
An Architecture and Implement Model for Model-View-Presenter Pattern

Yang Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

ericzhang.buaa@gmail.com

Abstract-Model-View-Presenter (MVP) is a pattern which
aimed at providing a cleaner separation between the View, the
Model and the Presenter. The paper advances an architecture
model of MVP pattern on .NET platform and a formal method
of how to implement it After that, an example of implement

MVP pattern to web application or desktop application is cited.

Keywords- mvp; pettern; architecture; presentation layer;

I. INTRODUCTION

Model-View-Presenter (MVP) is an architecture pattern
for the presentation layer of software applications. The
pattern was originally developed at Taligent in 1990s [1] and
first was implemented in C++ and Java.

In MVP, the View and the Model are neatly separated
and the View exposes a contract through which the Presenter
access the portion of View that is dependent on the rest of
the system.

The Model is the component which preserves data, state
and business logic; it just exposes a group of service
interfaces to Presenter and hides the internal details.

The View is the user interface, it receives user's action
and contract to Presenter to achieve user's need, and then the
View responds user by result information.

The Presenter sits in between the View and the Model; it
receives input from the View and passes commands down to
the Model. It then gets result and updates the View trough
the contracted View interface.

"Fig. 1" illustrates the parts of MVP pattern and how
they interact with each other.

Since the MVP pattern was put up in 1990s, it has been
widely discussed in the area of software engineering; Martin
Fowler reported some methods of implementing MVP at his
papers [5] and books [6]. However, few wittier have
considered how to implement it on concrete program; this
process is extremely dependent on experience of developers.

Uses contract to
read/write view

data

Invokes a method
�---''--__ ac:c:ordi ng to the

user action

Figure 1. MVP pattern.

978-1-4244-5540-9/10/$26.00 ©2010 IEEE

532

Yanjing Luo

School of Computer Science and Engineering
Beihang University

Beijing, China
luo _yanjing@sina.com

Contrast to traditional presentation layer, the advantage
of presentation layer with MVP pattern is based on tree facts:

• The View doesn't know the Model. Because of this,
there is a low coupling between Model and View. It
means that if Model or View was changed, another
part not needs to modify as long as interfaces are
stable. This also stands for the flexibility of
architecture and the reusability of business logic in
Model.

• The Presenter ignores any UI technology behind the
View. According to this, the replacement of UI
technology, such as transfer Windows Forms to
WPF or to Web Forms, is not need any change of
other parts. Even one application could have more
than one UI technologies but one Model so that the
CIS deployment and the BIS deployment are
supported by it at the same time.

• The View is mockable for testing purposes. In
tradition, it is impossible to test View or business
logic component before another has completed
because of the tight coupling between View and
business logic. By the same token, the unit testing
for View or business logic component is difficult.
All of those problems are solved by MVP pattern. In
MVP, there is no direct dependency between View
and Model. For that reason, developer could use
mock object to inject into View or Model so that
they can be tested on one's own.

II. THE ARCHITECTURE MODEL

As a pattern, MVP has various expressive forms and
architectures when implementing in different platforms, the
concrete implement is restrained by the features of platform,
and consistency is another factor which should be considered
when designing the concrete architecture model.

Based on the above, an architecture model of
implementing MVP pattern on .NET which is illustrated by
"Fig. 2" is given here. This architecture model not only takes
advantage of many specific characters of OOAD, practical
experience also proves that this is workable and well­
behaved.

This model is made up by five parts:
IView is the abstraction of View that is composed of a set

of rules that declare what data and functions should be
implemented in View. Generally every View component has
its own IView component.

1m plements !

interaction

User

Invokes
action

method

I ISe;CeS I
! 1m plements

I Se�ices I

Figure 2. The architecture model of MVP on .NET.

View is the part which interacts with users. There are
many technologies could be used to implement the View
on .NET platform, such as Windows Forms, Web Forms,
Silverlight, WPF and so on. Every View component should
implement the homologous IView and one IView component
could has many implements with different VI technologies,
as a result the Views implemented from the same IView
could take the place of each other.

IServices is a set of interfaces that define the functions
should be implemented by business logic components. It is
correspond to interface of The Model.

Services are the business logic components that
implements IServices. View and Presenter need the help of
Services to do application business on account of they do not
have any business logic. Services having nothing to do VI
technology commonly, the concrete implement of them are
some general classes. Sometimes Services need a Repository
to deal with the operation of database, this is out of this
paper's range.

Presenter is the core of MVP pattern. On .NET platform
presenter is a number of classes that dependent on IView and
IServices. Just like the Services, Presenter is foreign to VI
technology because it just dependent to IView. Presenter
receives user actions and read input data from view, and then
it invokes functions in Services to complete the business
logic and modifies View's state. This entire works are called
presentation logic.

"Fig. 3" is the sequence diagram that shows how MVP
pattern works.

533

L

Vi;W ·1 Presenter

I
I
I

IMO;;.I 1
action

New
view

served
to the

user

Invoke
action

method

Update
view

Invoke
business

logic
method

Figure 3. Sequence diagram of MVP pattern.

