the fact that most of the experiments
employed a coarse-grained test-last
process closer to the waterfall ap-
proach as a control group.9 This
created a large differential in granu-
larity between the treatments, and
sometimes even a complete lack
of tests in the control, resulting in

Table 1. Systematic literature reviews on test-driven development (TDD).

Study
Overall conclusion for quality
with TDD

Overall conclusion for
productivity with TDD

Inconsistent results in the study
categories

Bissi et al.3 Improvement Inconclusive Productivity:
Academic vs. industrial setting

Munir et al.4 Improvement or no difference Degradation or no difference Quality:
• Low vs. high rigor
• Low vs. high relevance

Productivity:
• Low vs. high rigor
• Low vs. high relevance

Rafique and Mišić5 Improvement Inconclusive Quality:
Waterfall vs. iterative test-last

Productivity:
• Waterfall vs. iterative test-last
• Academic vs. industrial

Turhan et al.6 and Shull et al.1 Improvement Inconclusive Quality:
• Among controlled experiments
• Among studies with high rigor

Productivity:
• Among pilot studies
• Controlled experiments vs.

industrial case studies
• Among studies with high rigor

Kollanus7 Improvement Degradation Quality:
• Among academic studies
• Among semi-industrial studies

Siniaalto8 Improvement Inconclusive Productivity:
• Among academic studies
• Among semi-industrial studies

REDIRECTIONS

 JULY/AUGUST 2018 | IEEE SOFTWARE 83

unfair, misleading comparisons. In
the end, TDD might perform better
only when compared to a coarse-
grained development process.

Industry Adoption
(or Lack Thereof)
Discussions on TDD are common
and usually heated. But how com-
mon is the use of TDD in practice?
Not very—at least, that’s what the
evidence suggests.

For example, after monitoring the
development activity of 416 devel-
opers over more than 24,000 hours,
researchers reported that the develop-
ers followed TDD in only 12 percent
of the projects that claimed to use
it.10 We’ve observed similar patterns
in our work with professional devel-
opers. Indeed, if it were possible to
reanalyze all existing evidence con-
sidering this facet only, the shape of
things might change significantly (for
better or worse). We’ll be the devil’s
advocate and ask, what if the anec-
dotal evidence from TDD enthusiasts
is based on misconceived personal
experience from non-TDD activities?

Similarly, a recent study analyzed
a September 2015 snapshot of all the
(Java) projects in GitHub.11 Using
heuristics for identifying TDD-like
repositories, the researchers found
that only 0.8 percent of the projects
adhered to TDD protocol. Further-
more, comparing those projects to
a control set, the study reported no
difference between the two groups in
terms of

• the commit velocity as a measure
of productivity,

• the number of bug-fixing com-
mits as an indicator of the num-
ber of defects, and

• the number of issues reported
for the project as a predictor of
quality.

Additionally, a comparison of the
number of pull requests and the dis-
tribution of commits per author
didn’t indicate any effect on devel-
oper collaboration.

Adnan Causevic and his col-
leagues identified seven factors limit-
ing TDD’s use in the industry:12

• increased development time
(productivity hits),

• insufficient TDD experience or
knowledge,

• insufficient design,
• insufficient developer testing

skills,
• insufficient adherence to TDD

protocol,
• domain- and tool-specific limita-

tions, and
• legacy code.

It’s not surprising that three of these
factors are related to the developers’
capacity to follow TDD and their
rigor in following it.

What Really Makes TDD Tick?
A more refined look into TDD is
concerned with not only the order
in which production code and test
code are written but also the average
duration of development cycles, that
duration’s uniformity, and the refac-
toring effort. A recent study of 39
professionals reported that a steady
rhythm of short development cycles
was the primary reason for improved
quality and productivity.13 Indeed,
the effect of test-first completely di-
minished when the effects of short
and steady cycles were considered.
These findings are consistent with
earlier research demonstrating that
TDD experts had much shorter and
less variable cycle lengths than nov-
ices did.14 The significance of short
development cycles extends be-
yond TDD; Alistair Cockburn, in

explaining the Elephant Carpaccio
concept, states that “agile developers
apply micro-, even nano-incremental
development in their work.”15

Another claim of Elephant Car-
paccio, related to the TDD concept
of working on small tasks, is that
agile developers can deliver fast
“not because we’re so fast we can
[develop] 100 times as fast as other
people, but rather, we have trained
ourselves to ask for end-user-visible
functionality 100 times smaller than
most other people.”15 To test this,
we conducted experiments in which
we controlled for the framing of task
descriptions (finer-grained user sto-
ries versus coarser-grained generic
descriptions). We observed that the
type of task description and the task
itself are significant factors affect-
ing software quality in the context
of TDD.

