
Gamification in Software Engineering Education
G. Ivanova*, V. Kozov* and P. Zlatarov*

* University of Ruse/Department of Computing, Ruse, Bulgaria
givanova@ecs.uni-ruse.bg

Abstract – Gamification has proven to be an adequate
approach in various educational environments, from
kindergarten and elementary school to higher education
classrooms. While it has been extremely effective with
school students and standard subjects, such as STEM, when
applied correctly, gamification and game-based learning can
be applied with older students, even in the information
technology and software engineering field. The paper
outlines the results based on the experience of applying
gamification of education to attract and stimulate student
motivation and engagement in class. An approach for
including games to teach software engineering methods and
concepts is described. Different styles of software
engineering games are examined and several of the most
appropriate and relevant to the students' field of study are
integrated in the Software engineering course. Descriptions
of the games and the planned student progression through
them are presented. A collaborative agile team-based
approach is implemented and described. A suitable number
of student groups have been selected, and the results from
surveys held among those students are shown. Conclusions
about the improvement of the process are discussed.

Keywords - gamification, game based learning, education,
software engineering, higher education

I. INTRODUCTION

Games are an innovative educational tool for actively
engaging the learners and improving their motivation [1].
Games accelerate the acquisition of specialized
knowledge of both elementary and intricate
interconnections and actions in specialized fields.
Educational games are used with most success in pre-
school education, where most of the learning process is
game-based. Games are also becoming a part of the
curriculum of high school and university students in
recent years [2, 3, 4]. In different studies, the game-based
approach for adults is referred to as “gamification” [5] or
“serious games” [6]. The term “serious games” is used to
stress that these games are not meant to only entertain,
but also achieve a certain educational result. The term
“gamification” has entered the area of higher education as
a description of the game-based approach used as a tool
to increase student motivation and improve their
engagement with the educational process [7].

As using games and simulations in the area of higher
education is still in its early stages of development,
experimental actions are necessary in order to achieve the
desired improvement in all scientific fields. Gamification
methods used in the course of Software engineering will
be described in this report. Software engineering is a
complex subject, the course is aiming to teach the
students the different practices for creating software

projects and solutions in both the practical and theoretical
aspect. Software engineering is a wholesome systematic
approach for analyzing, designing, creating, testing,
documenting and supporting software projects by using
different tools and methods for professional development
and team management. The fast pace with which
Software engineering has been evolving leads to the
increasing necessity to teach students using the latest
educational tools and keeping up with the newest trends
in order to stay relevant to the business field. Fig. 1
presents a survey about the usability of the software
project development practices in the industry [8]. The
survey is conducted with developers in 2018. The results
attest that the most widely used approaches are the agile
methodologies: Agile, Scrum and Kanban. In the survey
more than 58 981 participants have taken part.

Figure 1. StackOverflow Developer Survey Results in 2018 about
software methodologies

This paper will present a gamification method used in
the learning process in the Software engineering course in
the education of both Computer systems and technologies
engineering students, and their peers from
Telecommunications technologies bachelor degree
courses in the University of Ruse. Some of newest and
most relevant methodologies and technologies for
designing different parts of a software project, as well as
approaches for keeping track of and controlling the entire
process - are being taught to the students. In the course
workshops the learners go through the whole software
process (Fig. 2) – from the problem to the end product,
going through all the necessary stages - experiencing
planning, how to deal with constraints on resources,
teamwork communication and time management issues,
all that has to be taken into account when designing and
finishing a Software product.

Figure 2. Software Engineering Process

���������	
��
�������

�����	�
����������	��

���������

��������������	����
���	����	���������

��������

���������
����������	���

���������

��	�����
����������	��
� �������	���

����������
�
���

!"����	
��
���	���

#��	������"�
$�	����	���

%���	�������
�
����

MIPRO 2019, May 20-24, 2019, Opatija Croatia

1445

The paper outlines the results based on the experience
of applying gamification to the course. An approach for
including games to teach software engineering methods
and concepts is going to be described.

II. SOFTWARE ENGINEERING GAMES

A. Collaborative Role Playing Game

An experiment has been conducted with the
participation of the students in the Software engineering
course. It consists of using role playing as a game [9],
where the students take on the roles of different positions
taken by people in a normal software company. They
have their own company and positions, each with its’
different characteristics, which the students have to
understand and apply.

Following the most modern trends in software
engineering for using agile technologies [10], the students
that are being taught in the course are given the task to
create a software project. They are divided in groups of 5-
6 people. Managing the project requires the creation of a
special social construct – a project team, which has a
temporary and strictly defined goal – to complete the
project successfully. The teams have to create an
imaginary company and define their budget for the
project in the beginning of the semester, and the choices
they have made are sealed with a virtual contract with a
client.

