
Towards Effective AI-powered Agile Project
anagement

Hoa Khanh Dam
University of Wollongong, Australia

hoa@uow.edu.au

Truyen Tran
Deakin University, Australia

truyen.tran@deakin.edu.au

John Grundy
Monash University, Australia

john.grundy@monash.edu

Aditya Ghose
University of Wollongong, Australia

aditya@uow.edu.au

Yasutaka Kamei
Kyushu University, Japan

kamei@ait.kyushu-u.ac.jp

Abstract—The rise of Artificial intelligence (AI) has the poten-
tial to significantly transform the practice of project management.
Project management has a large socio-technical element with
many uncertainties arising from variability in human aspects,
e.g. customers’ needs, developers’ performance and team dy-
namics. AI can assist project managers and team members
by automating repetitive, high-volume tasks to enable project
analytics for estimation and risk prediction, providing actionable
recommendations, and even making decisions. AI is potentially
a game changer for project management in helping to accelerate
productivity and increase project success rates. In this paper, we
propose a framework where AI technologies can be leveraged to
offer support for managing agile projects, which have become
increasingly popular in the industry.

Index Terms—Software Engineering, Artificial Intelligence

I. INTRODUCTION

Artificial Intelligence (AI) has started making a substantial

impact to many parts of our society, and is predicted to disrupt

how we produce, manufacture, and deliver. The rise of AI

is empowered by the growth and availability of big data,

breakthroughs in AI algorithms (e.g. deep learning), and sig-

nificantly increased computational power. The pervasiveness

of software products has resulted in a massive amount of data

about software projects which AI techniques can leverage. We

envision that AI will transform (software) project management

practice in many aspects, from automating basic administra-

tion tasks to delivering analytics-driven risk predictions and

estimation, facilitating project planning and making actionable

recommendations. In this paper, we present a framework of

how various AI technologies are adapted and integrated to

support various areas of agile project management (agile PM).

Agile methods (e.g. Scrum) have been widely used in

industry to manage software projects [1]. This relatively new

approach to project management empowers software teams

to focus on rapid delivery of business value to customers,

thus significantly reducing the overall risk of project failures.

Project management has thus witnessed a shift away from the

traditional “waterfall” process and towards a more adaptive,

agile model. The number of projects following agile has

increased significantly in the recent years, not only in the

software industry but also in other non-IT domains [2].

An agile project are centered around a product backlog
(see Figure 1), which is typically a collection of items to be

completed in the project [3]. Items in a product backlog can be,

for example, customer requirements for the product (user sto-

ries), requests for bug fixes, changes to existing features, and

technical improvements. Product backlog is evolved through

regular updates and refinement to ensure that it contains items

that are relevant to project’s scope and objectives, sufficiently

detailed, and appropriately estimated. Important updates to the

product backlog include adding or removing backlog items

based on current needs, estimating the size of items, and refine

large items into small fine-grained items.

Fig. 1. A typical agile process

An agile project consists of multiple iterations (or alterna-

tively referred as sprints). Each sprint is often a short period

in which the team aims to complete a subset of items in

the product backlog. Prior to a sprint, the team performs

sprint planning to identify the goal of that upcoming sprint,

and select items from the product backlog which they will

complete to meet the sprint’s goal. During sprint planning,

many agile teams decompose each product backlog items into

a set of tasks. These tasks and their corresponding product

backlog items form the sprint backlog. The team then executes

the sprint to complete items in the sprint backlog to deliver a

potentially shippable product increment.

II. CHALLENGES IN AGILE PROJECT MANAGEMENT

Many tools have been developed to support agile project

management such as JIRA, Assembla and Axosoft. Those

tools allow agile teams to create and manage various agile

M

41

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

978-1-7281-1758-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-NIER.2019.00019

artifacts such as user stories, product backlogs, sprints, and

sprint backlogs. For example, they support teams in creating

user stories and tasks, linking related tasks and user stories,

assigning team members to tasks and issues, creating dead-

lines, setting priorities and estimates (e.g. story points). They

also enable team members to see the amount of work required

for individuals and teams during each sprint, track progress

of the sprint and its associated user stories and tasks. They

facilitate real-time information exchange and collaboration via

centralised project information.

Although existing agile tools are useful, their support is

limited to creating, managing, and tracking project artifacts,

and visualising historical project data such as burndown charts

and other agile reports. Current agile project management

tools lack advanced analytical methods that are capable of

harvesting valuable insights from project data for predic-

tion, estimation, planning and action recommendation. Many

decision-making tasks in agile projects are still performed by

agile teams without machinery support. We identify a number

of important areas in agile project management that remain

challenging due to this lack of effective support.