III. METHOD OF IMPLEMENTING MVP

I
I
I

Generally, the method of how to implement a pattern is
described by natural language, but a kind of formalistic
description based on set theory will be used to explain the
procedures of implementing MVP pattern on .NET platform
in this paper.

Above all, there are some sets, functions and formulas
need to be defined:

Let 1= {iJ, i2, ... , in}. It is the set of input data that each
element is input by user.

Let 0 = {oj, 02, ... , Om}. It is the set of output data that
each element should be output to View.

Let A = {aJ, a2, ... , ak}. It is the set of actions that each
element indicates an action that user could act on View.

Let VAM = <I, 0, A>. It is View Abstract Model (VAM)
that indicates the abstraction of a view component. Unlike L
o and A, VAM is not a set but an ordered triple.

Then, the implement of MVP could be decomposed into
five steps:

1) Building VI prototype.

The task of this step is to build prototype for every VI
component.

Prototype is the visual element or text description that
indicates the frame structure of VI component. A VI
component is a part of VI which is fully-formed and
independent; it often exists as a windows form or a web page.
Every VI component has its own prototype.

There are various methods to build VI prototype such as
drawing VI blueprint, developing VI prototype program and
describing VI by text.

2) Creating the View Abstract Model.

According to the definition of V AM, the task of creating
it is divided into creating set I, creating set 0 and creating set
A, that is, to find every input data, every output data and
every action user may act on View.

Just like VI prototype, every VI component has its own
VAM, so this step's assignment is to find all of the input data,
output data and actions at VI prototype which was built in
step 1.

3) Defining interfaces of View and Presenter.

Formally, interfaces of View and Presenter are sets that
include function definition elements.

A function definition element is an ordered triple just like
<N, R, P>. N is the name of function, R is the return type of
function and P is a set with parameter elements. A function
definition element is an abstraction of a function.

The algorithm of define interfaces of View and Presenter
as follows:

CREATE-IVIEW-AND-IPRESENTER (I, 0, A)

1. Let getter(data) is to define a getter function for
data.

2. Let setter(data) is to define a setter function for
data.

3. Let handle(action)is to define afonction that handle
the action.

4. Let !View = {} is the set indicates interface of View.

5. Let IPresenter = {} is the set indicates interface of
Presenter.

6. For each element in I

Add getter(element) to IView.

End/or

7. For each element in 0
Add setter(element) to IView.

End/or

8. For each element in A

Add handle(element) to IPresenter.

Endfor

It must be explained that also IPresenter is created here, it
needs not to implement in program on account of it just
intermediate product that helps to create Presenter. But,
IView should be implemented in program.

4) Implementing View and Presenter.

534

IView and IPresenter set the rules for View and Presenter.
The job of this step is to implement the View and Presenter
on the basis of IView and IPresenter.

5) Defining services interfaces and implement services.

In the process of implementing Presenter, it will be find
that many action handle functions need business logic
functions, this demand could be abstracted as services
interfaces and business logic components that should be
implemented based on this interfaces.

IV. EXAMPLE

In order to explain how to practice the model and method
above, an example is given in this chapter.

Think about a B2C e- commerce system, customers could
browse, search and buy products online with it. One of its
feature is customer could add product to cart: system
showing name and price of target product to customer when
a product is selected and once customer has changed
product's amount, system updates the total money that
customer should to pay.

This feature will be the example that shows how to
implement MVP pattern on .NET platform with the
architectural model and method above.

1) Building VI prototype.

Firstly, a VI prototype which is illustrated by "Fig. 4"
was developed on basis of description of this feature. It has
not any logic but just a frame of VI.

2) Creating the View Abstract Model.

Product Name: Nokia 5230

Price: $159.00

Amount: L-13 _--=�=: I

Total: $477.00

,--_A_ d_d_....J1 [Cancel

Figure 4. The VI prototype.

Input data is data that input by user and transferred from
View to Presenter, output data is data that transferred from
Presenter to View and displayed to user, actions is the
behaviors that users could act on VI prototype.

"Fig. 5" demonstrates all data and actions found in UI
prototype. As shown in the figure:

• Amount is the only input data in this UI.
• Product Name, Price and Total are output data that

showed to user.
• User's actions on this UI include Add Product to

Cart (when click "Add" button), Cancel (when click
"Cancel" button), Change Amount (when click arrow
buttons or change number text).

Input data: Amount

Output data: Price

Output data: Product Name

au A� d to art lCJI§]I�1

Pr pduc:t Uame: Uokia 5230 I '!

Pri c:e: $159.00 I
Action: Change Amount

Amount: r31 ®
Action: lnitial:ize Form

Total: [$477.00

0 !J. c.tion:..Adci:toLa'"

c@Jc@=J
Action: Cancel

Output data: Total

Figure 5. Find input/output data and actions.

Worth mentioning, there is an inconspicuous action,
Initialize Form, that occurs when user opening this UI
component.

From the above, V AM of this UI component is following:

535

1= {Amount}

a = {Product Name, Price, Total}

A = {Add Product to Cart, Cancel, Change Amount,
Initialize Form}

VAM

= <L a, A>

= < {Amount}, {Product Name, Price, Total}, {Add
Product to Cart, Cancel, Change Amount, Initialize Form} >

3) Defming interfaces of View and Presenter.