In short, working on small,
well-defined tasks in short, steady
development cycles has a more
positive impact on quality and
productivity than the order of test
implementation.

Deviations from the
Test-First Mantra
Even if we consider the studies that
focus on only the test-first nature
of TDD, there’s still the problem of
conformance to the TDD process.
TDD isn’t a dichotomy in which
you either religiously write tests
first every time or always test after
the fact. TDD is a continuous spec-
trum between these extremes, and
developers tend to dynamically span
this spectrum, adjusting the TDD
process as needed. In industrial set-
tings, time pressure, lack of disci-
pline, and insufficient realization of
TDD’s benefits have been reported
to cause developers to deviate from
the process.12

REDIRECTIONS

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

To gain more insight, in an ethno-
graphically informed study, research-
ers monitored and documented the
TDD development process more
closely by means of artifacts includ-
ing audio recordings and notes.16
They concluded that developers per-
ceived implementation as the most
important phase and didn’t strictly
follow the TDD process. In par-
ticular, developers wrote more pro-
duction code than necessary, often
omitted refactoring, and didn’t keep
test cases up to date in accordance
with the progression of the produc-
tion code. Even when the develop-
ers followed the test-first principle,
they thought about how the produc-
tion code (not necessarily the design)
should be before they wrote the test
for the next feature. In other words,
perhaps we should simply name this
phenomenon “code-driven testing”?

T DD’s internal and external
dynamics are more complex
than the order in which tests

are written. There’s no convincing
evidence that TDD consistently fares
better than any other development
method, at least those methods that
are iterative. And enough evidence ex-
ists to question whether TDD fulfils
its promises.

How do you decide whether and
when to use TDD, then? And what
about TDD’s secondary effects?

As always, context is the key, and
any potential benefit of TDD is likely
not due to whatever order of writing
tests and code developers follow. It
makes sense to have realistic expecta-
tions rather than worship or discard
TDD. Focus on the rhythm of devel-
opment; for example, tackle small
tasks in short, steady development
cycles, rather than bother with the
test order. Also, keep in mind that

some tasks are better (suited) than
others with respect to “TDD-bility.”

This doesn’t mean you should
avoid trying TDD or stop using it.
For example, if you think that TDD
offers you the self-discipline to write
tests for each small functionality,
following the test-first principle will
certainly prevent you from taking
shortcuts that skip tests. In this case,
there’s value in sticking with the rule
that implies not to write any produc-
tion code without a failing unit test.
However, you should primarily con-
sider those tests’ quality (without ob-
sessing over coverage),17 instead of
fixating on whether you wrote them
before the code. Although TDD does
result in more tests,1,6 the lack of at-
tention to testing quality,12 including
maintainability and coevolution with
production code,16 could be alarming.

As long as you’re aware of and
comfortable with the potential trade-
off between productivity and test-
ability and quality (perhaps paying
off in the long term?), using TDD
is fine. If you’re simply having fun
and feeling good while performing
TDD without any significant draw-
backs, that’s also fine. After all, the
evidence shows that happy develop-
ers are more productive and produce
better code!18

Acknowledgments
Academy of Finland Project 278354 partly

supports this research.

References
 1. F. Shull et al., “What Do We Know

about Test-Driven Development?,”

IEEE Software, vol. 27, no. 6,

pp. 16–19, 2010.

 2. K. Beck, Test-Driven Development:

By Example, Addison-Wesley, 2003.

 3. W. Bissi et al., “The Effects of Test

Driven Development on Internal

Quality, External Quality and

Productivity: A Systematic Review,”

Information and Software Technol-

ogy, June 2016, pp. 45–54.

 4. H. Munir, M. Moayyed, and K.

Petersen, “Considering Rigor and Rel-

evance When Evaluating Test Driven

Development: A Systematic Review,”

Information and Software Technol-

ogy, vol. 56, no. 4, 2014, pp. 375–394.