Every member of the team has a main and secondary
role. The roles in the software teams are as follows:
Manager, Business Analyst, Programmer, Quality
Assurance, Data Base Specialist, and Graphics Designer.
The Manager is responsible for the overall control of the
human resources and their tasks, with the goal being the
successful delivery of the software product on time, based
on the schedule, and its adherence to the clients’
requirements. The Manager is necessary as all software
projects need to comply with their budget and time
constraints, which is an important aspect that has to be
managed and understood.

The teams distribute their roles and responsibilities
for the project by using a Gantt time chart. By using the
Gantt chart the teams can visually present the time
allocated for each task in the software project. The tasks
are distributed horizontally – for each task there is one
line, and each vertical line is a moment in time. Every
task is a rectangle with a width proportional to the time it
will take to complete it on the timetable. The plan details
the tasks and activities that are needed for the completion
of the work on the project; Mid-level expected results are
defined; Control points are also defined – they are called
milestones; A timetable with dates of beginning and
completion for each task is designed; The time and
resources necessary for the realization of the project are
calculated; The resources – both human and material –
are defined; The overall strategy for the quality
management of the project is decided on; The personal
responsibilities for each task is distributed to the
members of the team, every person having tasks allocated

on the chart. Fig. 3 presents a Gantt chart, created by a
team of Erasmus exchange students, who were taught in
the Software engineering course during their stay at the
University of ruse in 2018.

Figure 3. An example for Gantt Chart

The teams have to write all software requirements –
including functional and non-functional ones – necessary
for the successful project completion, with the guidance
of Software Requirements Specification that they are
given as an example. The Specification helps keep track
of the main points that have to be completed for the
project, introduces a shared vision of the completion of
the project – for both the client and the company, as well
as instructions on how to distribute each of the user roles
as well as description of how each function of the
software product should behave.

The teams are given the opportunity to play the role
of Scrum or Kanban team. The agile methodologies are
contemporary methods for creating, developing and
supporting software products and services. Agile
methodologies have the potential to meet the challenges
in front of the modern software companies, functioning in
an ever-changing and rapidly developing highly
competitive scene [10]. In this business setting, the
deciding factor between success and failure is managing
time frames, quality assurance and pricing of the software
products. These parts of the projects’ lifetime are critical
to the survival and evolution of a software company.

Scrum is an agile method for guiding the process of
creating a software product [11], while giving the ability
to react to different changes in the environment such as:
product requirements, time for development, availability
of resources and technologies; as all of these may be
subject to change at the course of the project. Scrum
allows higher levels of personal freedom to the teams and
improves the flexibility of the whole process and its’
ability to respond to change effectively. In scrum the
teams have three main roles: product owner, team and
scrum master. The team is self-governed and has a high
level of independence and self-accountability. The
Product owner is responsible for maximizing the profit
gained for every investment. The owner achieves this by
defining the product characteristics, thus creating a
product catalogue, prioritizing each of the properties for
the next sprint and constantly reevaluates and improves
this catalogue. The Scrum master helps the product group
with learning and applying the Scrum practices to the
development process, and steers the team to success.

The teams which choose the Kanban agile
methodology for process management [12], have the

1446

opportunity to have a better view on the work process, as
well as identification and vision on how tasks and process
are handled on a Kanboard. Kanban’s leading quality is
transparency – the whole process is tracked, and each
member of the team is given an equal amount of
workload [13]. Kanban uses a visual control mechanism
for tracking the work flow during the implementation of
the different stages of realization. The Kanban
methodology takes into account the number of started and
unfinished tasks (WIP – work in progress tasks) and
restricts starting more tasks until the previous ones have
been completed, or until the next stage of development is
nearing initiation. This approach allows the software
developers to take tasks from a so-called “queue” with
different sections - to do, backlog, planned, etc.; where all
tasks are prioritized, categorized, described and the
necessary restrictions have been placed.

Table I shows comparison between the Kanban and
Scrum methodologies, which is given to the students to
help them decide which methodology their teams would
follow.

After completing the specification, one of the first
tasks for each team is to write user stories based on the
specification. The list with user stories is a flexible
method for managing the project requirements. User
stories are short tasks, which define the specific goals for
actors; which can be developed by the team in a short
period of time - for example - in one sprint. For the
creation and management of all user stories the students
use the team management system – Jira.