IView and IPresenter could obtain by applying CREATE­
IVIEW-AND-IPRESENTER to V AM built above. Details are
listed in "Table I" and "Table II".

Generally, getter function has no parameter and its return
type is data's. Setter function has one parameter with the
same type of data and a void return value. Action functions
have no parameter but a void return value.

4) Implementing View and Presenter.

After defined interfaces, it is not difficult to implement
them.

For View, the implement is developing UI component
with a kind ofUI technology and implementing all functions
that "Table I" lists.

Presenter will be implemented as a class that includes all
action functions.

Getter and setter functions are so simple that it has no use
for explaining in detail. So this paper will only describe the
action functions.

TABLE I. VIEW INTERFACE FUNCTIONS

Name Return Type Parameters
getAmount decimal {}

setProductName void {name}

setPrice void {price}

setTotal void {total}

TABLE II. PRESENTER INTERFACE FUNCTIONS

Name Return Type Parameters
AddAction void {}

CancelAction void {}
ChangeAmountAciton void {}

InitializeAction void {}
The lOgICS of actIOn functIons are hsted heremafter.
• The task of AddAction is to read the Amount user

input and save it in database with product and
customer's information.

• Cancel Action is very simple that only closes the
window.

• ChangeAmountAction is triggered when user
changed the Amount of product. In this function, the
code should multiply Price by new Amount read
from UI and outputs the result to Total immediately.

• InitializeAction's logic is to output Product Name,
Price, default Amount and default Total to VI.

Additionally, how View and Presenter interact is an
important problem to solve.

Although a great deal of approaches could solve this
problem, one of them is recommended strongly that declare a
private member with the type of IView in Presenter and not
to instantiate it but to expose a constructor injection point.
This ensures the Presenter independent of any concrete VI
component; in other words, every VI component who
implemented the IView could use this Presenter. VI
component also has a private member with the type of
Presenter, unlike Presenter, UI component instantiates this
member at constructor and uses itself as the parameter to
inject into Presenter object. What follows in the passage are
code structures of this approach.

Presenter Code Structure
public class Presenter

{
private IView _view;

public Presenter (IView view)

{
this._view = view;

}

/* Action Functions */

}

UI Code Structure
public class View: IView

{

}

private Presenter "'presenter;

/* IView Members */

public ViewO

{
ThisPresenter = new Presenter (this);

}

/* UI Technology Codes */

The code structures are written in C# that is a popular
language on .NET platform. Nevertheless, they are true of
Java, C++ and other object-oriented languages too.

5) Defining services interfaces and implement services.

536

Because this step is not the job of presentation layer, the
details is omitted here.

V. SUMMARY

This paper describes an architectural model and a formal
method of implementing MVP pattern on .NET platform.
For the purpose of making them easy to understand and use,
the example of an e- commerce system was cited that
demonstrates how to put the architecture model and formal
method into practice. Although the model and method in this
paper is implemented on .NET, it suit to other platforms and
languages as well. Additionally, the model and method is fit
to both desktop application and web application, in other
words, they are VI technology independence.

REFERENCES

[I] Mike Potel, "MVP: Model-View-Presenter The Taligent
Programming Model for C++ and Java", Taligent Inc. 1996.

[2] Steve Burbeck, "Applications Programming in Smalltalk-80: How to
use Model-View-Controller (MVC)",

st-www.cs.uiuc.edulusers/smarchlst-docs/mvc.html.

[3] Andy Bower, Blair McGlashan, "Twisting the Triad: The evolution of
the Dolphin Smalltalk MVP application framework", European
Smalltalk User Group (ESUG), 2000.

[4] Dino Esposito, Andrea Saltarello, "Microsoft .NET: Architecting
Applications for the Enterprise" , Microsoft Press, 2008.

[5] Martin Fowler, "Model View Presenter",

www.martinfowler.comleaaDevlModeIViewPresenter.html.

July 2004.

[6] Martin Fowler, "Patterns of Enterprise Application Architecture",
Addison-Wesley Professional, November 2002.

[7] Jeffrey Richter, "CLR via C#", Microsoft Press, 2010.

[8] Micah Alles, David Crosby, Brian Harleton, Greg Pattison, Carl
Erickson, Michael Marsiglia, Curt Stienstra, "Presenter First:
Organizing Complex GUI Applications for Test-Driven
Development", Agile Conference, 2006.

[9] Roger Took, "Surface Internation: A Paradigm and Model for
Separating Application and Interface", 1990 ACM 0-89791-345-
0190/0004-0035, pp. 35-42.

[10] Trygve Reenskaug, "MODELS-VIEWS-CONTROLLERS",
Technical note, Xerox PARC, December 1979.

[II] Michael Feathers, "The Humble Dialog Box", Object Mentor, 2002.

[12] Martin Fowler, "Mocks Aren't Stubs",

www.martinfowler.comiarticles/mocksArentStubs.html. July 2004.

[13] Spring.NET Application Framework, www.springframework.net/