 5. Y. Rafique and V.B. Mišic, “The Ef-

fects of Test-Driven Development on

External Quality and Productivity:

A Meta-analysis,” IEEE Trans. Soft-

ware Eng., vol. 39, no. 6, 2013, pp.

835–856; http://dx.doi.org/10.1109

/TSE.2012.28.

 6. B. Turhan et al., “How Effective Is

Test-Driven Development?,” Making

Software: What Really Works, and

Why We Believe It, A. Oram and

G. Wilson, eds., O’Reilly Media,

2010, pp. 207–219.

 7. S. Kollanus, “Test-Driven

Development—Still a Promising

Approach?,” Proc. 7th Int’l Conf.

Quality of Information and Commu-

nications Technology (QUATIC 10),

2010, pp. 403–408; http://dx.doi

.org/10.1109/QUATIC.2010.73.

 8. M. Siniaalto, “Test Driven Develop-

ment: Empirical Body of Evidence,”

tech. report, Information Technology

for European Advancement, 3 Mar.

2006.

 9. M. Pančur and M. Ciglarič, “Im-

pact of Test-Driven Development on

Productivity, Code and Tests: A Con-

trolled Experiment,” Information

and Software Technology, vol. 53,

no. 6, 2011, pp. 557–573.

 10. M. Beller et al., “When, How, and

Why Developers (Do Not) Test in

Their IDEs,” Proc. 10th Joint Meet-

ing Foundations of Software Eng.

(ESEC/FSE 15), 2015, pp. 179–190;

http://doi.acm.org/10.1145/2786805

.2786843.

 11. N.C. Borle et al., “Analyzing the

Effects of Test Driven Development

REDIRECTIONS

 JULY/AUGUST 2018 | IEEE SOFTWARE 85

in GitHub,” Empirical Software

Eng., Nov. 2017.

 12. A. Causevic, D. Sundmark, and

S. Punnekkat, “Factors Limiting

Industrial Adoption of Test Driven

Development: A Systematic Review,”

Proc. 4th IEEE Int’l Conf. Software

Testing, Verification and Validation,

2011, pp. 337–346.

 13. D. Fucci et al., “A Dissection of the

Test-Driven Development Process:

Does It Really Matter to Test-First

or to Test-Last?,” IEEE Trans. Soft-

ware Eng., vol. 43, no. 7, 2017, pp.

597–614.

 14. M.M. Müller and A. Höfer, “The Ef-

fect of Experience on the Test-Driven

Development Process,” Empirical

Software Eng., vol. 12, no. 6, 2007,

pp. 593–615; https://doi.org/10.1007

/s10664-007-9048-2.

 15. A. Cockburn, “Elephant Carpaccio,”

blog; http://alistair.cockburn.us

/Elephant1carpaccio.

 16. S. Romano et al., “Findings from a

Multi-method Study on Test-Driven

Development,” Information and

Software Technology, Sept. 2017,

pp. 64–77.

 17. D. Bowes et al., “How Good Are My

Tests?,” Proc. IEEE/ACM 8th Work-

shop Emerging Trends in Software

Metrics (WETSoM 17), 2017, pp.

9–14.

 18. D. Graziotin et al., “What Happens

When Software Developers Are (Un)

happy,” J. Systems and Software,

June 2018, pp. 32–47.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ITIR KARAC is a project researcher in the M-Group research group

and a doctoral student in the Department of Information Processing

Science at the University of Oulu. Contact her at itir.karac@oulu.fi.

BURAK TURHAN is a senior lecturer in Brunel University’s

Department of Computer Science and a professor of software

engineering at the University of Oulu. Contact him at turhanb@

computer.org.

IEEE TRANSACTIONS ON

BIG DATA

For more information
on paper submission,
featured articles, calls for
papers, and subscription
links visit:

www.computer.org/tbd

SUBSCRIBE
AND SUBMIT

TBD is financially cosponsored
by IEEE Computer Society, IEEE
Communications Society, IEEE

Computational Intelligence Society,
IEEE Sensors Council, IEEE Consumer

Electronics Society, IEEE Signal
Processing Society, IEEE Systems,
Man & Cybernetics Society, IEEE
Systems Council, IEEE Vehicular

Technology Society

TBD is technically cosponsored by
IEEE Control Systems Society, IEEE
Photonics Society, IEEE Engineering
in Medicine & Biology Society, IEEE
Power & Energy Society, and IEEE

Biometrics Council

SUBMIT
TODAY