1) Identifying backlog items: Items in the product backlog

can be derived from different sources such as a requirement

specification, new feature requests from customers, bugs re-

ported by end users, previous bug fixes, discussions among

agile teams (e.g. technical debts, design changes or action

items from retrospective meetings), end users’ reviews of

the product, and even experiences from previous projects. It

is difficult and time consuming for agile teams, especially

product owners, to process this large amount of heterogenous

data in order to identify and create new items for the product

backlog. In addition, for each newly created backlog item, it

is necessary to consider inter-dependencies between the new

item and existing ones. This is challenging as a typical project

has a large product backlog with more than 100 items.

2) Refining backlog items: Some items (e.g. user stories)

in the product backlog are initially large, thus do not fit within

a single sprint. Agile teams are often required to refine these

large items into small ones such that they not only facilitate

implementation but are sufficiently large, allowing stakehold-

ers to understand business value [3]. There are typically three

levels of refinement: (1) decomposing an epic into a number

of user stories; (2) splitting user stories into small stories; and

(3) breaking a user story into a number of specific project

tasks. Different rules and guidelines have been proposed to

help teams refine backlog items, but rules often overlap with

or even conflict with one another. Teams struggle to refine

backlog items and rely on their own intuition and experience.

3) Sprint planning: The key part of sprint planning is

selecting a subset of items in the backlog which can re-

alistically be accomplished by the team in the upcoming

sprint to deliver a product increment. The customer expects

the team to deliver what have been planned for a sprint,

thus meeting this expectation is important in maintaining the

customer’s faith in the team’s ability to deliver. Sprint planning

is however highly challenging since many important factors

must be considered, including items contributing toward the

sprint goal, their priority and business value to customers,

the dependencies among items, appropriate allocations to bug

fixing and other technical work (e.g. resolving technical debts)

and the availability of team members and the team’s capacity.

Risks impeding a sprint execution should also be forecasted

and factored into a sprint plan. Sprint planning thus requires

not only in-depth understanding of the current project and

team but also experience learned from previous projects. Tool

support is needed to manage complexities for large projects.

4) Pro-actively monitoring sprint progress and managing
risks: As the sprint unfolds, the team needs to track sprint

progress and manage risks. Current practices in risk man-

agement mostly rely on high-level guidance and subjective

judgements. Predicting future risks is highly challenging due

to the inherent uncertainty, temporal dependencies, and es-

pecially the dynamic nature of software. There is currently

a gap in providing agile teams with insightful and actionable

information about the current existence of risks in a sprint, and

recommending concrete measures to deal with those risks.

III. AN AI–POWERED AGILE PROJECT ASSISTANT

The above challenges and the serious lack of effective tools

presents an opportunity for AI to significantly improve the

practice of agile project management. AI-based tools are able

to process massive amounts of data generated from software

projects, harvest useful insights, and train to perform complex

tasks such as estimating effort, task refinement, resource

management, and sprint planning. Figure 2 shows our proposal

for the architecture of an AI-powered agile project manage-

ment assistant. The core of this AI system are an analytics
engine, a planning engine and an optimization engine. These

machineries depends on the representation learning engine
to learn and generate representations of project data that are

mathematically and computationally convenient to process.

The conversational dialog engine converses with users and

brings the support provided by the other engines to the users.

A. Representation learning engine

Agile project artifacts contain both structured and unstruc-

tured data. For example, backlog items may have structured

attributes such as type and priority (which are easily extracted

to form a vector representation), whereas product visions,

sprint goals, description of backlog items, and communication

among team members (e.g. comments on backlog items) are

written in natural text. Codebases contain documentations such

as release notes and comments written in natural text, and

source code written in programming languages. Hence, the

representation learning engine is an important component of

this AI system, responsible for learning vector representations

for each project artifact. These representations can automati-

cally be learned from unlabelled data, and are then used by

the other machineries in the AI system.

The representation learning engine has a NLP component

which performs automatic analysis on project textual artifacts

and then generates vector representations of those artifacts.

42

Risk prediction

Backlog item
estimation

Risk mitigation

Backlog item
refinement

Sprint plan

Backlog item
identification

Fig. 2. The architecture of an AI-powered agile project management assistant

Traditional NLP techniques (e.g. Bag of Words) produce

very high dimensional and sparse vector representations. By

contrast, latest advances in deep learning-based NLP tech-

niques [4] such as word2vec, paragraph2vec, Long Short-Term

Memory (used in Google Translate), or Convolutional Neural

Networks (used in Facebook’s DeepText engine) are able to

generate dense vector representations that produce superior

results on various NLP tasks. Source code is another important

source of project data. The Code Modeling component is

responsible for learning vector representations which reflect

the semantic and syntactic structure of source code. State-

of-the-art statistical language modeling techniques, including

deep learning models, have demonstrated their effectiveness

for source code and thus can be leveraged here [5].