Each team has access to Confluence and Jira (Fig. 4),
deployed on a special cloud server for the university’s
needs. Confluence is used as a documentation version
management tool, which helps keep track of the project’s
main priorities and requirements, while Jira is the team
management tool for the work flow and tasks of the
teams. Jira is used as a project management system; an
especially useful component is the project board, which

students use to augment learning Agile methodologies
such as Scrum and Kanban, while also improving their
task and time management skills. Both these applications
are immensely useful in understanding the whole process
of creating and managing a software project as a team
and company.

Figure 4. Jira Software used by students from the University of Ruse

B. Prioritization. Agile Estimating and Planning Poker
Game

Software development teams can use different
techniques for prioritizing the requirements of the project
– organizing the tasks in level of importance is one of the
most important responsibilities of the team. Even when
projects start with stellar success, there comes a moment
when a decision must be made on which requirements
have to be completed, and which have to be postponed, in
order for the product to be delivered according to the time
schedule.

In the analysis of the requirements phase, every team
decides the relevance and importance of each requirement
by answering feasible questions. Time-space constraints
have to be taken into account, resources, expenses and the
possibilities for error must be well understood and
calculated for. Another important major problem must
always be planned for – clients frequently change their
requirements even in an advanced stage of project
development. Usually the clients have only an idea in the
beginning, and the details are forged afterwards. This
must be avoided, as it leads to incredible complications
further down the development process. This is also
known as the “metastasis of possibilities” – where the
application features continuously grows to epic
proportions.

One of the preferred methods which students use in
the course is – MoSCoW [14]. This method is applicable
to every software project, independent on the chosen
control methodology. The “Moscow method” is a way to
categorize requirements by importance, so as to decide
which is actually important for the client, and which is
not. The abbreviation MoSCoW means:

• Must have: requirements and functionalities,
without which the main goal of the project
would not be reached. They are the backbone
of the system, the absolute minimum
necessary for the project to have any
meaning;

TABLE I. KANBAN VS SCRUM METHODOLOGIES

Scrum Kanban
The time limited iterations are
obligatory.

Time limitated iterations are optional.

The team promises to finish a work
process in every iteration.

Work process finalization in every
iteration is not obligatory.

Tempo is used as a metric for
planning and improving the process.

Time for completion is used as a metric
for planning and improving the process.

It is imperative that multifunctional
teams are present.

Multifunctional teams are optional.
Specialized teams are permitted.

Work needs to be separated in small
parts in order to be finished within
h i f f h i

There are no constraints on the size of
tasks and their length.

It is necessary to use a chart for the
remaining work (Burndown chart).

A work chart is not needed.

Indirectly limiting the incomplete
tasks (for a sprint).

Directly limiting the incomplete tasks
(during work flow).

Rating and prioritizing tasks is
obligatory.

Rating and prioritizing tasks is not
obligatory.

Three roles are mandatory - Product
owner, Scrum master and team.

There are no mandatory roles.

1447

• Should have: features which are not critical
to the products’ core functionalities, but are
incredibly important to the client;

• Could have: features which are useful to
have in the application, but only if they do
not require a large amount of work to be
completed. They are the first ones that would
be delayed when the project scope narrows
due to incoming deadlines;

• Won’t have: requirements which are
absolutely out of the current scope of the
project and do not enter the management
plan. They are planned as future
improvements or features to be added later in
next versions of the product.

A mistake which students often make is to have all
the project features and requirements marked as Must
have, but this almost always results in a failed project.

Every task must be estimated before prioritization.
The grading of the tasks is achieved by playing Poker
Planning. Each of the teams starts the game and loads
their user stories to be assessed. The grading is done
through poker cards, where every card has a numeric
value – weight. The team manager gives the team start
game, and every member of the team has to personally
estimate every user story, after which the game analyses
all user grades and calculates the average result. Fig. 5
shows the online game (planitpoker.com), which is used
by the students during class.

Figure 5. Poker Planning Game played by students during a lecture

Poker planning, also known as Scrum Poker [15], is a
technique for rating efforts based on consensus. The
members of the team judge user stories by playing with
virtual numbered cards that other teammates cannot see.
The results of the voting for each user story is revealed
after everyone has finished choosing. Using such a game
helps bypass the psychological effect anchoring bias,
which occurs during voting by voice – as the risk of
influencing each other’s opinions beforehand is present.
This effect can lead to incorrect grading and prioritizing
tasks.

C. Code Combat Game

Various gamification techniques can also be applied
during the code implementation phase. One example of a
game geared towards teaching students to code is
CodeCombat (Fig. 6). The system is, in its essence, a
simple coding environment, disguised as a game. Its main
objective is to teach students (mainly K-12) the basics of
coding [16] in either one of two of the most popular
programming languages – JavaScript and Python. Players
get to control a variety of magical and/or hero characters
through a multitude of levels, including mazes, obstacle
avoidance and combat levels.