We have leveraged the powerful deep learning architecture,

Long Short-Term Memory (LSTM) to automatically learn

vector representations for both backlog items [6] and source

code [7]. LSTM enables us to learn the semantics and syntactic

structures, particularly the long-term dependencies, existing in

both natural text and source code. We will extend these models

to learn representations for other textual artifacts such as

product visions, sprint goals, and developer communications.

Any useful AI machinery must take into account the capa-

bility and dynamics of agile teams. Obtaining a representation

for a team requires modeling of its members (e.g. developers).

A developer can be represented through the project artifacts

they have involved with, such as the backlog items they have

completed or the code they have written. The Feature
Extraction and Aggregation extracts all the vector

representations of the artifacts related to a developer, and

learn to aggregate them to form a vector representation of

the developer. It also aggregates vector representations of

different artifacts (in both unstructured and structured forms)

into a unified representation. A number of feature aggregation

techniques proposed in recent work [8] which derive vector

features of a sprints based on the features of the backlog items

assigned to it. We will extend those aggregation methods to

learn features for representing team members. This represen-

tation will be enriched with features representing work and

social dependencies between team members, extracted from

communication logs (e.g. comments or discussions on work

items).

B. Analytics engine

The analytics engine aims to provide decision support in

the following aspects:

1) Descriptive analytics: Most existing agile project man-

agement tools support this basic level of analytics: data vi-

sualization via reports, dashboards, and scorecards. Common

agile reports such as burndown charts, velocity charts, and

sprint reports are created by summarizing what happened using

historical project data and presented to the users in an intuitive

and easily interpretable manner. Knowing what happened (e.g.

team velocity from sprint to sprint) is useful, but diagnos-
ing why something happened (e.g. why the team’s velocity

dropped significantly in some sprints) is even more useful.

AI equipped with machine learning can augment descriptive

analytics by discovering patterns, identifying anomalies and

detecting “unusual” events.

2) Predictive analytics: Most existing agile tools are not

yet capable of providing this advanced level of analytics. Two

challenging areas are effort estimation and risk prediction that

are specifically for agile contexts. Machine learning techniques

are suited to build prediction models. For example, recent

work [6] used deep learning to estimate the size of user stories

through learning a team’s previous estimates. Estimation tools

could be used as a decision support system and takes part

in the existing estimation process (e.g. planning poker) or in

a completely automated manner. Forecasting future risks re-

quires the capability of processing large amounts of historical

project data, memorizing a long history of past experience,

and inferring the current “health” state of the project. Recent

work has moved forwards in this direction to predict delay

risks [9] or sprint delivery risks [8].

3) Prescriptive analytics: This is the most advanced level

in the project analytics stack. Using the results from descrip-

tive analytics and predictive analytics, prescriptive analytics

recommends the best course of actions for agile teams in a

specific situation. We identify here three important areas in

agile PM that prescriptive analytics would be useful:

• Backlog item identification: Using the NLP component

in the representation learning engine, prescriptive analyt-

ics will automatically process and extract new backlog

items from different data sources such as a requirement

specification, new feature requests from customers, bugs

reported by end users, previous bug fixes, discussions

among agile teams (e.g. technical debts, design changes

or action items from retrospective meetings), end users’

reviews of the product, and even experiences from pre-

vious projects. It will also able to recommend inter-

43

dependencies between new item and existing ones using

machine learning and representation learning.

• Backlog item refinement: prescriptive analytics will sug-

gest how a user story is split into a smaller user stories

or how a user story is decomposed into tasks. Learning

decompositions is highly challenging since it requires a

background knowledge. It is still a challenging topic in

AI and machine learning.

• Risk mitigation: Using results from predictive analytics,

prescriptive analytics recommends a course of actions to

take advantage of a future opportunity or mitigate a future

risk and shows the implication of each decision option.

C. Reasoning capability

Reasoning is the capacity to infer new knowledge by

algebraically manipulating existing knowledge base to respond

to a query [10]. Traditionally, it works on symbolic knowledge

representation through the means of induction or deduction.

This permits domain knowledge provided by agile teams (e.g.

project rules). Deep neural reasoning offers an alternative for

producing answers from sub-symbolic (vector) representation

[11], which are output of the representation engine. Inferred

knowledge, after being validated, can be put back to enrich the

knowledge base. The reasoning capability of our AI system is

provided by two engines: planning and optimization.

1) Planning engine: Planning for a sprint can be formulated

as an AI planning problem in which the initial state is the

state of the project and the product prior a sprint, a goal

state is specified in the sprint’s goal, and selecting items from

the product backlog can be viewed as the act of choosing

plan operators to be executed from the initial state to a

goal state. The planning engine needs to consider a range of

input such as the existing product backlog items, the sprint’s

goal, the existing codebase, the team’s capacity and previous

performance in previous sprints. These data are often not

formally expressed. The representation learning engine learns

to generate these data into vector representations, but further

formal encoding would also be needed.

In addition, the plan needs to be executed in a manner that

is robust and resilient to changes. The challenge is not only to

be flexible enough to deal with immediate impediments to the

sprint execution, but to also anticipate future states of affairs

that might impede sprint execution or the achievement of the

sprint goal. Impediments to the successful sprint execution

can appear in many forms. For instance, a task might not

be completed by the due date, preventing other dependent

tasks from being started. Hence, the relationship between a

sprint plan and its operating environment can been seen as

adversarial. Recent successful work in deep reinforcement

learning (e.g. [12]) can be thus leveraged to build this part

of the planning engine.

2) Optimization engine: The optimization engine helps the

planning engine to compute the optimal set of actions given a

certain situation. For example, it can be used to compute the

optimal selection of backlog items for the upcoming sprint

given multiple constraints and objectives. It can also be used

for hyper-parameters tuning of machine learning models used

in the analytics engine. Search-based software engineering

techniques can be leveraged to build the optimization engine.

D. Conversational dialog engine
The conversation dialog engine is envisioned to converse

meaningfully with agile teams. It is a form of a software

chatbot [13], acting as an interface between the users and the

remaining part of the AI system. The chatbot can be asked

different types of questions, such as “Show me your estimate

of this user story” or “Can you help split this user story?”.

Through conversations with the users, it receives input and

requests, and passes them to relevant engines in the system.

Future chatbots can also be trained end-to-end [14].

IV. NEXT STEPS

We are developing prototype tools to realize each compo-

nent of the proposed AI-powered agile project management

assistant. We plan to first evaluate it using our existing

dataset of 150 open source projects. We will also collaborate

with our existing industry partners to perform an evaluation

on commercial software agile projects. We however believe

that AI will assist, not substitute, human teams. Individuals,

interactions, and collaboration are still the key elements of

project success. AI can serve as a distinctive accelerator for

agile teams and thus help increase project success rates.

REFERENCES

[1] R. Hoda, N. Salleh, and J. Grundy, “The rise and evolution of agile
software development,” IEEE Software, 2018.

[2] CollabNet and VersionOne, “The 12th annual state of agile report,”
Tech. Rep., 2018, https://explore.versionone.com/state-of-agile.

[3] M. Cohn, Agile estimating and planning. Pearson Education, 2005.
[4] C. D. Manning, “Computational linguistics and deep learning,” Compu-

tational Linguistics, 2016.
[5] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey

of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

[6] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose,
and T. Menzies, “A deep learning model for estimating story points,”
IEEE Transactions on Software Engineering, 2018. [Online]. Available:
DOI:10.1109/TSE.2018.2792473

[7] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and
A. Ghose, “Automatic feature learning for predicting vulnerable
software components,” IEEE Transactions on Software Engineering,
2019. [Online]. Available: DOI:10.1109/TSE.2018.2881961.

[8] M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, and J. Grundy,
“Predicting delivery capability in iterative software development,” IEEE
Transactions on Software Engineering, vol. 44, no. 6, pp. 551–573, June
2018.

[9] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting the
delay of issues with due dates in software projects,” Empirical Softw.
Engg., vol. 22, no. 3, pp. 1223–1263, Jun. 2017.

[10] L. Bottou, “From machine learning to machine reasoning,” Machine
Learning, vol. 94, no. 2, pp. 133–149, 2014.

[11] H. Jaeger, “Artificial intelligence: Deep neural reasoning,” Nature, vol.
538, no. 7626, p. 467, 2016.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[13] C. Lebeuf, M. Storey, and A. Zagalsky, “Software bots,” IEEE Software,
vol. 35, no. 1, pp. 18–23, January/February 2018.

[14] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau,
“Building end-to-end dialogue systems using generative hierarchical
neural network models.” in AAAI, vol. 16, 2016, pp. 3776–3784.

44