Figure 6. Code Combat Game played during a Software Engineering
workshop

While this type of educational software might be
intended for use with younger students, it can also be
applied in higher education. It is especially interesting for
computer engineering students who are less experienced
with programming and coding.

The game has a dedicated classroom mode, which
allows educators to track the whole class’ overall
progress, as well as generate reports and statistics on how
the class or a particular student is doing (Fig. 7).

Figure 7. CodeCombat Playtime and Progress Stats

D. Alphabet Brainstorming
Alphabet Brainstorming [17] is a game which helps

students generate connections between ideas and key
words beginning with the letters from the alphabet. The
game session was conducted with the students during the
software engineering course, where they had to generate

1448

as many words with key terms from the course lecture
materials. Every student was given a sheet of paper with
30 letters from the Bulgarian alphabet. The goal was to
determine at least one term with every letter of the
alphabet. At the end of the game the generated terms for
every letter were presented for discussion to all the
students. Fig. 8 shows the overall student results from
2018. The results have been summarized and the most
used key terms from the course have been picked out in
the brainstorming game. An analysis on the student
activity shows that 79% of the learners have succeeded in
generating terms for more than 20 letters of the alphabet.
The generated terms can be used as a reference to be
included in the lecture material among more key words,
which are usually put at the beginning of each lecture.

Figure 8. The terms used by students in the game Alphabet
Brainstorming, from most to least

The educational goal achieved by using this type of
game is improving knowledge acquisition skills in the
learners, helping them synthesize connections between
terminology and key words, and understanding them. The
game is a great approach for reviewing the students’
knowledge on the subject at the end of the semester.

E. Kahoot Game
The game Kahoot is an innovative method for

actively engaging the students during class [18]. It can be
used as a quiz game with a prize, for subject discussion or
research on a topic from the lecture material. In the
Software engineering course, Kahoot was used as a quiz
game at the end of the semester during a lecture. The idea
was to find out excellent students who had paid attention
in class and quickly revise the course material. For the
game there were 15 questions presented, which the
students could view on their mobile devices using a
generated code and logging in on the game’s website.
The game was received exceptionally well, as more than
90% of the attending students played the game and
answered the questions in the allocated time frame. A
competition formed about giving the most correct answer
in the shortest time. After every question, the interactive
board in the lecture room visualized the results in a player
rank ladder with the students’ points. At the end of the
game there were three winners who received a golden, a
silver and a bronze medal corresponding to their results.

On Fig. 9 the process for the creation of the quiz using
kahoot.com website is shown.

Figure 9. Kahoot Game Creator for Software Engineering

F. The Millionaire Game
The Millionaire game (Software Engineering Edition)

was also used to review the course material at the end of
the semester. Questions with different degree of difficulty
were formed, and six difficulty levels were created. The
students could also use jokers for help: having help from
the audience (who were voting for the answer by lifting
their hands); and call a friend. For the second joker, the
students actually chose to call the assistant professor from
the course, who was their workshop teacher. On Fig. 10 a
question from the game is shown. It is about the
Cumulative Flow Diagram, used in Kanban for tracking
team progress and keeping information about tasks: Work
in Progress (WIP), Cycle Time and Throughput.

Figure 10. The Millionaire Game (Software Engineering Edition)

G. Students Survey
In 2018 a survey was held for full-time and part-time

students’ opinion on the software engineering course. The
survey was done by 78 students who had finished the
course. Fig.11 shows the results from the question where
students had to evaluate the different games used in the
course. The results on Fig. 11 show that the most
interesting game for the students was the Brainstorming
game, which had 65.5% of the participants voting for it.
The role playing game was evaluated as interesting by
62.1% of the students, and in third place the survey ranks
the Millionaire Game with 58,6%.

Results from the study show that all the students who
have taken the survey approve the use of games in the
learning process for the course. 79.3% of the respondents
chose the highest option in the Likert Scale question
“How would you rate the use of games in the Software
engineering course?”. The other 20.7% all selected the
second best answer.

1449

Figure 11. Survey Results - Software Engineering Games Evaluation

During the study, students have revealed that their
interest and motivation to learn for the course has
improved considerably after participating in the gaming
activities. Notable are the answers to the question of
whether the results achieved by the students themselves
were above what they expected, and 44.8% of the
learners attest that they have accomplished more in the
course than they expected to achieve. The other 39.5%
answered that they are satisfied (Fig. 12).

Figure 12. Survey Results

III. CONCLUSION

Software engineering is a mandatory subject included
in the curriculum of computer engineers which aims to
give them knowledge on complex matters which will be
necessary for them for their future work in any software
company. The course has only 60 hours of workload – 30
lecture hours and 30 workshop hours, which are not even
close enough for the entire theoretical and practical
material to be taught. The team that developed the study
materials decided to use gamification as an innovative
teaching approach for engaging student attention and
heightening motivation for the learning process, with the
goal of improving the students’ ability to absorb and
understand knowledge faster and more efficiently.

The educational games used in the course help
demonstrate the use of software methodologies in a fun
and efficient way. The results from the experiment show
the positive approach students take to using gamification.
The used gaming strategy in the learning process shows
that this method is effective as it is being used for the
third year. In the survey from 2018 a majority of the
students showed that they approve of games as a viable
strategy to improve learning, and prefer studying while
playing.

ACKNOWLEDGMENT

The study was supported by contract of University of Ruse
“Angel Kanchev”, � BG05M2OP001-2.009-0011-�01,
„Support for the development of human resources for research
and innovation at the University of Ruse “Angel Kanchev”. The
project is funded with support from the Operational Program
“Science and Education for Smart Growth 2014 – 2020”
financed by the European Social Fund of the European Union.

REFERENCES

[1] S. Kim, K. Song, B. Lockee, J. Burton, “Gamification in Learning
and Education,” Advances in Game-Based Learning, ISBN 978-3-
319-47282-9, Springer International Publishing, 2018.

[2] J. Doncheva, I. Ilieva "Practical and Applied Aspect of Motivation
Role for Game and Physical Activity in Transition between
Preschool and School Age," Activities in Physical Education &
Sport 5.2, 2015.

[3] A. Juan, B. Loch, T. Daradoumis, S. Ventura, “Games and
simulation in higher education,“ International Journal of
Educational Technology in Higher Education, 2017

[4] D. Baeva, “The interactive multimedia as a language learning
resource on the initial level of language acquisition,” Paradigmata
poznani, vol. 3, pp. 90-92, 2014.

[5] M. Ibáñez, A. Di-Serio, C. Delgado-Kloos, "Gamification for
engaging computer science students in learning activities: A case
study," IEEE Transactions on learning technologies 7.3, pp. 291-
301, 2014.

[6] G. Baptista, G., T. Oliveira, T. “Gamification and serious games:
A literature meta-analysis and integrative model.” Computers in
Human Behavior, vol. 92, March 2019, Pages 306-315, 2018.

[7] I. Caponetto, J. Earp, M. Ott. "Gamification and education: A
literature review," European Conference on Games Based
Learning, Academic Conferences International, vol. 1, 2014.

[8] StackOverflow Developer Survey Results 2018 -
https://insights.stackoverflow.com/survey/2018/

[9] A. Amory, R. Seagram, "Educational game models:
conceptualization and evaluation: the practice of higher
education," South African Journal of Higher Education, 17.2, pp.
206-217, 2003.

[10] M. Fowler, J. Highsmith, “The agile manifesto,” Software
Development, 9(8), pp. 28-35, 2001.

[11] Rodriguez, Guillermo, Álvaro Soria, and Marcelo Campo.
"Virtual Scrum: A teaching aid to introduce undergraduate
software engineering students to scrum." Computer Applications
in Engineering Education 23.1 (2015): 147-156.…

[12] Yacoub, Maha Khaled, Mostafa Abdel Athim Mostafa, and
Ahmed Bahaa Farid. "A New Approach for Distributed Software
Engineering Teams Based on Kanban Method for Reducing
Dependency." JSW 11.12 (2016): 1231-1241.

[13] Anderson, David J., et al. "A comparative study of Scrum and
Kanban approaches on a real case study using simulation."
International Conference on Agile Software Development.
Springer, Berlin, Heidelberg, 2012.

[14] J. Khan, I. Rehman, Y. Khan, I. Khan, S. Rashid, “Comparison of
requirement prioritization techniques to find best prioritization
technique,” International Journal of Modern Education and
Computer Science, 7(11), 53, 2015.

[15] M. Jaatun, I. Tondel, "Playing Protection Poker for Practical
Software Security," International Conference on Product-Focused
Software Process Improvement. Springer, Cham, 2016.

[16] D. Kumar, "Digital playgrounds for early computing education,"
ACM Inroads, 5.1, pp. 20-21, 2014.

[17] D. Buehl, “Classroom strategies for interactive learning,”,
Stenhouse Publishers, 2017.

[18] S. Licorish, et al. "Students’ perception of Kahoot!’s influence on
teaching and learning," Research and Practice in Technology
Enhanced Learning, 13.1, 9, 2018.

1450

